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Abstract. This research investigates the effectiveness of machine learning techniques, 

namely random forest, artificial neural network, and convolutional neural network, in 

detecting and classifying Android malware using both static and dynamic analysis methods. 

Leveraging the CICInvesAndMal2019 dataset, multiclass classification by categorizing 

malware into adware, ransomware, scareware, and SMS malware are performed. The static 

analysis examines permissions and intents, while the dynamic analysis focuses on API calls 

and network flows. The performance of the models is evaluated using accuracy, recall, 

precision, F1 score, training time, and testing time. The results demonstrate the superiority of 

random forest over deep learning models in both static and dynamic analysis, with static 

analysis yielding better performance than dynamic analysis. This study contributes to the field 

of Android malware detection by providing insights into the effectiveness of different 

machine learning algorithms and analysis methods, highlighting the potential of random forest 

for efficient and accurate malware multiclass classification. 
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1. Introduction  

In recent years, the rapid growth of mobile devices, particularly those running on the Android operating 

system has been into a revolutionary surge. With this widespread adoption, the mobile ecosystem has 

become a part of our daily lives, facilitating communication, productivity, and entertainment. However, 

the trend of mobile applications and the high number of Android customers has also attracted the 

attention of cybercriminals, leading to an escalation in the sophistication and prevalence of Android 

malware (Selvaganapathy et al., 2021).  

The Android platform encountered over 4.18 million malicious applications in 2019 alone, with a 

daily emergence of approximately 11,500 new instances of Android malware. The trend is also expected 

to increase in the future (Haidros Rahima Manzil & Manohar Naik, 2024). Malicious actors develop 

advanced strategies to exploit vulnerabilities regularly, posing major dangers to user privacy and 

security. The impact of Android malware on user privacy and security is profound, manifesting in 

various forms such as data theft, financial fraud, and device compromise. For instance, malware can 

steal sensitive information like login credentials and personal data, leading to identity theft and 

unauthorized access to accounts. Financial fraud is another critical issue, with malware often used to 

conduct unauthorized transactions or steal payment information. Additionally, device compromise can 

occur, allowing attackers to control and manipulate infected devices, leading to significant disruptions 

and potential further exploitation. 

The growing volume and diversity of malware pose significant challenges in effective detection 

(Selvaganapathy et al., 2021). Addressing this issue has led to the exploration of artificial intelligence, 

with a specific focus on machine learning to enhance the effectiveness of malware detection and 

analysis. The rise of malware applications has made it impractical to manually create detection rules in 

today's cybersecurity landscape. Recognizing this challenge, researchers and commercial anti-malware 

products have increasingly turned to the application of machine learning to fortify their defense 

mechanisms. Malware analysis using machine learning can learn complex patterns of malware, enables 

machine learning based systems to identify differences in existing malware and identify new and unseen 

malwares (Muzaffar et al., 2022). As a subset of machine learning, deep learning is also widely used.   

Other than signature-based approach, the behavior-based approaches encompass static analysis, 

dynamic analysis, and hybrid analysis. Static analysis is the process of collecting static features without 

launching applications, utilizing tools to capture information from the Android package files like 

AndroidManifest.xml, metadata, and classes. This method is computationally efficient and preferable 

due to its simplicity. On the other hand, dynamic analysis executes the applications on a device or 

emulator to capture features like application programming interface logs during runtime. Furthermore, 

researchers often opt for the hybrid analysis framework, combining the static methods and dynamic 

methods. Hybrid analysis leverage the strengths of both approaches to enhance detection accuracy, 

demonstrating the evolving landscape of Android malware research (Haidros Rahima Manzil & 

Manohar Naik, 2024).   

In the current landscape of Android malware detection, machine learning based Android malware 

detection has been primarily focusing on binary classification, distinguishing between malicious and 

benign Android applications, such as HR (2019), Hadiprakoso et al. (2020), and Anuar et al. (2020). 

However, this concentration has inadvertently led to a lack of research on multiclass Android malware 

classification, particularly concerning deep learning methodologies, as noted by Wang et al. (2020). 

The absence of exploration in multiclass classification restricts our understanding of the diverse 

spectrum of Android malware and limits the development of effective mitigation strategies. Multiclass 

classification categorizes malware into distinct classes, offers a way to gain deeper insights into the 

specific behaviors, characteristics, and potential risks associated with each category, thereby enabling 

more targeted and robust security measures. 

The present research landscape also directs its attention towards static analysis for Android malware 
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classification, such as Almahmoud et al. (2021), Shatnawi et al. (2022), and Kabakus (2022). Only a 

limited amount of research conducts dynamic or hybrid analysis for malware detection in Android 

system. While static analysis is efficient in detecting malware, its limitations become evident when 

confronted with applications employing methods to obscure and protect their code like encryption. In 

contrast, dynamic analysis offers a feasible way to thoroughly examine malware (Wang et al., 2020). 

By focusing on dynamic features like runtime interactions and system calls, it enhances the ability to 

adapt to emerging malware threats and contributes to a more robust and proactive defense strategy. 

