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Abstract. As the digital transformation of higher education continues to deepen, Internet of
Things (IoT) technology provides crucial support for the development of smart campus and
service innovation. However, the level of actual adoption of smart campus among students in
higher educational institutions remains heterogeneous. This study introduces a compatibility
construct to extend the Technology Acceptance Model (TAM), focusing on examining the
influence mechanisms of perceived usefulness, perceived ease of use, and compatibility on
behavioral intention and the adoption of smart campus. This study adopted a questionnaire-
based approach to collect data, distributing 783 questionnaires to students in Nantong City,
Jiangsu Province. A total of 753 valid responses were collected, with a response rate of 96%.
Employing SPSS 26.0 and AMOS 24.0, the research conducted reliability and validity tests
with structural equation modeling analysis. Research findings indicate that perceived
usefulness, perceived ease of use, and compatibility all significantly promote behavioral
intention. Furthermore, behavioral intention has a significant positive impact on the adoption
of smart campus. Additionally, mediation analysis reveals that behavior intention plays a
mediating role in the adoption of loT-Based smart campus. This study contributes in two key
areas: Theoretically, it extends the application of TAM research to the context of loT-Based
smart campus, providing new empirical evidence for understanding technology adoption
mechanisms in educational digitization. Practically, it offers valuable insights for the
development, functional optimization, and user adoption of smart campus initiatives in higher
education institutions.
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1. Introduction

With the rapid advancement of next-generation information technologies, innovations such as the
Internet of Things (IoT), big data, cloud computing, and artificial intelligence are profoundly reshaping
the operational models and governance structures of higher education (He et al., 2024). Against the
backdrop of advancing initiatives like “Digital China”, “Smart Education” and higher education
informatization strategies, the Smart Campus has emerged as a vital vehicle for universities' digital
transformation. By enabling intelligent sensing and coordinated control across diverse scenarios such
as teaching, research, administration, and services, it facilitates efficient resource allocation and
comprehensive enhancement of educational service quality. This approach is recognized as a key
pathway to driving high-quality development in higher education institutions (Wu et al., 2023).

In contrast to traditional campus, Smart Campus emphasizes a core architecture centered on the
perception layer, network layer, and application layer. Through application scenarios such as smart
classrooms, online learning platforms, campus ID cards, and intelligent management systems, it enables
real-time perception of teaching activities, precise analysis of learning behaviors, and intelligent
decision-making for campus operations (Cavus et al., 2022). Therefore, its successful implementation
depends not only on the perfection of technical infrastructure but also on the understanding, attitude,
and willingness to use relevant technologies and systems among end users, especially college students.
However, in actual implementation, many universities still face the issue of prioritizing construction
over usage. Smart campus systems often suffer from low utilization rates, idle functions, or even
resistance. This reality underscores the importance of systematically exploring loT-based smart campus
adoption mechanisms from a user perspective (Blakong et al., 2025).

In the field of information adoption research, the Technology Acceptance Model (TAM) and its
extensions are widely used to explain users' acceptance behavior toward new technologies. TAM posits
that Perceived Usefulness (PU) and Perceived Ease of Use (PEU) are core factors influencing users'
Behavioral Intention (BI), which in turn determines actual usage behavior (Davis et al., 1989; King &
He, 2006). This study introduces the Compatibility (CMP) variable based on TAM theory to better
explain users' adoption decisions in complex technological environments. Empirical research indicates
that when new technologies enhance learning or work performance, are operationally straightforward,
and align with users' existing habits and needs, users are more likely to form positive usage intentions
and translate them into actual adoption behaviors.

Although existing research has explored smart campus adoption from various perspectives, it still
presents the following shortcomings. First, most existing research focuses on either single technological
dimensions or overall perception factors, with limited systematic integration of technology-specific
factors and user behavioral mechanisms. Particularly in IoT-based smart campus scenarios, there is a
lack of in-depth analysis on the combined effects of PU, PEU, and CMP. Second, some studies directly
examine the impact of influencing factors on the adoption of smart campus technologies, overlooking
the potential mediating role of behavioral intention. In fact, users' perceptions and evaluations of
technology often do not directly translate into actual usage; instead, they require mediation through the
psychological mechanism of behavioral intention. Third, in terms of research subjects, there is still
relatively limited empirical research targeting university students as the core user group, particularly in
second-tier cities like Nantong, Jiangsu Province, where relevant empirical evidence remains
insufficient.

Based on the limitations of existing research, this study draws upon Technology Acceptance Theory
to focus on the adoption of IoT-based smart campuses. It constructs and validates a comprehensive
research model encompassing technology-specific factors, behavioral intention, and adoption behavior.
Specifically, this study selects perceived usefulness (PU), perceived ease of use (PEU), and
compatibility (CMP) as key technological factors to examine the direct influence of these factors on
student behavior intention (BI) and the adoption of IoT-based smart campuses (ASC). It also focuses
on analyzing the mediating role of behavior intention between technological factors and smart campus
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adoption. Through this research framework, this study aims to reveal the intrinsic mechanism of loT-
Based Smart Campus adoption, which involves “technology cognition—behavioral intention—actual
adoption”.

This study provides the following theoretical and practical significance. Theoretically, this study
introduces compatibility into the loT-based smart campus research context based on the TAM model
and systematically examines the mediating effect of behavioral intention, thereby enriching research
perspectives in the adoption of smart campuses and educational information systems. Practically, the
findings assist educational administrators and software developers in more accurately identifying key
factors influencing smart campus adoption, providing empirical evidence for optimizing system design,
enhancing user experience, and promoting the sustainable development of smart campuses.

In summary, this study explores the adoption of loT-based smart campuses by introducing behavior
intention as a mediating variable within a technology specific framework. It constructs and validates a
systematic research model to provide valuable theoretical support and practical insights for smart
campus development and digital transformation in higher education.

