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Abstract. As the digital transformation of higher education continues to deepen, Internet of 
Things (IoT) technology provides crucial support for the development of smart campus and 
service innovation. However, the level of actual adoption of smart campus among students in 
higher educational institutions remains heterogeneous. This study introduces a compatibility 
construct to extend the Technology Acceptance Model (TAM), focusing on examining the 
influence mechanisms of perceived usefulness, perceived ease of use, and compatibility on 
behavioral intention and the adoption of smart campus. This study adopted a questionnaire-
based approach to collect data, distributing 783 questionnaires to students in Nantong City, 
Jiangsu Province. A total of 753 valid responses were collected, with a response rate of 96%. 
Employing SPSS 26.0 and AMOS 24.0, the research conducted reliability and validity tests 
with structural equation modeling analysis. Research findings indicate that perceived 
usefulness, perceived ease of use, and compatibility all significantly promote behavioral 
intention. Furthermore, behavioral intention has a significant positive impact on the adoption 
of smart campus. Additionally, mediation analysis reveals that behavior intention plays a 
mediating role in the adoption of IoT-Based smart campus. This study contributes in two key 
areas: Theoretically, it extends the application of TAM research to the context of IoT-Based 
smart campus, providing new empirical evidence for understanding technology adoption 
mechanisms in educational digitization. Practically, it offers valuable insights for the 
development, functional optimization, and user adoption of smart campus initiatives in higher 
education institutions. 
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1. Introduction 
With the rapid advancement of next-generation information technologies, innovations such as the 
Internet of Things (IoT), big data, cloud computing, and artificial intelligence are profoundly reshaping 
the operational models and governance structures of higher education (He et al., 2024). Against the 
backdrop of advancing initiatives like “Digital China”, “Smart Education” and higher education 
informatization strategies, the Smart Campus has emerged as a vital vehicle for universities' digital 
transformation. By enabling intelligent sensing and coordinated control across diverse scenarios such 
as teaching, research, administration, and services, it facilitates efficient resource allocation and 
comprehensive enhancement of educational service quality. This approach is recognized as a key 
pathway to driving high-quality development in higher education institutions (Wu et al., 2023). 

In contrast to traditional campus, Smart Campus emphasizes a core architecture centered on the 
perception layer, network layer, and application layer. Through application scenarios such as smart 
classrooms, online learning platforms, campus ID cards, and intelligent management systems, it enables 
real-time perception of teaching activities, precise analysis of learning behaviors, and intelligent 
decision-making for campus operations (Cavus et al., 2022). Therefore, its successful implementation 
depends not only on the perfection of technical infrastructure but also on the understanding, attitude, 
and willingness to use relevant technologies and systems among end users, especially college students. 
However, in actual implementation, many universities still face the issue of prioritizing construction 
over usage. Smart campus systems often suffer from low utilization rates, idle functions, or even 
resistance. This reality underscores the importance of systematically exploring IoT-based smart campus 
adoption mechanisms from a user perspective (Blakong et al., 2025). 

In the field of information adoption research, the Technology Acceptance Model (TAM) and its 
extensions are widely used to explain users' acceptance behavior toward new technologies. TAM posits 
that Perceived Usefulness (PU) and Perceived Ease of Use (PEU) are core factors influencing users' 
Behavioral Intention (BI), which in turn determines actual usage behavior (Davis et al., 1989; King & 
He, 2006). This study introduces the Compatibility (CMP) variable based on TAM theory to better 
explain users' adoption decisions in complex technological environments. Empirical research indicates 
that when new technologies enhance learning or work performance, are operationally straightforward, 
and align with users' existing habits and needs, users are more likely to form positive usage intentions 
and translate them into actual adoption behaviors. 