This research aims to explore the effectiveness of Android malware multiclass classification using 

machine learning. Specifically, to investigate the performance of random forest (RF), artificial neural 

network (ANN), and convolutional neural network (CNN) models for Android malware multiclass 

classification using static and dynamic analysis. RF is known for its robustness and interpretability in 

handling structured data, ANN provides flexibility and adaptability in learning complex patterns, and 

CNN excels in feature extraction and hierarchical learning, particularly in image and sequence data, 

which can be useful to extracting features from Android malware analysis.  

2. Literature Review 

2.1. Datasets for Android Malware Analysis 

Datasets with large malware samples are a crucial part in the realm of malware analysis, particularly 

when leveraging machine learning techniques. These datasets consist of large amounts of adware, 

ransomware, benign, and malware samples. These datasets serve as valuable resources for researchers, 

providing labelled data for supervised learning and facilitating the accessibility of malware samples for 

analysis. The following section will delve into the characteristics of three reviewed datasets.          

The first dataset worth mentioning is the Drebin dataset. According to Mbunge et al. (2023), the 

Drebin dataset is widely utilized in the analysis of Android malware. It comprises 5560 samples 

belonging to 179 malware families, collected during the period from 2010 to 2012. Despite its age, 

Drebin dataset is still used in recent research. For example, Fiky et al. (2021) combined Drebin and 

Malgenome datasets and obtained a dataset with 6,820 malware samples and 12,015 benign samples. 

This dataset was characterized by a rich feature set, encompassing 215 features for a comprehensive 

analysis.  Raghuvanshi & Singh (2023) and Sarah et al. (2021) also extracted 215 features from Drebin 

dataset. However, it is also highlighted that the dynamic nature of malware characteristics over time 

posed a challenge to deep learning models when utilizing Drebin (Mbunge et al., 2023).    

The Android malware datasets accessible from Canadian Institute for Cybersecurity (CIC) are also 

widely used. The CIC-AndMal2017 dataset consists of 426 malware samples obtained from Virustotal 

service, Contagio security blog and 5,065 benign samples obtained from Google Play. The CIC-

AndMal2017 dataset incorporates features like memory dump, network traffic, logs, application 

programming interface (API) calls, permissions, and phone statistics data, obtained through the 

installation of malware on real devices. This approach directly addresses a limitation observed in other 

datasets, such as Drebin, where data is not obtained from real devices (Lashkari et al., 2018).  

Subsequently, the CIC-InvesAndMal2019 published in 2019 enriches the CIC-AndMal2017 dataset 

by adding new features, namely permissions & intents and API calls. CIC-InvesAndMal2019 is the 

second part of CIC-AndMal2017 dataset, same as CIC-AndMal2017 dataset, it consists of 426 malware 

samples.  The malware samples of both datasets are also categorized into adware, ransomware, 

scareware, and SMS malware (Taheri et al., 2019). 

2.2. Android Malware Analysis using Machine Learning  

Research from Raghuvanshi & Singh (2023), proposed a method for identifying malicious and benign 

applications on Android devices. The paper employs a static analysis approach based on four types of 

features extracted from Android Application Package (APK) files: permissions, API calls, intents, and 

command signatures. Two malware datasets, Drebin and Malgenome, were used in the training and 
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testing process of three machine learning classifiers, which are support vector machine (SVM), 

maximum voting classifier (MVC), and random forest (RF). Principal component analysis (PCA) was 

also applied to optimize the features and reduce the dimensionality. For feature extraction, the paper 

uses AndroGuard, a tool for decompiling APK files, to obtain the manifest.xml and class.dex files, and 

extracted 215 features from these files, including 113 permissions and 102 features of API calls, intents, 

and commands. To facilitate experimentation, two distinct feature sets are generated. The first feature 

set referred to as the “combined feature set”, comprises all 215 features extracted from the manifest and 

class files. Meanwhile, the second feature set, referred to as the "permission set", exclusively includes 

the binary combinations of the 113 permissions. PCA was used separately for the combined feature set. 

The permission feature set was to reduce the number of features. The results using the combined features 

showed that the SVM classifier with PCA achieves the highest accuracy of 98.19% on the Drebin 

dataset and 98.84% for the Malgenome dataset, while SVM classifier without PCA achieves 98.03% 

and 98.70% on the Drebin and Malgenome datasets, respectively. However, the results using the 

permission features showed that the RF classifier achieves the highest accuracy of 96.27% on the Drebin 

dataset while SVM classifier with PCA achieves the highest 97.63% on the Malgenome dataset. Both 

machine learning trained solely on permission features exhibit lower performance compared to those 

utilizing the comprehensive set of combined features. This discrepancy suggests that permissions alone 

may not be sufficient for effectively classifying malware and benign software. 