2. Literature Review

2.1 Smart Campus

With the rapid advancement of information technology, higher education is transiting through a key
phase of evolution from digital campus to smart campus. The concept of the Smart Campus originates
from the Smart City philosophy, representing its concrete manifestation within the university setting.
Existing research generally holds that a smart campus is not a single technological system, but rather a
comprehensive intelligent ecosystem underpinned by information technology and centered on the needs
of faculty and students. Research over the past five years has defined smart campuses from diverse
perspectives. One category emphasizes technological attributes, defining smart campuses as systems
that achieve comprehensive perception, interconnection, and intelligent management of campus
environments, equipment, and services through technologies such as the Internet of Things (IoT), cloud
computing, big data, and artificial intelligence (Polin et al., 2023). Another category focuses on user
experience and service orientation, highlighting that the essence of smart campuses lies in providing
students and faculty with efficient, convenient, and personalized learning, management, and lifestyle
services, thereby enhancing educational quality and campus governance (Silva-da-Nobrega et al., 2022).
Synthesizing these perspectives, a smart campus can be defined as: an integrated system that leverages
next-generation information technologies like IoT to systematically consolidate teaching, management,
and service resources within higher education institutions. This integration aims to achieve intelligent
campus operations, personalized services, and scientific decision-making. This definition establishes
the conceptual foundation for subsequent exploration of smart campus adoption behaviors and their
influencing factors.

The realization of smart campuses relies on the deep integration of multiple information
technologies, with IoT technology considered its core foundation. By deploying sensors, smart
terminals, and network devices, classrooms, laboratories, libraries, and public facilities across campuses
can be perceived and monitored in real time, supporting data collection and intelligent management
(Zhang et al., 2022). Building upon this foundation, cloud computing and big data platforms provide
unified data storage, processing, and analytical capabilities for smart campuses, enabling cross-system
integration of teaching data, management data, and behavioral data. In recent years, artificial
intelligence technologies have been progressively introduced into smart campus scenarios. These
technologies are applied to learning behavior analysis, intelligent recommendations, and decision
support, thereby enhancing the intelligence level of campus services (Hu & Li, 2024). Functionally,
smart campuses typically comprise modules such as intelligent teaching systems, campus management
systems, learning support platforms, and integrated service systems. These components collectively
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form a highly integrated information environment, whose complexity and system compatibility directly
influence students' user experience and adoption willingness toward the smart campus system.

At the practical application level, smart campuses have extensively permeated multiple domains
within higher education institutions, including teaching, management, and services. In teaching, smart
campuses support blended learning and personalized education through smart classrooms, online
learning platforms, and learning analytics systems, thereby enhancing student engagement and learning
outcomes (Al-Emran et al., 2025). In campus management, smart campus systems are deployed for
academic administration, resource scheduling, security monitoring, and energy management. Research
indicates that intelligent management systems effectively improve campus operational efficiency,
reduce management costs, and enhance campus security levels (Cavus et al., 2022). Furthermore, smart
campuses provide convenient lifestyle services through integrated campus cards, mobile campus
applications, and comprehensive online service platforms. These applications not only enhance student
satisfaction with campus services but also influence their perception of the overall value of smart
campuses (Gupta et al., 2022).

Although significant progress has been made in smart campus development, current research
indicates that it still faces multifaceted challenges. On one hand, smart campus systems often feature
high technical complexity, with issues of system compatibility and usability potentially reducing user
willingness to adopt them. On the other hand, data privacy and information security concerns have
increasingly become key factors constraining the further promotion of smart campuses, as user
apprehensions about data security may influence their adoption behavior (Gill et al., 2022). From a
developmental perspective, smart campus research has gradually shifted from a technology-oriented
approach toward a user-centered perspective in recent years, placing greater emphasis on students' and
teachers' perceptions, attitudes, and behavioral responses toward smart campus systems. Scholars
widely agree that the future success of smart campuses depends not only on technological maturity but
also on users' subjective perceptions of their usefulness, ease of use, and convenience (Silva-da-
Nobrega et al., 2022). Therefore, it is necessary to systematically explore the influencing factors of
smart campuses from a user adoption perspective, providing a theoretical basis for subsequent research
grounded in the Technology Acceptance Model (TAM).

22 TAM

The Technology Acceptance Model (TAM) is one of the most influential theoretical frameworks in the
fields of information systems and educational technology. It is widely used to explain users' acceptance
and adoption behaviors toward new technologies (Davis, 1989; Venkatesh & Davis, 2000), as illustrated
in Figure 1. TAM originated from the Theory of Reasoned Action (TRA), whose core principle lies in
explaining behavioral decision-making processes through individual rational cognition. Building upon
this foundation, Davis (1989) proposed TAM specifically for information system usage contexts. By
simplifying users' perceptions of technology into several key psychological variables, he constructed a
theoretical model capable of effectively predicting technology acceptance behavior.

Perceived
/ Usefulness \
External Attitude Intention Actual
Variable Towards Use to Use Usage
\ Perceived /
Ease of Use

Fig. 1: Technology acceptance model
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TAM has gained extensive empirical validation across diverse technological contexts due to its concise
structure, clear logic, and strong explanatory power, proving particularly applicable to research on smart
campus, loT systems, and educational informatization (Kai et al., 2026). In the complex system
environment of smart campuses, which heavily rely on information technology, students' subjective
perceptions and behavioral intentions toward the system are considered key factors influencing the
successful implementation of technology. Therefore, TAM provides a solid theoretical foundation for
exploring adoption behaviors in loT-based smart campuses. Compared to other behavioral theories, one
of the most notable features of TAM is its high degree of contextual adaptability and operational
utility. The model does not emphasize complex psychosocial processes but focuses on users' most direct
cognitive judgments when encountering new technologies. This theoretical design enables TAM to be
repeatedly validated across diverse technological contexts, gradually evolving into a foundational
theoretical framework for technology adoption research. Studies over the past five years continue to
widely adopt TAM as the core theoretical basis for analyzing user technology acceptance behavior.
Particularly against the backdrop of emerging information technologies and digital services, TAM
demonstrates robust theoretical vitality and explanatory power (Wei et al., 2025).