Although existing research has explored smart campus adoption from various perspectives, it still 
presents the following shortcomings. First, most existing research focuses on either single technological 
dimensions or overall perception factors, with limited systematic integration of technology-specific 
factors and user behavioral mechanisms. Particularly in IoT-based smart campus scenarios, there is a 
lack of in-depth analysis on the combined effects of PU, PEU, and CMP.  Second, some studies directly 
examine the impact of influencing factors on the adoption of smart campus technologies, overlooking 
the potential mediating role of behavioral intention. In fact, users' perceptions and evaluations of 
technology often do not directly translate into actual usage; instead, they require mediation through the 
psychological mechanism of behavioral intention. Third, in terms of research subjects, there is still 
relatively limited empirical research targeting university students as the core user group, particularly in 
second-tier cities like Nantong, Jiangsu Province, where relevant empirical evidence remains 
insufficient. 

Based on the limitations of existing research, this study draws upon Technology Acceptance Theory 
to focus on the adoption of IoT-based smart campuses. It constructs and validates a comprehensive 
research model encompassing technology-specific factors, behavioral intention, and adoption behavior. 
Specifically, this study selects perceived usefulness (PU), perceived ease of use (PEU), and 
compatibility (CMP) as key technological factors to examine the direct influence of these factors on 
student behavior intention (BI) and the adoption of IoT-based smart campuses (ASC). It also focuses 
on analyzing the mediating role of behavior intention between technological factors and smart campus 
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adoption. Through this research framework, this study aims to reveal the intrinsic mechanism of IoT-
Based Smart Campus adoption, which involves “technology cognition—behavioral intention—actual 
adoption”. 

This study provides the following theoretical and practical significance. Theoretically, this study 
introduces compatibility into the IoT-based smart campus research context based on the TAM model 
and systematically examines the mediating effect of behavioral intention, thereby enriching research 
perspectives in the adoption of smart campuses and educational information systems. Practically, the 
findings assist educational administrators and software developers in more accurately identifying key 
factors influencing smart campus adoption, providing empirical evidence for optimizing system design, 
enhancing user experience, and promoting the sustainable development of smart campuses. 

In summary, this study explores the adoption of IoT-based smart campuses by introducing behavior 
intention as a mediating variable within a technology specific framework. It constructs and validates a 
systematic research model to provide valuable theoretical support and practical insights for smart 
campus development and digital transformation in higher education. 

2. Literature Review 

2.1 Smart Campus  
With the rapid advancement of information technology, higher education is transiting through a key 
phase of evolution from digital campus to smart campus. The concept of the Smart Campus originates 
from the Smart City philosophy, representing its concrete manifestation within the university setting. 
Existing research generally holds that a smart campus is not a single technological system, but rather a 
comprehensive intelligent ecosystem underpinned by information technology and centered on the needs 
of faculty and students.  Research over the past five years has defined smart campuses from diverse 
perspectives. One category emphasizes technological attributes, defining smart campuses as systems 
that achieve comprehensive perception, interconnection, and intelligent management of campus 
environments, equipment, and services through technologies such as the Internet of Things (IoT), cloud 
computing, big data, and artificial intelligence (Polin et al., 2023). Another category focuses on user 
experience and service orientation, highlighting that the essence of smart campuses lies in providing 
students and faculty with efficient, convenient, and personalized learning, management, and lifestyle 
services, thereby enhancing educational quality and campus governance (Silva-da-Nóbrega et al., 2022). 
Synthesizing these perspectives, a smart campus can be defined as: an integrated system that leverages 
next-generation information technologies like IoT to systematically consolidate teaching, management, 
and service resources within higher education institutions. This integration aims to achieve intelligent 
campus operations, personalized services, and scientific decision-making. This definition establishes 
the conceptual foundation for subsequent exploration of smart campus adoption behaviors and their 
influencing factors. 

The realization of smart campuses relies on the deep integration of multiple information 
technologies, with IoT technology considered its core foundation. By deploying sensors, smart 
terminals, and network devices, classrooms, laboratories, libraries, and public facilities across campuses 
can be perceived and monitored in real time, supporting data collection and intelligent management 
(Zhang et al., 2022). Building upon this foundation, cloud computing and big data platforms provide 
unified data storage, processing, and analytical capabilities for smart campuses, enabling cross-system 
integration of teaching data, management data, and behavioral data. In recent years, artificial 
intelligence technologies have been progressively introduced into smart campus scenarios. These 
technologies are applied to learning behavior analysis, intelligent recommendations, and decision 
support, thereby enhancing the intelligence level of campus services (Hu & Li, 2024). Functionally, 
smart campuses typically comprise modules such as intelligent teaching systems, campus management 
systems, learning support platforms, and integrated service systems. These components collectively 
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form a highly integrated information environment, whose complexity and system compatibility directly 
influence students' user experience and adoption willingness toward the smart campus system. 