Sarah et al. (2021) presented an approach for binary classification by classifying malware and 

benign classes using ensemble machine learning algorithms and feature selection methods. Drebin 

datasets were used and the performance of eight machine learning algorithms, including four traditional 

ones which are logistic regression, support vector machine, gaussian naive bayes, and decision tree and 

four ensemble ones namely, random forest, gradient boosting decision tree, light GBM, and XGBoost 

were compared. recursive feature elimination (RFE) and recursive feature elimination with cross-

validation (RFECV) were applied to select the optimal subset of features for each algorithm. Their 

research uses two approaches for model testing, namely train-test split and cross validation. The results 

show that ensemble machine learning algorithms achieve higher accuracy than traditional ones for 

predicting Android malware. Among the ensemble methods, lightGBM has the best performance, with 

an accuracy of 99.50% using cross-validation and 99.30% using train-test split. This is because 

lightGBM splits the tree leaf-wise, which can reduce overfitting and improve efficiency. Their research 

also used RFE to select different numbers of features, ranging from 15 to 100 to compare the accuracy 

of the models. LightGBM and random forest have the highest accuracy with 100 and 55 features, 

respectively. The authors also use RFECV to automatically select the optimal number of features for 

each algorithm and find that lightGBM and decision tree have the best performance with 100 and 55 

features, respectively. Their research mentioned that for higher accuracy, lightGBM is a stronger choice, 

excelling in complex datasets. However, if efficiency and fewer features are prioritized, random forest 

consistently delivers competitive accuracy with better performance. 

Bayazit et al. (2022) implemented recurrent neural network (RNN), gated recurrent unit (GRU), 

long short-term memory (LSTM), and bidirectional long short-term memory (Bi-LSTM) to detect 

malware in Android system using static analysis. In their research, the CICInvesAndMal2019 dataset 

was employed to detect Android malware. The study categorized two distinct categories by labelling 

the malware in the dataset, namely ransomware, adware, scareware, and SMS malware as 1, while 

benign samples are labelled as 0. During the classification of deep learning, the vanishing gradient 

problem poses a limitation for RNN, hindering their ability to effectively capture long-term 

dependencies in data. In response to this limitation, the LSTM model was employed in their research. 

LSTM, categorized as a type of RNN, incorporate a “memory cell” capable of retaining information for 

extended durations, thereby mitigating the challenges associated with the vanishing gradient problem. 

However, LSTMs exhibit a unidirectional data processing approach, implying an inability to capture 

patterns from future steps in the sequence, resulting in underestimation. To address this constraint, a 
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transition was made to the BiLSTM model. BiLSTM process data in both forward and backward 

directions, enabling the extraction of patterns from both preceding and subsequent data points. The four 

deep learning models achieved accuracies of 98.02%, 98.10%, 98.75%, and 98.85% for RNN, GRU, 

LSTM, and BiLSTM, respectively. It is also mentioned that their future work will focus on reducing 

the train time for the deep learning models. 

In the research from Imtiaz et al. (2021), they introduced a deep learning model named deep 

Android malware detection (DeepAMD) that uses artificial neural network (ANN) for Android malware 

classification. To evaluate the effectiveness of their proposed model, the researchers compared four 

traditional machine learning algorithms, namely multilayer perceptron (MLP), sequential minimal 

optimization (SMO), naïve Bayes (NB), and decision tree (DT/J48). Similar to the approach taken by 

Bayazit et al. (2022), they utilized the CICInvesAndMal2019 dataset in their research. This dataset 

includes labeled samples with information about malware categories and families. In their investigation, 

the researchers initially performed binary classification on the static layer of the dataset, focusing on 

static features of the applications. Upon classifying samples as malware, they subsequently delved into 

further categorization, distinguishing between four malware categories: adware, ransomware, SMS 

malware, and scareware. Additionally, they extended their analysis to classify malware samples into a 

total of 39 distinct families, encompassing variations within each of the four categories. In binary 

classification, their model achieved an accuracy of 93.40%. The static layer has an accuracy of 92.50% 

in malware category classification. However, the dynamic layer presented a lower accuracy of 80.30%, 

underscoring the distinctions in performance between static and dynamic analysis. During family 

classification, their proposed model achieved an overall accuracy of 90.00% on static layer. However, 

their model only achieved 55.70% on malware family classification using dynamic layer. This result is 

worse than the NB machine learning algorithm, which recorded an accuracy of 59.00% in the same 

context. This discrepancy emphasizes that traditional machine learning approaches may outperform 

deep learning models in efficiency or accuracy. 

The study by Shyong et al. (2020), introduces an approach that combines static analysis and 

dynamic analysis for malware detection and family classification. The researchers implemented their 

methodology within the Android application analysis system. During static analysis, the permissions 

list of the application is extracted to facilitate binary malware classification. This process serves to 

discern whether the application exhibits characteristics indicative of malware or benign intent. If the 

application is detected as malware during static analysis, their system progresses to dynamic analysis. 

At this stage, various dynamic features are extracted from the network packets associated with the 

malicious application. These features include DNS packet features, HTTP packet features, TCP packet 

features, and relevant information derived from the network packets file. The dynamic analysis utilizes 

the extracted network-related features to classify the detected malware into specific families, with a 

total of 10 malware families and a benign family. Their study utilizes random forest (RF) machine 

learning algorithm for the classification tasks in both static and dynamic analysis. The performance of 

five machine learning algorithms during static analysis are evaluated and RF achieved the highest 

accuracy among them. The accuracy of random forest using different feature sets were explored in this 

study. Feature set comprising of 226 features obtained from the system permissions achieved an 

accuracy of 98.86%, while feature set with 2582 features comprising of system permissions and custom 

permissions achieved a lower accuracy of 98.72%. Furthermore, their study identified the optimal 

parameter for the random forest algorithm, which is the most effective number of trees is either 300 or 

400. The random forest algorithm in their paper also achieved 95.60% for dynamic analysis which 

includes TCP packet, DNS packet, HTTP packet, and other contents as the features.   