The fundamental theoretical framework of TAM posits that user adoption of technology is primarily
determined by two core cognitive variables: Perceived Usefulness (PU) and Perceived Ease of Use
(PEOU). These variables influence Behavioral Intention (BI), which in turn affects actual usage or
adoption behavior.Perceived Usefulness (PU) refers to the extent to which users believe using a
technology can enhance their learning or work performance;Perceived Ease of Use (PEOU) refers to
the extent to which users perceive the process of using the technology as effortless, understandable, and
straightforward;Behavioral Intention (BI) reflects the subjective willingness to use or continue using
the technology in the future. Extensive research indicates that PU and PEOU are the most stable and
explanatory factors in predicting user technology adoption behavior. Furthermore, PEOU not only
directly influences BI but also indirectly affects adoption intention by enhancing PU (Kim et al., 2025).

Although TAM has demonstrated strong explanatory power in technology adoption research, as
technological systems grow increasingly complex, scholars have gradually recognized that relying
solely on core constructs may prove insufficient to comprehensively explain users' adoption decision-
making processes. Consequently, expanding TAM by incorporating external variables has become a
significant developmental direction in technology acceptance studies (Kim et al., 2025). Specifically,
compatibility is a key concept derived from innovation diffusion theory that has been widely applied to
broaden the explanatory framework of TAM. Compatibility typically refers to the degree of alignment
between a new technology and a user's existing values, usage habits, experiences, and current systems.
Within information systems research, compatibility is recognized as a significant contextual factor
influencing the formation of user cognition and attitudes (Nasywahasna et al., 2025).

Research over the past five years indicates that incorporating compatibility into the TAM
framework enhances the model's ability to explain complex technological systems, particularly in [oT
systems, smart service platforms, and multi-system integration environments. By introducing
compatibility variables, researchers can better understand psychological evaluation processes among
users encountering new technologies, rather than being limited to the functional or operational
characteristics of the technology itself (Kim et al., 2025).

In the field of educational technology, TAM has been widely applied to study user acceptance
behaviors toward technologies such as online learning platforms, learning management systems, and
intelligent teaching tools (Davis, 2025; Oulahsene, 2025). Existing research indicates that TAM and its
extended models effectively explain technology acceptance behaviors among students and faculty
within smart campus environments (Marian-Vladut et al., 2025). Furthermore, recent research trends
have shifted from focusing solely on technological functionality toward greater emphasis on user
experience and contextual usage. This evolution has deepened TAM's application in smart campus
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studies while driving the continual advancement of the model within educational informatization
research.

In summary, the Technology Acceptance Model (TAM) serves as a classic theory in information
systems research, providing a solid theoretical foundation for understanding users' technology adoption
behavior. The core constructs demonstrate strong stability and explanatory power across diverse
technological environments. By incorporating extended variables such as compatibility, TAM can
better adapt to complex application scenarios like smart campus.

2.3 Research Model and Hypotheses Development

2.3.1 Research Model

This study conducted a systematic analysis of smart campus adoption among students in higher
educational institutions based on the Technology Acceptance Model (TAM), integrating the application
context of smart campus and IoT technologies. Within smart campus environments, information
systems typically exhibit high integration, multi-scenario applications, and continuous usage orientation.
Relying solely on the core constructs of traditional TAM is insufficient to fully explain user adoption
behavior. Therefore, this study extends the TAM theoretical framework by introducing a compatibility
external variable, proposing the research model shown in Figure 2.

Perceived Usefullness (PU) H8a: PU->BI->ASC
H8b: PEU->BI->ASC
H8c:CMP->BI->ASC

H1 H4
Perceived Ease of Use (PEU) ~~ Hs

~ Adoption of ToT-

Behavior Intention (BI) —H7— Based Smart Campus

(ASC)
3 .

Compatibility (CMP) H6

Fig. 2: Research model

The research model primarily consists of three independent variables: perceived usefulness,
perceived ease of use, and compatibility. The mediating variable is behavioral intention, while the
dependent variable is the adoption of smart campus systems. This study considers behavior intention as
the key mediating variable between external factors and the adoption of smart campus. On the one hand,
perceived ease of use, perceived usefulness, and compatibility may directly influence students' adoption
behavior toward smart campuses. On the other hand, these factors may also indirectly affect adoption
behavior by influencing students' behavioral intentions. This dual-path structure helps reveal the
complexity of smart campus adoption mechanisms more comprehensively. Overall, while maintaining
the core logical consistency of TAM theory, this study integrates the technological characteristics and
educational application scenarios of smart campuses to construct a comprehensive research framework
encompassing both direct and mediating effects. This framework provides a theoretical foundation for
subsequent hypothesis development and empirical analysis.

2.3.2 Hypotheses Development

Perceived Usefulness (PU) is a core construct in the Technology Acceptance Model, referring to the
extent to which users believe a technology can enhance their learning or work performance. According
to the Technology Acceptance Model and its extended research, when users perceive that technology
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can deliver tangible benefits, their behavioral intention to adopt that technology significantly increases.
In recent years, this relationship has been repeatedly validated in smart campus and IoT application
contexts. For instance, Al-Emran et al. (2020) found in their smart learning system study that perceived
usefulness significantly and positively influenced students' behavioral intentions; Deng et al. (2021)
confirmed in loT educational applications that perceived usefulness is a key predictor of user adoption
intent; Furthermore, Alrasheedi et al. (2023) demonstrated through empirical research on smart campus
systems that students' recognition of system usefulness significantly increases their willingness to use
it. Therefore, this study proposes Hypothesis H1.