At the practical application level, smart campuses have extensively permeated multiple domains 
within higher education institutions, including teaching, management, and services. In teaching, smart 
campuses support blended learning and personalized education through smart classrooms, online 
learning platforms, and learning analytics systems, thereby enhancing student engagement and learning 
outcomes (Al-Emran et al., 2025). In campus management, smart campus systems are deployed for 
academic administration, resource scheduling, security monitoring, and energy management. Research 
indicates that intelligent management systems effectively improve campus operational efficiency, 
reduce management costs, and enhance campus security levels (Cavus et al., 2022). Furthermore, smart 
campuses provide convenient lifestyle services through integrated campus cards, mobile campus 
applications, and comprehensive online service platforms. These applications not only enhance student 
satisfaction with campus services but also influence their perception of the overall value of smart 
campuses (Gupta et al., 2022). 

Although significant progress has been made in smart campus development, current research 
indicates that it still faces multifaceted challenges. On one hand, smart campus systems often feature 
high technical complexity, with issues of system compatibility and usability potentially reducing user 
willingness to adopt them. On the other hand, data privacy and information security concerns have 
increasingly become key factors constraining the further promotion of smart campuses, as user 
apprehensions about data security may influence their adoption behavior (Gill et al., 2022). From a 
developmental perspective, smart campus research has gradually shifted from a technology-oriented 
approach toward a user-centered perspective in recent years, placing greater emphasis on students' and 
teachers' perceptions, attitudes, and behavioral responses toward smart campus systems. Scholars 
widely agree that the future success of smart campuses depends not only on technological maturity but 
also on users' subjective perceptions of their usefulness, ease of use, and convenience (Silva-da-
Nóbrega et al., 2022). Therefore, it is necessary to systematically explore the influencing factors of 
smart campuses from a user adoption perspective, providing a theoretical basis for subsequent research 
grounded in the Technology Acceptance Model (TAM). 

2.2 TAM  
The Technology Acceptance Model (TAM) is one of the most influential theoretical frameworks in the 
fields of information systems and educational technology. It is widely used to explain users' acceptance 
and adoption behaviors toward new technologies (Davis, 1989; Venkatesh & Davis, 2000), as illustrated 
in Figure 1. TAM originated from the Theory of Reasoned Action (TRA), whose core principle lies in 
explaining behavioral decision-making processes through individual rational cognition. Building upon 
this foundation, Davis (1989) proposed TAM specifically for information system usage contexts. By 
simplifying users' perceptions of technology into several key psychological variables, he constructed a 
theoretical model capable of effectively predicting technology acceptance behavior. 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Technology acceptance model  
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TAM has gained extensive empirical validation across diverse technological contexts due to its concise 
structure, clear logic, and strong explanatory power, proving particularly applicable to research on smart 
campus, IoT systems, and educational informatization (Kai et al., 2026). In the complex system 
environment of smart campuses, which heavily rely on information technology, students' subjective 
perceptions and behavioral intentions toward the system are considered key factors influencing the 
successful implementation of technology. Therefore, TAM provides a solid theoretical foundation for 
exploring adoption behaviors in IoT-based smart campuses. Compared to other behavioral theories, one 
of the most notable features of TAM is its high degree of contextual adaptability and operational 
utility.The model does not emphasize complex psychosocial processes but focuses on users' most direct 
cognitive judgments when encountering new technologies. This theoretical design enables TAM to be 
repeatedly validated across diverse technological contexts, gradually evolving into a foundational 
theoretical framework for technology adoption research. Studies over the past five years continue to 
widely adopt TAM as the core theoretical basis for analyzing user technology acceptance behavior. 
Particularly against the backdrop of emerging information technologies and digital services, TAM 
demonstrates robust theoretical vitality and explanatory power (Wei et al., 2025). 