2.3. Research Gaps 

While numerous studies have addressed the binary classification problem of distinguishing between 

malicious and benign applications using machine learning techniques, there exists a research gap in the 
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exploration of multiclass malware classification scenarios. A considerable proportion of existing 

literature only focuses on binary classification, where the primary goal is to identify whether an Android 

package file is malicious or benign. This trend is evident in several studies, such as HR (2019), 

Hadiprakoso et al. (2020), and Anuar et al. (2020), where researchers have primarily concentrated on 

the binary classification of Android applications. For instance, in a recent study by Bayazit et al., (2022), 

the researchers investigated malware detection on Android applications using the 

CICInvesAndMal2019 dataset, which classified malware samples into four categories, namely adware, 

ransomware, scareware, and SMS malware. Despite the availability of labelled malware samples 

spanning different classes, the authors opted for a binary classification approach, merging the various 

malware categories into a single “malware” class. Their primary objective was to discern between the 

aggregated malware class and benign Android applications using deep learning models. While such an 

approach can be used for identifying the presence or absence of malware, it lacks the ability required 

for an in-depth analysis of the distinct threats posed by different malware categories. This research 

emphasizes the need for multiclass approaches capable of capturing the distinctions among various 

malware categories.  

Despite the growing of machine learning models in classifying Android applications, a research gap 

exists in addressing the temporal dynamics of malware evolution. Dynamic analysis involves observing 

an application's behavior during execution, allowing for a real-time understanding of its actions and 

interactions with the devices and the networks. Many existing studies focus on training models on static 

typed dataset, prioritizing attributes extracted from the code of Android applications without 

sufficiently considering the dynamic aspects of malware behaviors. Static features often rely on 

characteristics such as permissions, API calls, and manifest information during the model training phase. 

Research solely using static analysis often overlooking the insights that dynamic analysis can offer. For 

instance, the work by Subash A et al. (2023) explored Android malware detection exclusively through 

static analysis, leveraging features derived from the manifest file and application permissions. Similarly, 

Almahmoud et al. (2021) extracted four static features from the manifest file, namely permissions, API 

calls, system events and permission rate to discern between benign and malicious applications, ignoring 

the insights in dynamic behaviors. Additionally, in the research from Shatnawi et al. (2022), they 

obtained API calls and permission features from the CICInvesAndMal2019 dataset to detect malware 

in Android using machine learning. These examples highlight the prevailing inclination towards static 

analysis in the current landscape of Android malware detection research, further emphasizing the need 

to incorporate dynamic analysis methodologies. Table 1 shows the other reviewed papers with their 

analysis type and classification method.  

 

Table 1: Analysis type and classification method of other papers 
Reference Analysis Type Classification 

Amenova et al., 2022 Static Binary 

Raghuvanshi & Singh, 2023 Static Binary 

Elayan & Mustafa, 2021 Static Binary 

Sarah et al., 2021 Static Binary 

Eltaher et al., 2023 Dynamic Binary 

Yang et al., 2022 Static Multiclass 

Kabakus, 2022 Static Binary 

Mohamad Arif et al., 2021 Static Binary 

Haidros Rahima Manzil & Manohar 

Naik, 2022 

Dynamic Binary 

Ibrahim et al., 2022 Static Multiclass 

3. Research Methods 

3.1. Dataset 

In this research, the Canadian Institute for Cybersecurity Investigation of the Android Malware 2019 



Bau et al., Journal of Logistics, Informatics and Service Science, Vol. 11 (2024) No. 10, pp. 1-19 

7 

 

(CICInvesAndMal2019) datasets were used. These datasets are distinguished by their separation of 

static and dynamic features, which enables a two-pronged analysis approach. The malware samples 

were collected from diverse sources including VirusTotal, Contagio security blog, and contributions 

from previous researchers in the field. In Figure 1, the static dataset includes 1594 samples (1187 benign 

and 407 malware), with 8115 columns. Four columns which are “family”, “category”, “MD5”, and 

“binary type” serve as identifiers while the remaining 8111 columns are attributes extracted from 

application permissions and intents. Static dataset consists of five classes, namely benign, adware, 

ransomware, SMS malware, and scareware. 

Figure 2 is the dynamic dataset, which encompasses 327 samples and consists of 920 columns. 

Within the dataset, 918 columns are attributes derived from API calls and network flows while the 

remaining two columns which are “ID” and “category” serve as the identifiers. Dynamic dataset has 

four classes by categorizing malware into adware, ransomware, SMS malware, and scareware. 

While this dataset offers a comprehensive collection of Android malware samples and their 

respective features, using a single dataset may not fully capture the diversity and variability of malware 

found in the real world. Consequently, the performance metrics obtained in this study might be specific 

to this dataset and may not generalize well to other datasets with different distributions, feature sets, or 

malware types. 

 

 
Fig. 1: Static Dataset 

 

 
Fig. 2: Dynamic Dataset 

3.2. Data Analysis 

In the static dataset, instances are categorized into five classes as shown in Figure 3. There are a total 

of 1187 benign samples. 407 malware samples are distributed into 111 instances of scareware, 108 

instances of SMS malware, 95 instances of adware, and 93 instances of ransomware.  