H1: The link between perceived usefulness and behavior intention

Perceived Ease of Use (PEU) refers to the degree to which users believe a system can be used
without excessive effort. The Technology Acceptance Model (TAM) posits that the easier a system is
to use, the greater the likelihood users will form positive behavioral intentions. In recent years, multiple
empirical studies have validated the significant influence of perceived ease of use on behavioral
intentions within the contexts of IoT and smart campuses. For instance, Nikou and Economides (2021)
found in their study of digital learning systems that perceived ease of use significantly enhances
students' behavioral intentions. Park et al. (2022) confirmed in their research on smart education
platforms that operational convenience is a key factor in predicting user willingness to use. Furthermore,
Zhang et al. (2024) demonstrated in their empirical study of [oT-enabled smart campuses that perceived
ease of use can significantly boost students' usage intentions. Therefore, this study proposes Hypothesis
H2.

H2: The link between perceived ease of use and behavior intention

Compatibility refers to the degree of alignment between new technology and existing values, usage
habits, and needs of users. In studies extending the Technology Acceptance Model (TAM),
compatibility is recognized as a significant technology-specific factor influencing users' adoption
intentions. Recent research in loT and smart systems contexts has confirmed that stronger compatibility
between technology and users' established habits correlates with greater usage intentions. For instance,
Talukder et al. (2020) found compatibility significantly and positively influenced behavioral intention
in an IoT technology adoption study; Rahi et al. (2022) noted compatibility enhances user willingness
to use in a smart service system study; furthermore, Li and Yu (2023) validated compatibility's
significant promotional effect on student behavioral intention in a smart campus study. Therefore, this
study proposes Hypothesis H3.

H3: The link between compatibility and behavior intention

In addition to indirectly influencing adoption behavior through behavioral intentions, some studies
indicate that perceived usefulness may also directly impact actual adoption behavior. In IoT and smart
campus contexts, when users explicitly perceive that a system can enhance learning efficiency or
campus service quality, their actual usage behavior is more likely to occur. Wong et al. (2021) found in
smart campus research that perceived usefulness directly influences system adoption. Al-Fraihat et al.
(2022) confirmed in online learning system studies that perceived usefulness significantly predicts
actual usage behavior. Furthermore, Huang et al. (2024) reached similar conclusions in IoT education
system research. Therefore, this study proposes Hypothesis H4.

H4: The link between perceived usefulness and adoption of iot-based smart campus

Perceived ease of use not only influences behavior intention but may also directly promote
technology adoption by reducing perceived technical complexity. Related studies indicate that in IoT
and smart systems, the easier a system is to use, the more likely users are to engage in sustained and
practical usage. Venkatesh et al. (2020) expanded the model to demonstrate that perceived ease of use
directly influences usage behavior. Chao (2022) found in a smart campus system study that operational
simplicity significantly impacts system adoption. Furthermore, Sun et al. (2024) confirmed this
relationship in their research on IoT educational applications. Therefore, this study proposes Hypothesis
HS5.
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HS: The link between perceived ease of use and adoption of iot-based smart campus

Compatibility is considered a key antecedent variable influencing the actual adoption of technology.
When a technological system can seamlessly integrate into users' existing learning and lifestyle patterns,
its likelihood of adoption significantly increases. Subsequent empirical studies of Rogers' theory
demonstrate that compatibility plays a direct role in IoT adoption. Cruz-Jesus et al. (2021) confirmed
in smart technology adoption studies that compatibility significantly influences usage behavior; Nikou
et al. (2023) noted in IoT system research that high compatibility promotes actual adoption; furthermore,
Chen et al. (2024) also found a significant positive impact of compatibility on adoption behavior in the
context of smart campuses. Therefore, this study proposes Hypothesis H6.

Hé6: The link between compatibility and adoption of iot-based smart campus

Behavioral intention is widely regarded as the most direct variable for predicting actual technology
adoption behavior. TAM, UTAUT, and their extended models all emphasize the decisive role of
behavioral intention in determining actual usage behavior. A meta-analysis by Dwivedi et al. (2020)
demonstrated that behavioral intention significantly predicts usage behavior across diverse
technological contexts. Salloum et al. (2021) confirmed behavioral intention's significant influence on
actual usage in smart learning system research. Furthermore, Zhou et al. (2023) similarly identified
behavioral intention as a crucial antecedent to adoption behavior in [oT smart campus studies. Therefore,
this study proposes Hypothesis H7.

H7: The link between behavior intention and adoption of iot-based smart campus

According to the Technology Acceptance Model theory, users' cognitive evaluations of technology
typically influence their actual adoption behavior through behavioral intention. In recent years,
numerous studies have validated the mediating role of behavioral intention in IoT and smart system
contexts. For instance, Tarhini et al. (2021) found that behavioral intention mediates the relationship
between perceived factors and usage behavior in smart learning research; Alam et al. (2022) confirmed
the significant mediating effect of behavioral intention in IoT technology adoption studies; Furthermore,
Xu et al. (2024) validated the mediating mechanism of behavioral intention between technology-
specific factors and adoption behavior in smart campus research. Therefore, this study proposes
Hypothesis HS.