The fundamental theoretical framework of TAM posits that user adoption of technology is primarily 
determined by two core cognitive variables: Perceived Usefulness (PU) and Perceived Ease of Use 
(PEOU). These variables influence Behavioral Intention (BI), which in turn affects actual usage or 
adoption behavior.Perceived Usefulness (PU) refers to the extent to which users believe using a 
technology can enhance their learning or work performance;Perceived Ease of Use (PEOU) refers to 
the extent to which users perceive the process of using the technology as effortless, understandable, and 
straightforward;Behavioral Intention (BI) reflects the subjective willingness to use or continue using 
the technology in the future. Extensive research indicates that PU and PEOU are the most stable and 
explanatory factors in predicting user technology adoption behavior. Furthermore, PEOU not only 
directly influences BI but also indirectly affects adoption intention by enhancing PU (Kim et al., 2025). 

Although TAM has demonstrated strong explanatory power in technology adoption research, as 
technological systems grow increasingly complex, scholars have gradually recognized that relying 
solely on core constructs may prove insufficient to comprehensively explain users' adoption decision-
making processes. Consequently, expanding TAM by incorporating external variables has become a 
significant developmental direction in technology acceptance studies (Kim et al., 2025). Specifically, 
compatibility is a key concept derived from innovation diffusion theory that has been widely applied to 
broaden the explanatory framework of TAM. Compatibility typically refers to the degree of alignment 
between a new technology and a user's existing values, usage habits, experiences, and current systems. 
Within information systems research, compatibility is recognized as a significant contextual factor 
influencing the formation of user cognition and attitudes (Nasywahasna et al., 2025). 

Research over the past five years indicates that incorporating compatibility into the TAM 
framework enhances the model's ability to explain complex technological systems, particularly in IoT 
systems, smart service platforms, and multi-system integration environments. By introducing 
compatibility variables, researchers can better understand psychological evaluation processes among 
users encountering new technologies, rather than being limited to the functional or operational 
characteristics of the technology itself (Kim et al., 2025). 

In the field of educational technology, TAM has been widely applied to study user acceptance 
behaviors toward technologies such as online learning platforms, learning management systems, and 
intelligent teaching tools (Davis, 2025; Oulahsene, 2025). Existing research indicates that TAM and its 
extended models effectively explain technology acceptance behaviors among students and faculty 
within smart campus environments (Marian-Vladut et al., 2025). Furthermore, recent research trends 
have shifted from focusing solely on technological functionality toward greater emphasis on user 
experience and contextual usage. This evolution has deepened TAM's application in smart campus 
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studies while driving the continual advancement of the model within educational informatization 
research. 

In summary, the Technology Acceptance Model (TAM) serves as a classic theory in information 
systems research, providing a solid theoretical foundation for understanding users' technology adoption 
behavior. The core constructs demonstrate strong stability and explanatory power across diverse 
technological environments. By incorporating extended variables such as compatibility, TAM can 
better adapt to complex application scenarios like smart campus. 

2.3 Research Model and Hypotheses Development 

2.3.1 Research Model  
This study conducted a systematic analysis of smart campus adoption among students in higher 
educational institutions based on the Technology Acceptance Model (TAM), integrating the application 
context of smart campus and IoT technologies. Within smart campus environments, information 
systems typically exhibit high integration, multi-scenario applications, and continuous usage orientation. 
Relying solely on the core constructs of traditional TAM is insufficient to fully explain user adoption 
behavior. Therefore, this study extends the TAM theoretical framework by introducing a compatibility 
external variable, proposing the research model shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Research model 

The research model primarily consists of three independent variables: perceived usefulness, 
perceived ease of use, and compatibility. The mediating variable is behavioral intention, while the 
dependent variable is the adoption of smart campus systems. This study considers behavior intention as 
the key mediating variable between external factors and the adoption of smart campus. On the one hand, 
perceived ease of use, perceived usefulness, and compatibility may directly influence students' adoption 
behavior toward smart campuses. On the other hand, these factors may also indirectly affect adoption 
behavior by influencing students' behavioral intentions. This dual-path structure helps reveal the 
complexity of smart campus adoption mechanisms more comprehensively. Overall, while maintaining 
the core logical consistency of TAM theory, this study integrates the technological characteristics and 
educational application scenarios of smart campuses to construct a comprehensive research framework 
encompassing both direct and mediating effects. This framework provides a theoretical foundation for 
subsequent hypothesis development and empirical analysis. 