In the dynamic dataset, instances comprise only malware samples as illustrated in Figure 4. The 

dataset contains 98 instances of scareware, 86 instances of SMS malware, 75 instances of adware, and 

68 instances of ransomware. Unlike the static dataset, the absence of benign samples in the dynamic 

dataset highlights its focus on malicious behavior.  
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Fig. 3: Distribution of Static Analysis of Instance Categories 

 

 

 
Fig. 4: Distribution of Dynamic Analysis of Instance Categories 

 

Within the static dataset, 3996 columns pertain to intents, while the remaining 4115 columns 

correspond to permissions. These features are obtained from the Android package file (APK). Intents 

facilitate communication between different parts of an app or even between apps themselves. 

Permissions, on the other hand, represent access rights that apps request to perform specific actions on 
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the device or user data. Both intents and permissions columns function as a single feature, holding a 

value of either 1 or 0. A value of 1 signifies that the app declares a specific intent action like launching 

a camera, or requests a particular permission like accessing the internet. Conversely, a 0 indicates the 

absence of that intent or permission. This reflects the specific functionalities and access needs of a 

particular app. By analyzing these patterns, machine learning algorithms can effectively identify 

inconsistencies or suspicious behavior. 

The dynamic dataset includes 871 API calls columns and 77 columns detailing network flows. In 

the CICInvesAndMal2019 dataset, the API calls columns are 2-gram API calls patterns. The 2-gram 

API calls refer to a method used for analyzing the sequential relationships between pairs of API calls 

made by Android applications. This approach is borrowed from computational linguistics, where an n-

gram is a contiguous sequence of n items from a given sample of text or speech. In this approach, they 

obtained a dictionary of all 2-gram API calls. Each key in a dictionary represents a specific 2-gram API 

call pattern. For each sample, the count of how many times each unique 2-gram pattern appears is 

calculated. These counts serve as features for the dataset. For instance, if the 2-gram pattern appears 10 

times in a sample, the count for that pattern is 10. For the network flows columns, they were extracted 

using the CICFlowMeter. It is used to generate bidirectional flows, allowing for separate calculations 

on traffic moving from source to destination and vice versa. The extracted data encompasses over 77 

features. These features include fundamental aspects like duration, the volume of data packets and bytes 

transferred, and average packet size. Additionally, time-based features delve deeper, capturing statistics 

like average time between packets, minimum and maximum inter-packet delays, and periods of flow 

activity and inactivity (Lashkari et al., 2017). 

3.3. Feature Selection 

For static analysis, all features available in the CICInvesAndMal2019 dataset were used. The decision 

to use all features was based on the observation that each application might have unique permissions 

and intents, resulting in a large number of columns. Permissions and intents are critical indicators of an 

application's behavior and potential security risks. Permissions represent access rights that apps request 

to perform specific actions on the device, such as accessing the internet or reading contacts, while 

intents facilitate communication between different parts of an app or between apps. This approach 

aimed to capture all potential patterns and behaviors that could be indicative of malware. Implementing 

feature selection could potentially exclude some unique permissions or intents specific to certain apps, 

which might be crucial for classifying types of malwares. 

Similarly, for dynamic analysis, all available features were used. The dynamic dataset includes 

features derived from API calls and network flows, which are essential for identifying abnormal or 

malicious behavior patterns. API calls represent the sequence of operations performed by the 

application, and the dataset includes 2-gram API call patterns to capture the sequential relationships 

between pairs of API calls. Network flows represent various aspects of network traffic, including 

duration, the volume of data packets, bytes transferred, and average packet size. These features are 

critical for detecting network-based anomalies and malicious activities. 

3.4. Data Preprocessing 

After data analysis, both the static and dynamic datasets will go through data preprocessing. The 

malware in the dataframe is an object type for both static and dynamic dataset. Thus, this malware has 

four types which are adware as 0, scareware as 1, SMS malware as 2, ransomware as 3 for both static 

and dynamic datasets as shown by two figures below. Additionally, benign is assigned as label 4 in the 

static dataset. This process is done using the mapping function in Python. After relabeling, four 

irrelevant columns are dropped from the dataframe which are the MD5, category, family, and binary 

type. Meanwhile for the dynamic dataset, the id and category columns are dropped from the dataframe. 

Both static and dynamic datasets are further divided into training 80% and testing 20% sets using the 
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train-test split function. Following data splitting, feature scaling is applied on the training sets of both 

static and dynamic datasets to standardize the features, ensuring mean is zero and standard deviation is 

one.  
 

 
Fig. 5: Static Dataset with Mapping 

 

 
Fig. 6: Dynamic Dataset with Mapping 

3.5. Machine Learning 

3.5.1. Random Forest  

Random forest algorithm is an ensemble machine learning algorithm that is used for multiclass 

problems. The random forest models were configured with default parameters, specifically setting the 

number of decision trees to 100. The Gini index, the default criterion, was utilized to measure the quality 

of the split. It helps the random forest model pick the split that makes the groups as pure as possible, 

aiming to make more accurate predictions. Both random forest models for static analysis and dynamic 

analysis have the same parameters.  