H8a: Behavior intention mediates the relationship between perceived usefulness and adoption
of iot-based smart campus

HS8b: Behavior intention mediates the relationship between perceived ease of use and adoption
of iot-based smart campus

H8c: Behavior intention mediates the relationship between compatibility and adoption of iot-
based smart campus

3 Methodology

3.1 Scale Design

This study adopts the Technology Acceptance Model (TAM) as its theoretical foundation to measure
university students' adoption toward smart campus. The measurement instruments in this study are
primarily based on established research findings from relevant domestic and international fields, with
revisions tailored to the context of smart campus and IoT applications. The measurement items for
perceived usefulness and perceived ease of use primarily draw from the research of Davis (1989) and
Venkatesh et al. (2003). They are used to gauge students' subjective perceptions regarding the smart
campus system's effectiveness in enhancing learning efficiency, operational convenience, and user
experience. The compatibility variable references the findings of Wu and Wang (2005), focusing on
reflecting the degree of alignment between the smart campus system and students' existing learning
methods, technology usage habits, and campus information systems. The measurement items adopted
for smart campus adoption draw from information system adoption and smart education-related
research (Ifenthaler & Schumacher, 2016), evaluating students' overall acceptance of loT-based smart
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campus services. In the scale design process, each latent variable employed multi-item measurement
approaches. Items were contextualized based on university smart campus application scenarios to
enhance the scale's applicability and comprehensibility. All items were measured using a five-point
Likert scale, where 1 indicates “Strongly Disagree” and 5 indicates “Strongly Agree.” Prior to formal
investigation, the scale's validity and clarity were verified through expert review and pre-testing,
establishing a robust measurement foundation for subsequent empirical analysis (Viera et al., 2025).

3.2 Data Collection

The data for this study were collected from students at higher education institutions in Nantong City,
Jiangsu Province. To enhance sample representativeness, a stratified random sampling method was
employed for the questionnaire survey (Aoyama, 1954). The survey was distributed online via the an
online survey platform, inviting students to participate voluntarily. A total of 783 questionnaires were
collected. After data cleaning, 753 valid questionnaires were retained, yielding an effective response
rate of approximately 95%. The sample covered different genders, grade levels, and academic
disciplines, effectively reflecting the overall characteristics of the college student population.

3.3 Research Method

This study employs quantitative research methods to conduct an empirical analysis of students in higher
educational institutions. Quantitative research methods can characterize relationships between variables
in structured data formats, making them suitable for research domains such as technology acceptance
and information system adoption (Sneesl et al., 2023). These methods are particularly well-suited for
systematically testing theoretical models and their path relationships. During data analysis, SPSS 26.0
software was first used for sample data preprocessing and statistical analysis, including descriptive
statistics of sample characteristics, reliability analysis of scales, and validity testing to ensure the
reliability and validity of measurement tools. Subsequently, AMOS 24.0 was employed to construct a
structural equation model, evaluate the overall model fit, and test path relationships among latent
variables to validate research hypotheses.

4 Results

4.1 Descriptive Statistical Analysis of Samples

To understand the basic characteristics of the sample, this paper conducted a descriptive statistical
analysis of the valid questionnaires collected. The analysis primarily describes the sample structure in
terms of gender, grade level, major background, and school distribution, as shown in Table 1.

In terms of gender distribution, male students accounted for 50.6% and female students for 49.4%,
indicating a relatively balanced overall ratio without significant gender bias. This suggests that the
sample possesses good representativeness in its gender structure, which enhances the robustness of
subsequent empirical analysis results.

In terms of grade distribution, the sample covered multiple stages including undergraduates,
master's students, and doctoral students. Undergraduate students represented the largest proportion,
primarily sophomores and juniors. This group typically possesses extensive experience using campus
information systems and demonstrates a high level of awareness regarding smart campus services.
Additionally, graduate and doctoral students also constituted a significant portion of the sample,
reflecting the usage needs of senior students for smart campus systems in their academic and research
activities. Overall, the sample distribution across different academic stages was reasonably balanced,
reflecting the multi-tiered characteristics of the university student population.
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Table 1: Demographic profiles of respondents (N=753)

Variable Category Frequency Percent
Gender Male 381 50.6
Female 372 49.4
Freshman &9 11.8
Sophomore 160 21.2
Junior 161 21.4
Grade Senior 124 16.5
Postgraduate First Year 78 10.4
Postgraduate Second Year 62 8.2
Postgraduate Third South 47 6.2
Doctoral 32 4.2
Arts & History 101 13.4
Profession Science & Engineering 258 343
Arts & Sports 87 11.6
Education 307 40.8
Nantong University 152 20.2
Nantong Institute of Technology 133 17.7
Nantong University Xinglin College 62 8.2
JiangSu Shipping College 67 8.9
School Jiangsu College of Engineering and Technology 76 10.1
Jiangsu Vocational College of Business 70 9.3
Nantong Vocational University 90 12
Nantong College of Science and Technology 56 7.4
Nantong Normal College 47 6.2

In terms of academic backgrounds, the sample encompasses multiple disciplines including
education, science and engineering, humanities and social sciences, as well as arts and physical
education. Among these, students majoring in education and science and engineering constitute a
relatively higher proportion, closely tied to the widespread application of smart campus systems in
teaching management, learning support, and experimental practice. This diverse disciplinary
distribution facilitates examining university students' adoption of smart campus systems from varied
academic perspectives, thereby enhancing the generalizability of research findings.

In terms of institutional distribution, the sample originates from multiple higher education
institutions in Nantong City, Jiangsu Province, encompassing both undergraduate universities and
higher vocational colleges. The sample size distribution across institutions is relatively dispersed,
avoiding concentration in any single institution, thereby demonstrating strong institutional diversity.
This multi-institutional sample structure helps mitigate the potential influence of a single institutional
context on research findings, enhancing the external validity of the study's conclusions.

In summary, the sample for this study exhibits a reasonably balanced and diverse distribution across
gender, grade level, major, and institution, effectively reflecting the overall profile of university
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students in Nantong. This provides a reliable data foundation for subsequent empirical analysis of smart
campus adoption behaviors.