2.3.2 Hypotheses Development 
Perceived Usefulness (PU) is a core construct in the Technology Acceptance Model, referring to the 
extent to which users believe a technology can enhance their learning or work performance. According 
to the Technology Acceptance Model and its extended research, when users perceive that technology 
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can deliver tangible benefits, their behavioral intention to adopt that technology significantly increases. 
In recent years, this relationship has been repeatedly validated in smart campus and IoT application 
contexts. For instance, Al-Emran et al. (2020) found in their smart learning system study that perceived 
usefulness significantly and positively influenced students' behavioral intentions; Deng et al. (2021) 
confirmed in IoT educational applications that perceived usefulness is a key predictor of user adoption 
intent; Furthermore, Alrasheedi et al. (2023) demonstrated through empirical research on smart campus 
systems that students' recognition of system usefulness significantly increases their willingness to use 
it. Therefore, this study proposes Hypothesis H1. 

H1: The link between perceived usefulness and behavior intention 
Perceived Ease of Use (PEU) refers to the degree to which users believe a system can be used 

without excessive effort. The Technology Acceptance Model (TAM) posits that the easier a system is 
to use, the greater the likelihood users will form positive behavioral intentions. In recent years, multiple 
empirical studies have validated the significant influence of perceived ease of use on behavioral 
intentions within the contexts of IoT and smart campuses. For instance, Nikou and Economides (2021) 
found in their study of digital learning systems that perceived ease of use significantly enhances 
students' behavioral intentions. Park et al. (2022) confirmed in their research on smart education 
platforms that operational convenience is a key factor in predicting user willingness to use. Furthermore, 
Zhang et al. (2024) demonstrated in their empirical study of IoT-enabled smart campuses that perceived 
ease of use can significantly boost students' usage intentions. Therefore, this study proposes Hypothesis 
H2. 

H2: The link between perceived ease of use and behavior intention 
Compatibility refers to the degree of alignment between new technology and existing values, usage 

habits, and needs of users. In studies extending the Technology Acceptance Model (TAM), 
compatibility is recognized as a significant technology-specific factor influencing users' adoption 
intentions. Recent research in IoT and smart systems contexts has confirmed that stronger compatibility 
between technology and users' established habits correlates with greater usage intentions. For instance, 
Talukder et al. (2020) found compatibility significantly and positively influenced behavioral intention 
in an IoT technology adoption study; Rahi et al. (2022) noted compatibility enhances user willingness 
to use in a smart service system study; furthermore, Li and Yu (2023) validated compatibility's 
significant promotional effect on student behavioral intention in a smart campus study. Therefore, this 
study proposes Hypothesis H3. 

H3: The link between compatibility and behavior intention 
In addition to indirectly influencing adoption behavior through behavioral intentions, some studies 

indicate that perceived usefulness may also directly impact actual adoption behavior. In IoT and smart 
campus contexts, when users explicitly perceive that a system can enhance learning efficiency or 
campus service quality, their actual usage behavior is more likely to occur. Wong et al. (2021) found in 
smart campus research that perceived usefulness directly influences system adoption. Al-Fraihat et al. 
(2022) confirmed in online learning system studies that perceived usefulness significantly predicts 
actual usage behavior. Furthermore, Huang et al. (2024) reached similar conclusions in IoT education 
system research. Therefore, this study proposes Hypothesis H4. 