3.5.2. Artificial Neural Network  

Artificial neural network is a deep learning model. After data preprocessing and removal of identifiers, 

the ANN model is built following the dataset. For static analysis using static dataset, the input layer of 

ANN will consist of 8111 nodes corresponding to the 8111 features in the static dataset. There will be 

five nodes in the output layer corresponding to the benign and four malware classes to be classified into. 

For dynamic analysis using the dynamic dataset, the input layer consists of 918 nodes and output layer 

consists of four nodes corresponding to the four malware classes. 

Static ANN model consists of five middle layers and dynamic ANN model consists of four middle 

layers, as static analysis has five classes and dynamic analysis has four classes, respectively. Both static 

and dynamic ANN models also consist of an input layer and an output layer. Additionally, fast 

activation function ReLU is used for all layers except the output layer which uses softmax activation 

function as softmax is an output activation function specifically for multiclass problem. Finally, to 

accommodate the multiclass problem, the sparse categorical cross-entropy error function is chosen, 

which used to handle multiclass problem effectively. The ANN models are trained using 32 batch size 

and 20 epochs. The table 2 shows the parameters employed for the ANN models in both static and 

dynamic analyses. After conducting experiments with batch sizes of 32 and epochs of 20, it was found 

that the hidden layer size of 200 among the options of 10, 100, 200, and 500, demonstrated the best 

performance with the lowest loss. 
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Table 2: The parameters of ANN models 

 ANN (Static) ANN (Dynamic) 

Hidden layers 5 4 

Hidden layer size 200 200 

Hidden layer activation function ReLU ReLU 

Output layer activation function softmax softmax 

Batch size 32 32 

Epoch 20 20 

3.5.3. Convolutional Neural Network  

Similar to ANN, the convolutional neural network (CNN) model is a deep learning model. The CNN 

model is constructed to suit the characteristics of the dataset. For static analysis using the static dataset, 

the CNN architecture is tailored with an input layer comprising of 8111 nodes using reshape function, 

aligning with the 8111 features in the static dataset. The output layer is configured with five nodes, each 

corresponding to benign and the four malware classes for classification. For dynamic analysis using the 

dynamic dataset, the CNN model is adapted with an input layer featuring 918 nodes, corresponding to 

the 918 features in the dynamic dataset. The output layer is adjusted to incorporate four nodes, each 

representing one of the four malware classes.  

Both static and dynamic CNN model comprise eight layers, which are an input layer, two Conv1D 

layers with thirty two filters, kernel size of four and ReLU activation function for features extraction, 

two MaxPooling1D layers with pool size of two for down-sampling, a flatten layer to convert the data 

into one dimensional array for feeding the next layer, a dense layer with fast activation function ReLU, 

and a final dense layer serves as the output layer that uses softmax activation function which is an output 

activation function specifically for multiclass problem. The CNN model is designed based on and 

referenced from Yerima & Alzaylaee (2020). They adjusted the CNN model with various parameters 

and evaluated them to arrive at this optimized design. Furthermore, the model employs the sparse 

categorical cross-entropy loss function to effectively handle the multiclass classification problem. The 

CNN models are trained using 32 batch size and 20 epochs. Table 3 and table 4 show the parameters of 

CNN models in static and dynamic analyses. 

Table 3: CNN parameters for static analysis 

Layer Layer Type Filters Kernel 

Size 

Pool Size Activation Func-

tion 

1 Input Layer - - -  

2 Convolutional Layer 32 4 - ReLU 

3 Maximum Pooling Layer - - 2 - 

4 Convolutional Layer 32 4 - ReLU 

5 Maximum Pooling Layer - - 2 - 

6 Flatten Layer - - - - 

7 Dense Layer 8 - - ReLU 

8 Output Layer 5 - - softmax 
 

Table 4: CNN parameters for dynamic analysis 

Layer Layer Type Filters Kernel 

Size 

Pool Size Activation Func-

tion 

1 Input Layer - - -  

2 Convolutional Layer 32 4 - ReLU 

3 Maximum Pooling Layer - - 2 - 

4 Convolutional Layer 32 4 - ReLU 

5 Maximum Pooling Layer - - 2 - 

6 Flatten Layer - - - - 

7 Dense Layer 8 - - ReLU 

8 Output Layer 4 - - softmax 
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3.6. Evaluation Metrics 

To comprehensively evaluate the performance of the random forest, artificial neural network, and 

convolutional neural network models in both static and dynamic analysis approaches for multiclass 

Android malware classification, a set of performance with weighted metrics is employed. The training 

time and testing time were also evaluated. 

Accuracy, recall, precision, and F1 score will be calculated for each model. Accuracy measures the 

overall proportion of correctly classified samples for all classes out of total number of samples. 

However, to account for multiclass in the dataset, weighted metrics will be utilized for recall, precision, 

and F1 score. Firstly, the recall, precision and F1 score will be calculated using the equations below for 

every class individually. In the equations, TP means True Positive, TN is True Negative, FP is False 

Positive and FN is False Negative. Then, a weight will be assigned to each class based on its 

representation in the dataset. Finally, the weighted metrics will be computed by multiplying the 

individual class score by its corresponding weight and summing these products across all classes.  