4.2 Reliability and Validity Test

To examine the reliability and validity of the research scale, this study conducted a systematic analysis
of the measurement model using SPSS 26.0 and AMOS 24.0. It primarily evaluated the measurement
quality of the scale in terms of internal consistency reliability and convergent validity, As shown in
Table 2.

Table 2: Reliability and validity test

Constructs Items Unstd. S.E. Z P Std. Alpha CR AVE
PUI 1 0.838
PU2 0.934 0.041 22.719 *kE (0,754
PU PU3 0.954 0.043 22.075 *EE 0,737 0.964 0.866 0618
PU4 0.992 0.040 24.999 *kE - (0.811
PEU1 1 0.884
PEU2 0.875 0.037 23.89 *EE 0,729
PEU PEU3 1.045 0.036 28.723 *Ex - 0.815 0.898  0.866  0.694
PEU4 1.008 0.030 33.752 *x - 0.896
CMP1 1 0.827
CMP2 0.998 0.041 24.158 *EE - 0.797
CMP CMP3 1.04 0.043 24.045 ¥ 0.794 0.875 0876 0.639
CMP4 1.026  0.044 23.394 *EE 0,778
BI1 1 0.881
BI2 0.946 0.031 30.363 *EE O 0.824
BI3 0.847 0.033 25.672 *EE 0,749
BI BI4 0.946 0.034 27.558 **% 0781 0936 0.938 0.685
BI5 0.904 0.033 27.694 *Ex0.783
BI6 0.926 0.030 30.678 *EE O 0.828
BI7 1.039 0.026 39.537 *E% 0,933
ASCI1 1 0.823
ASC2 0.985 0.038 25.925 *Ex - 0.805
ASC3 0.788 0.039 19.961 *EE - 0.665
ASC ASC4 1.083 0.041 26.434 ¥k* o 0.816 092 0921 0.627
ASC5 0.861 0.037 23.102 *EE 0,743
ASC6 0.949 0.038 25.087 *EE 0,787
ASC7 1.045 0.035 29.959 **% - (0.886

For internal consistency reliability, Cronbach's alpha coefficient and composite reliability (CR)
were employed for assessment. Results indicate that Cronbach's o coefficients for perceived usefulness
(PU), perceived ease of use (PEU), compatibility (CMP), behavioral intention (BI), and smart campus
adoption (ASC) all exceed 0.70, ranging from a minimum of 0.875 to a maximum of 0.964,
demonstrating strong internal consistency (Nunnally, 1979). Regarding composite reliability (CR), all
constructs exceeded 0.70. Data revealed a minimum CR of 0.866 and a maximum CR of 0.938, meeting
the commonly accepted threshold for latent variable reliability in academic research (CR = 0.70)
(Bagozzi & Yi, 1988). This further confirms the stable and reliable measurement outcomes of each
scale.

Regarding convergent validity, assessment was conducted using standardized factor loadings and
Average Variance Extracted (AVE). All items exhibited significant standardized factor loadings on
their respective latent variables, with most loadings exceeding 0.70. This indicates that the measurement
items adequately reflect the characteristics of the latent variables. The AVE values for each construct
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exceeded 0.50, ranging from a minimum of 0.618 to a maximum of 0.694. This satisfies the criterion
for convergent validity (AVE = 0.50) (Fornell & Larcker, 1981), indicating that the latent variables
explain a substantial portion of the variance in their measured items and that the scales exhibit good
convergent validity.

In summary, the scales developed in this study meet recommended standards across multiple
metrics, including Cronbach's o, composite reliability (CR), and average variance extracted (AVE). The
measurement model demonstrates high reliability and validity, providing a robust data foundation for
subsequent path analysis and hypothesis testing within the structural equation model.

4.3 Discriminant Validity

To examine the discriminant validity among latent variables in the scale, this study employs the
criterion proposed by Fornell and Larcker (1981), as shown in the table. This method assesses
discriminant validity by comparing the square root of the average variance extracted (AVE) for each
latent variable against its correlation coefficients with other latent variables. If the square root of the
AVE for each latent variable exceeds its correlation coefficient with other latent variables, it indicates
conceptual independence among latent variables and confirms the scale possesses good discriminant
validity (Fornell & Larcker, 1981).

Table 3: Discriminant validity test

ASC 2] CMP PEU PU
ASC 0.792
2] 0.573 0.828
CMP 0.416 0.389 0.799
PEU 04 0.359 0.565 0.833
PU 041 041 0.643 0.657 0.786

As shown in Table 3, the five variables which are Adoption of Smart Campus (ASC), Behavioral
Intention (BI), Compatibility (CMP), Perceived Ease of Use (PEU), and Perceived Usefulness (PU)—
exhibited average variance extracted root squares of 0.792, 0.828, 0.799, 0.833, and 0.786, respectively.
All these values exceeded the respective correlation coefficients between each variable and the other
latent variables. This indicates that the concepts measured by each latent variable are clearly
distinguishable, and the items accurately reflect the characteristics of their respective latent variables
without being confounded by other latent variables.

Specifically, the correlation coefficient between Adoption of Smart Campus (ASC) and Behavioral
Intent (BI) is 0.573, which is lower than the square root of the average variance extracted (AVE) for
ASC, 0.792; The correlation coefficient between Compatibility (CMP) and Perceived Ease of Use (PEU)
is 0.565, also below their respective mean square root of variance extracted: CMP at 0.799 and PEU at
0.833.

Comparisons among all latent variables meet the criterion, further indicating the scales demonstrate
good conceptual independence and measurement accuracy.

In summary, the scales developed in this study demonstrate strong discriminant validity. These
scales not only effectively distinguish between latent variables but also provide a reliable measurement
foundation for subsequent structural equation modeling and path analysis. This finding aligns with
previous research on information systems and technology acceptance, further validating the scientific
rigor and practical applicability of the adopted scales.