H4: The link between perceived usefulness and adoption of iot-based smart campus 
Perceived ease of use not only influences behavior intention but may also directly promote 

technology adoption by reducing perceived technical complexity. Related studies indicate that in IoT 
and smart systems, the easier a system is to use, the more likely users are to engage in sustained and 
practical usage. Venkatesh et al. (2020) expanded the model to demonstrate that perceived ease of use 
directly influences usage behavior. Chao (2022) found in a smart campus system study that operational 
simplicity significantly impacts system adoption. Furthermore, Sun et al. (2024) confirmed this 
relationship in their research on IoT educational applications. Therefore, this study proposes Hypothesis 
H5. 
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H5: The link between perceived ease of use and adoption of iot-based smart campus 
Compatibility is considered a key antecedent variable influencing the actual adoption of technology. 

When a technological system can seamlessly integrate into users' existing learning and lifestyle patterns, 
its likelihood of adoption significantly increases. Subsequent empirical studies of Rogers' theory 
demonstrate that compatibility plays a direct role in IoT adoption. Cruz-Jesus et al. (2021) confirmed 
in smart technology adoption studies that compatibility significantly influences usage behavior; Nikou 
et al. (2023) noted in IoT system research that high compatibility promotes actual adoption; furthermore, 
Chen et al. (2024) also found a significant positive impact of compatibility on adoption behavior in the 
context of smart campuses. Therefore, this study proposes Hypothesis H6. 

H6: The link between compatibility and adoption of iot-based smart campus 
Behavioral intention is widely regarded as the most direct variable for predicting actual technology 

adoption behavior. TAM, UTAUT, and their extended models all emphasize the decisive role of 
behavioral intention in determining actual usage behavior. A meta-analysis by Dwivedi et al. (2020) 
demonstrated that behavioral intention significantly predicts usage behavior across diverse 
technological contexts. Salloum et al. (2021) confirmed behavioral intention's significant influence on 
actual usage in smart learning system research. Furthermore, Zhou et al. (2023) similarly identified 
behavioral intention as a crucial antecedent to adoption behavior in IoT smart campus studies. Therefore, 
this study proposes Hypothesis H7. 

H7: The link between behavior intention and adoption of iot-based smart campus 
According to the Technology Acceptance Model theory, users' cognitive evaluations of technology 

typically influence their actual adoption behavior through behavioral intention. In recent years, 
numerous studies have validated the mediating role of behavioral intention in IoT and smart system 
contexts. For instance, Tarhini et al. (2021) found that behavioral intention mediates the relationship 
between perceived factors and usage behavior in smart learning research; Alam et al. (2022) confirmed 
the significant mediating effect of behavioral intention in IoT technology adoption studies; Furthermore, 
Xu et al. (2024) validated the mediating mechanism of behavioral intention between technology-
specific factors and adoption behavior in smart campus research. Therefore, this study proposes 
Hypothesis H8. 

H8a: Behavior intention mediates the relationship between perceived usefulness and adoption 
of iot-based smart campus 

H8b: Behavior intention mediates the relationship between perceived ease of use and adoption 
of iot-based smart campus 

H8c: Behavior intention mediates the relationship between compatibility and adoption of iot-
based smart campus 

3 Methodology 

3.1 Scale Design 
This study adopts the Technology Acceptance Model (TAM) as its theoretical foundation to measure 
university students' adoption toward smart campus. The measurement instruments in this study are 
primarily based on established research findings from relevant domestic and international fields, with 
revisions tailored to the context of smart campus and IoT applications. The measurement items for 
perceived usefulness and perceived ease of use primarily draw from the research of Davis (1989) and 
Venkatesh et al. (2003). They are used to gauge students' subjective perceptions regarding the smart 
campus system's effectiveness in enhancing learning efficiency, operational convenience, and user 
experience. The compatibility variable references the findings of Wu and Wang (2005), focusing on 
reflecting the degree of alignment between the smart campus system and students' existing learning 
methods, technology usage habits, and campus information systems. The measurement items adopted 
for smart campus adoption draw from information system adoption and smart education-related 
research (Ifenthaler & Schumacher, 2016), evaluating students' overall acceptance of IoT-based smart 
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campus services. In the scale design process, each latent variable employed multi-item measurement 
approaches. Items were contextualized based on university smart campus application scenarios to 
enhance the scale's applicability and comprehensibility. All items were measured using a five-point 
Likert scale, where 1 indicates “Strongly Disagree” and 5 indicates “Strongly Agree.” Prior to formal 
investigation, the scale's validity and clarity were verified through expert review and pre-testing, 
establishing a robust measurement foundation for subsequent empirical analysis (Viera  et al., 2025). 