𝑀𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝑤𝑖 =
𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

𝑀𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ 𝑤𝑖 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

5

𝑖=1 

 

𝑀𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 𝑅𝑒𝑐𝑎𝑙𝑙 = ∑ 𝑤𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

5

𝑖=1 

 

𝑀𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 𝐹1 𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑤𝑖 × 𝐹1 𝑠𝑐𝑜𝑟𝑒𝑖

5

𝑖=1 

 

4. Results 

Table 5 shows the performance of models using static analysis. Three models were evaluated, which 

are random forest, artificial neural network, and convolutional neural network. The metrics used for 

evaluation include accuracy, recall, precision, and F1 score. Random forest exhibits the highest 

accuracy at 95.30%, followed by the artificial neural network at 94.36% and the convolutional neural 

network at 92.48%. Random forest also achieves better results in recall, precision, and F1 score than 

deep learning models. Figure 7 below shows the confusion matrices for each model in static analysis. 

 
Table 5: Models Performance using Static Analysis Table (best results in bold) 

Model Accuracy 

(%) 

Recall  

(%) 

Precision 

(%) 

F1 

(%) 

Random Forest 95.30 95.30 95.46 94.98 

Artificial Neural Network 94.36 94.36 94.26 94.11 

Convolutional Neural Network 92.48 92.48 93.23 92.61 
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Fig. 7: Confusion Matrices for All Models in Static Analysis 

 

Table 6 shows the training and testing times of the models when employing static analysis. Notably, 

random forest requires the shortest training time of merely 2.26 seconds, highlighting its efficiency in 

model training. Artificial neural network takes more time at 47.43 seconds, and convolutional neural 

network takes the longest at 203.69 seconds, indicating the computational intensity associated with its 

training. Random forest also takes the least time for testing compared to deep learning models. The 

results highlight that random forest is faster and performs better than deep learning models.  

Table 6: Models Training Time using Static Analysis (best results in bold) 

Model Training Time (s) Testing Time (s) 

Random Forest 2.26 0.02 

Artificial Neural Network 47.43 0.34 

Convolutional Neural Network 203.69 0.85 

 

Shifting focus to dynamic analysis, Table 7 delves into the performance of models under this 

approach. The results show a notable decrease in performance across all metrics compared to static 

analysis. Random forest still maintains the highest accuracy at 78.79%, followed by the convolutional 

neural network and the artificial neural network with the same accuracy 71.21%. Random forest also 

achieves the best result in recall, precision and F1 score. Figure 8 shows the confusion matrices for each 

model in dynamic analysis. 

 

Table 7: Models Performance using Dynamic Analysis (best results in bold) 

Model Accuracy 

(%) 

Recall  

(%) 

Precision 

(%) 

F1  

(%) 

Random Forest 78.79 78.79 81.13 78.72 

Artificial Neural Network 71.21 72.03 77.88 73.99 

Convolutional Neural Network 71.21 71.21 74.12 71.51 

 

 
Fig. 8: Confusion Matrices for All Models in Dynamic Analysis 
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Table 8 examines the training and testing times of models under dynamic analysis. Interestingly, 

the training times for dynamic analysis are considerably shorter compared to static analysis due to the 

smaller dataset for dynamic analysis. Random forest leads with the shortest training time of 0.36 

seconds, followed by artificial neural network at 3.97 seconds, and convolutional neural network at 

11.46 seconds. Despite the shorter training and testing times observed in dynamic analysis compared to 

static analysis, the relative positions of the models remain consistent. Random forest still stands as the 

fastest model, followed by the artificial neural network and the convolutional neural network. This 

reaffirms the efficiency and performance of random forest in both static and dynamic analysis compared 

to deep learning models. 

Table 8: Models Training Time using Static Analysis (best results in bold) 

Model Training Time (s) Testing Time (s) 

Random Forest 0.36 0.01 

Artificial Neural Network 3.97 0.27 

Convolutional Neural Network 11.46 0.29 

 

Figure 9 provides a comprehensive comparison of the performance metrics, including accuracy, 

precision, recall, and F1-score, for random forest, artificial neural network, and convolutional neural 

network in both static and dynamic analyses. Figure 10 shows the comparative analysis of the training 

and testing times across random forest, artificial neural network, and convolutional neural network in 

both static and dynamic analyses. 

 
Fig. 9: Performance Metrics Comparison of Machine Learning Models 
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Fig. 10: Training and Testing Times Comparison of Machine Learning Models 

 

The results revealed a difference in performance between random forest and deep learning models 

across both static and dynamic analyses. Random forest consistently achieved superior accuracy, recall, 

precision, and F1 score compared to deep learning models. The observed superiority of random forest 

over deep learning models in both static and dynamic analyses may be attributed to factors such as the 

small and imbalanced nature of the dataset, potentially leading to overfitting in deep learning models. 

These results suggest that for smaller and imbalanced datasets, random forest models may be more 

reliable for malware classification in cybersecurity systems. 

Moreover, the results showed that static analysis methods outperformed dynamic analysis 

techniques, which aligns with the findings reported in the paper by Bayazit et al. (2023) using the same 

dataset. As noted in their work, the dynamic features, particularly the network traffic data, do not exhibit 

a normal distribution and encompass fewer features compared to the static analysis. This characteristic 

of the dynamic data could contribute to the lower accuracy observed in the dynamic analysis methods. 