4.4 Modeling Fit Indices Test

To verify the overall fit of the structural equation model, this study examined the model's fit indices,
including x2/df (Chi-square / degrees of freedom), P-value, Comparative Fit Index (CFI), Tucker-Lewis
Index (TLI), and Root Mean Square Error of Approximation (RMSEA), as shown in Figure 3.
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Fig. 3: Measurement Model

The results show that the model's x2/df is 1.777, below the recommended threshold of 3 (Bagozzi
& Yi, 1988), indicating overall good model fit. The P-value is 0.000, which is normal and acceptable
given the large sample size. Other fit indices further validate the model's excellent fit. CFI and TLI were
0.984 and 0.982, respectively, both exceeding the recommended standard of 0.90 (Bagozzi & Yi, 1988;
Kline, 2005), indicating excellent model fit in both comparative and non-normative fit metrics. RMSEA
was 0.032, significantly below the judgment threshold of 0.08 (Browne, M.W. and Cudeck, 1993),
suggesting minimal model error and ideal fit. In summary, the structural equation model constructed in
this study demonstrates overall good fit and reliability, reasonably reflecting the structural relationships
among latent variables. Therefore, the model can be considered to have sufficient fit, providing a solid
foundation for subsequent path analysis and hypothesis testing, ensuring the scientific validity and
credibility of the structural equation analysis results.

4.5 Path Hypothesis Test

This study employs path analysis based on structural equation modeling to examine the direct effects
of perceived usefulness, perceived ease of use, and compatibility on behavioral intention and smart
campus adoption, as well as the direct role of behavioral intention in smart campus adoption, as
illustrated in Figure 4. According to statistical standards for structural equation modeling, a P-value less
than 0.05 is generally considered statistically significant (Fisher, 1925). The path estimation results are
presented in Table 4.
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Fig. 4: Structural Models

-

Table 4: Hypothesis 1-7 results

Hypothesis Path Unstd. S.E. Z P Estimate  Results
H1 PU->BI 0.236 0.041 5.807 ook 0.226  Supported
H2 PEU->BI 0.144 0.037 3.898 ook 0.146  Supported
H3 CMP->BI 0.221 0.041 5.392 ook 0.208  Supported
H4 PU->ASC 0.065 0.032 2.069 0.039 0.074  Supported
H5 PEU->ASC 0.116 0.029 4.043 ook 0.14 Supported
H6 CMP->ASC  0.124 0.032 3.901 ok 0.14 Supported
H7 BI->ASC 0.382 0.033 11.752 ok 0.456  Supported

The results indicate that perceived usefulness significantly influences behavioral intention, with a
P-value less than 0.001, supporting Hypothesis H1. Perceived ease of use significantly influences
behavioral intention, with a P-value less than 0.001, validating Hypothesis H2. Compatibility
significantly influences behavioral intention, with a P-value less than 0.001, supporting Hypothesis H3.

Regarding smart campus adoption, perceived usefulness significantly and directly influences
adoption behavior, with a P-value of 0.039, supporting hypothesis H4. The direct effect of perceived
ease of use on adoption behavior is significant, with a P-value less than 0.001, validating hypothesis
H5. The direct effect of compatibility on adoption behavior is significant, with a P-value less than 0.001,
supporting hypothesis H6. Furthermore, behavioral intention exhibits the most significant direct effect
on smart campus adoption behavior, with a P-value less than 0.001, validating hypothesis H7.

In summary, all direct paths in the structural equation model reached statistical significance,
indicating that perceived usefulness, perceived ease of use, and compatibility all positively influence
college students' behavioral intentions. Simultaneously, these factors and behavioral intentions exert a
significant positive effect on the adoption of smart campus systems. The overall path analysis results
validate the validity of the research model, providing reliable data support for subsequent discussions
and research conclusions.

4.6 Mediating Effects Test

To further examine the mediating effect of behavior intention, this study employs the Bootstrap method
for mediation analysis. By conducting 1,000 repeated samples, 95% confidence intervals were
constructed to test the indirect effect, direct effect, and total effect, as shown in Table 5. When the
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confidence interval for the indirect effect does not include zero, it indicates a significant mediating
effect (Preacher & Hayes, 2008).

Table 5: Hypothesis 8 results (bootstrap)
Bootstrap 1000 times 95% ClI

Path Point ~ Product of coefficient Bias-corrected Percentile

relationship estimate SE  Z-value Lower Upper Lower Upper
PU->BI->ASC 0.09 0.024 3.75 0.045 0.14 0.044 0.139
PU->ASC 0.065 0.043 1511628  -0.017 0.147  -0.017 0.147
PU->ASC 0.156 0.047  3.319149 0.063 0.247 0.069 0.25
PEU->BI->ASC 0.055 0.02 2.75 0.019 0.096 0.019 0.096
PEU->ASC 0.116 0.036  3.222222 0.045 0.19 0.042 0.188
PEU->ASC 0.171 0.04 4.275 0.094 0.249 0.093 0.247

CMP->BI->ASC 0.084 0.019 4.421053 0.053 0.124 0.052 0.123
CMP->ASC 0.124 0.04 3.1 0.046 0.206 0.045 0.205

CMP->ASC 0.209 0.039 5.358974 0.132 0.285 0.135 0.286

The results indicate that within the perceived usefulness path, perceived usefulness exerts a
significant indirect effect on smart campus adoption through behavioral intention. The estimated
indirect effect is 0.090, with both the lower and upper bounds of the 95% confidence intervals (Bias-
corrected and Percentile) not containing zero. This confirms that behavioral intention plays a significant
mediating role between perceived usefulness and smart campus adoption. Meanwhile, the direct effect
of perceived usefulness on smart campus adoption was insignificant, with its 95% confidence interval
containing zero. However, the total effect was significant, indicating that behavioral intention fully
mediates this path.