Considering these insights, the superior performance of static analysis in the current study could be 

attributed to the more comprehensive and well distributed static features, which provide a better 

representation for effective malware classification. 

5. Discussion 

The results revealed the difference in performance between random forest and deep learning models in 

both static and dynamic analysis of Android OS malware. While random forest consistently achieved 

superior accuracy, recall, precision, and F1 score, deep learning models achieved inferior results in both 

analysis types.  

The observed superiority of random forest over deep learning models in both static and dynamic 

analyses can be attributed to various factors. Firstly, the parameter optimization plays a crucial role. In 

the study from Shar et al. (2020), they showed that machine learning classifiers performed better than 

deep learning classifiers in static analysis for malware detection. They indicated that one of the reasons 

lies in the complexity of parameter tuning for deep learning models. Unlike machine learning classifiers, 

deep learning models often require complicated parameter optimization to be optimal (Shar et al., 2020).  

Another factor to consider is the potential for overfitting in deep learning models, especially when 

dealing with imbalanced and small datasets for Android malware classification. In the static dataset, the 

malware classes have less samples compared to benign samples. Moreover, both static and dynamic 

datasets have limited samples. Deep learning models can be susceptible to overfitting on the limited 

malware data, leading to a decrease in generalizability on unseen data (Tayyab et al., 2022). Also 

mentioned in Wang et al. (2023), the performance of deep learning models is greatly affected by 

overfitting on imbalanced small dataset. They proposed using a modern synergetic neural network that 
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can effectively handle imbalanced sample sizes and improve classification performance. Modern 

synergetic neural network allows its parameters to adjust automatically, which helps the network to 

adapt to imbalanced and small datasets. Random forest, on the other hand, is generally less prone to 

overfitting due to its inherent ensemble nature. This characteristic might be advantageous in the context 

of malware multiclass classification, where robust performance on unseen malicious samples is critical.     

From the experiments, random forest outperforms deep learning models in both static and dynamic 

analysis of Android OS malware classification. This advantage stems from random forest's less complex 

architecture and inherent resistance to overfitting, especially beneficial with the imbalanced and 

potentially limited datasets common in malware classification. Consequently, random forest offers a 

faster and more effective approach for these specific tasks.  

In the investigation conducted by Bayazit et al. (2023) which uses the same dataset, they focused 

exclusively on binary classification, distinguishing between malware and benign software, this research 

extends to multiclass classification. Notably, they reported that their LSTM model achieved the highest 

accuracy in static analysis, outperforming random forest. While in dynamic analysis, their CNN-LSTM 

model has superior results. Conversely, in this research with multiclass classification approach, the 

random forest is the best model in both static and dynamic analyses. 

The study's exploration of multiclass classification and dynamic analysis in Android malware 

detection will bring enhancement to the existing security frameworks. By specifically targeting different 

types of malwares and employing real-time behavioral analysis, the proposed approach offers a strategy 

for improvements in the accuracy and time efficiency of detection systems. Integrating multiclass 

classification into security systems helps organizations to not only identify malware more accurately 

but also respond more effectively to specific threat scenarios. 

Notably, while this investigation provides valuable insights into Android malware classification, it 

is constrained by the use of a single dataset, which may limit the generalizability of the results. 

Additionally, the study focuses on a limited set of machine learning algorithms, overlooking other 

promising approaches.  

6. Conclusion 

This study compares the performance of random forest, artificial neural network, and convolutional 

neural network in detecting and classifying Android malware using static and dynamic analysis methods. 

The results demonstrate that random forest outperforms deep learning models in both accuracy and 

efficiency, making it a promising candidate for resource-constrained environments. Static analysis, 

which examines permissions and intents, proves to be more effective than dynamic analysis based on 

API calls and network flows. These findings underscore the importance of selecting appropriate 

machine learning algorithms and analysis methods for Android malware detection.  

The study contributes to the growing body of research on Android malware detection by addressing 

the gaps in multiclass classification and dynamic analysis. The insights gained from this study can 

inform the development of more robust and efficient Android malware detection systems that can adapt 

to the evolving landscape of mobile threats. However, further research is needed to validate the findings 

on diverse datasets and explore the potential of hybrid analysis techniques that combine the strengths 

of static and dynamic approaches. Modern synergetic neural network proposed by Wang et al. (2023) 

could also be explored in future research to overcome the overfitting issues in deep learning models 

caused by imbalanced small dataset. To address the limitations of the use of single dataset and limited 

set of machine learning algorithms, future research could explore the use of different datasets from 

multiple sources to validate the findings across different contexts. Moreover, a wider range of machine 

learning algorithms like ensemble methods and deep learning architectures could offer a better 

comparison and identification of the most effective techniques for Android malware classification. 

As the sophistication and prevalence of Android malware continue to rise, it is crucial for 



Bau et al., Journal of Logistics, Informatics and Service Science, Vol. 11 (2024) No. 10, pp. 1-19 

17 

 

researchers and practitioners to collaborate and share knowledge to stay ahead of the curve. This study 

serves as a foundation for future work in this field, highlighting the need for continuous innovation in 

machine learning based Android malware detection. By building on the findings of this study and 

addressing its limitations, the academia and industry communities can contribute to the development of 

more secure and trustworthy mobile ecosystems. 
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