In the perceived ease of use pathway, perceived ease of use exerts a significant indirect effect on
smart campus adoption through behavioral intention, with an indirect effect estimate of 0.055 and a 95%
confidence interval that does not include zero. Simultaneously, perceived ease of use also exhibits a
significant direct effect on smart campus adoption, with its confidence interval not containing zero. The
overall effect is significant, indicating that behavioral intention partially mediates the relationship
between perceived ease of use and smart campus adoption.

In the compatibility pathway, compatibility significantly mediates the indirect effect on smart
campus adoption through behavioral intention, with an estimated indirect effect of 0.084. Both the Bias-
corrected and Percentile confidence intervals exclude zero. Concurrently, compatibility exerts a
significant direct effect on smart campus adoption, and the total effect also reaches statistical
significance. This indicates that behavioral intention partially mediates the relationship between
compatibility and smart campus adoption.

In summary, behavior intention plays a significant mediating role between perceived usefulness,
perceived ease of use, compatibility, and the adoption of smart campuses. Specifically, behavior
intention acts as a full mediator in the perceived usefulness pathway and as a partial mediator in the
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perceived ease of use and compatibility pathways. This finding further validates the applicability of the
Extended Technology Acceptance Model in the smart campus context and reveals the critical role of
behavior intention in the adoption mechanism of smart campuses.

5 Conclusion

5.1 Theoretical Contributions

This study makes significant theoretical contributions to the fields of smart campuses and technology
acceptance theory. First, building upon the traditional Technology Acceptance Model (TAM), this
paper introduces compatibility as a crucial technology-specific factor, thereby constructing an extended
model for the adoption of IoT-based smart campuses. Compared to traditional information systems,
IoT-based smart campuses exhibit characteristics such as high system integration, complex application
scenarios, and strong technological convergence. Incorporating compatibility into the analytical
framework facilitates a more comprehensive explanation of the alignment between smart campus
systems and students' existing learning styles, usage habits, and technological experiences, thereby
expanding TAM's explanatory power within the smart campus context.

Second, this study empirically verified the mediating role of behavioral intention between
technology-specific factors and the adoption of IoT-based smart campuses. Existing research has
primarily focused on the direct impact of factors such as perceived usefulness and perceived ease of use
on adoption behavior, while relatively limited attention has been paid to exploring their underlying
mechanisms. The findings reveal that perceived usefulness, perceived ease of use, and compatibility do
not directly influence smart campus adoption behavior. Instead, they exert indirect effects through the
key psychological variable of behavioral intention. This deepens our understanding of the underlying
mechanisms in the smart campus adoption process and provides new empirical evidence for expanding
the path relationships within the Technology Acceptance Model.

Finally, this study conducted an empirical investigation into the adoption behavior of loT-based
smart campuses among university students, thereby enriching the relevant literature in the fields of
smart education and educational informatization. Existing technology acceptance research has
predominantly focused on commercial or organizational information system applications, while
empirical studies on smart campuses in higher education remain relatively scarce. By adopting a higher
education perspective and applying technology acceptance theory to the IoT smart campus context, this
paper further expands the scope of relevant theoretical applications within the educational domain.

5.2 Practical Contributions

This study offers multifaceted implications for practical implementation. First, for administrators
overseeing smart campus development in higher education institutions, the findings indicate that
perceived usefulness, perceived ease of use, and compatibility are key factors influencing students'
behavioral intentions. Therefore, as universities advance loT-based smart campus initiatives, they
should prioritize the effectiveness and usability of service functions. Ensuring that smart systems
tangibly enhance learning efficiency, information accessibility, and campus management effectiveness
will strengthen students' perception of the value delivered by smart applications. Second, regarding the
design and development of smart campus systems, the study reveals that students' perceptions of system
usability and operational experience significantly influence their adoption levels. Consequently,
software developers and technical service providers should optimize user interfaces, enhance system
response speeds, and improve cross-platform compatibility. This reduces operational costs, enables
students to enjoy a seamless experience during use, and promotes sustained system adoption.
Furthermore, the significant impact of compatibility highlights that universities must prioritize
integration with existing teaching methods, curriculum systems, and campus life habits when deploying
IoT technologies. Through scenario adaptation, learning resource consolidation, and the establishment
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of information exchange mechanisms, the smart campus ecosystem can be seamlessly integrated into
students' daily learning and living contexts.

Finally, this study validates the mediating role of behavior intention in the adoption of smart campus
technologies, which offers valuable insights for universities during project implementation. Higher
education institutions must not only provide smart infrastructure but also enhance interest and
psychological acceptance through training seminars, usage guidance, and promotional campaigns of
students. This fosters positive behavior intention, thereby advancing smart campus development from
merely “having technology” to achieving “active utilization and tangible value.” In summary, this study
offers actionable pathways for smart campus construction and promotion within the context of
educational digital transformation. It provides practical guidance for policymakers, administrators,
and technology providers.

5.3 Limitation

Although this study has achieved certain theoretical and practical outcomes in the field of loT-based
smart campus adoption, several limitations remain that require further refinement in subsequent
research. First, the data in this study originates from a sample of students at a specific university,
exhibiting geographical and demographic limitations. The sample structure is relatively homogeneous,
failing to encompass diverse roles such as faculty and administrators. Consequently, the
externalizability of the research conclusions may be constrained. Future research should expand the
sample scope to include participants from different regions, multiple types of universities, or diverse
roles to enhance the universality and explanatory power of the findings. Second, the cross-sectional
questionnaire approach used in this study only reflects static relationships between variables and fails
to capture the dynamic process of behavioral intentions and actual adoption behaviors over time.
Subsequent studies may consider employing longitudinal tracking data or experimental designs to
explore the evolutionary mechanisms of smart campus adoption behavior in greater depth.
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