3.2 Data Collection 
The data for this study were collected from students at higher education institutions in Nantong City, 
Jiangsu Province. To enhance sample representativeness, a stratified random sampling method was 
employed for the questionnaire survey (Aoyama, 1954). The survey was distributed online via the an 
online survey platform, inviting students to participate voluntarily. A total of 783 questionnaires were 
collected. After data cleaning, 753 valid questionnaires were retained, yielding an effective response 
rate of approximately 95%. The sample covered different genders, grade levels, and academic 
disciplines, effectively reflecting the overall characteristics of the college student population. 

3.3 Research Method 
This study employs quantitative research methods to conduct an empirical analysis of students in higher 
educational institutions. Quantitative research methods can characterize relationships between variables 
in structured data formats, making them suitable for research domains such as technology acceptance 
and information system adoption (Sneesl et al., 2023).  These methods are particularly well-suited for 
systematically testing theoretical models and their path relationships. During data analysis, SPSS 26.0 
software was first used for sample data preprocessing and statistical analysis, including descriptive 
statistics of sample characteristics, reliability analysis of scales, and validity testing to ensure the 
reliability and validity of measurement tools. Subsequently, AMOS 24.0 was employed to construct a 
structural equation model, evaluate the overall model fit, and test path relationships among latent 
variables to validate research hypotheses. 

4 Results  

4.1 Descriptive Statistical Analysis of Samples 
To understand the basic characteristics of the sample, this paper conducted a descriptive statistical 
analysis of the valid questionnaires collected. The analysis primarily describes the sample structure in 
terms of gender, grade level, major background, and school distribution, as shown in Table 1. 

In terms of gender distribution, male students accounted for 50.6% and female students for 49.4%, 
indicating a relatively balanced overall ratio without significant gender bias. This suggests that the 
sample possesses good representativeness in its gender structure, which enhances the robustness of 
subsequent empirical analysis results. 

In terms of grade distribution, the sample covered multiple stages including undergraduates, 
master's students, and doctoral students. Undergraduate students represented the largest proportion, 
primarily sophomores and juniors. This group typically possesses extensive experience using campus 
information systems and demonstrates a high level of awareness regarding smart campus services. 
Additionally, graduate and doctoral students also constituted a significant portion of the sample, 
reflecting the usage needs of senior students for smart campus systems in their academic and research 
activities. Overall, the sample distribution across different academic stages was reasonably balanced, 
reflecting the multi-tiered characteristics of the university student population. 
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Table 1: Demographic profiles of respondents (N=753) 
Variable Category Frequency Percent 

Gender 
Male 381 50.6 

Female 372 49.4 

Grade 

Freshman 89 11.8 

Sophomore 160 21.2 

Junior 161 21.4 

Senior 124 16.5 

Postgraduate First Year 78 10.4 

Postgraduate Second Year 62 8.2 

Postgraduate Third South 47 6.2 

Doctoral 32 4.2 

Profession 

Arts & History 101 13.4 

Science & Engineering 258 34.3 

Arts & Sports 87 11.6 

Education 307 40.8 

School 

Nantong University 152 20.2 

Nantong Institute of Technology 133 17.7 

Nantong University Xinglin College 62 8.2 

JiangSu Shipping College 67 8.9 

Jiangsu College of Engineering and Technology 76 10.1 

Jiangsu Vocational College of Business 70 9.3 

Nantong Vocational University 90 12 

Nantong College of Science and Technology 56 7.4 

Nantong Normal College 47 6.2 

In terms of academic backgrounds, the sample encompasses multiple disciplines including 
education, science and engineering, humanities and social sciences, as well as arts and physical 
education. Among these, students majoring in education and science and engineering constitute a 
relatively higher proportion, closely tied to the widespread application of smart campus systems in 
teaching management, learning support, and experimental practice. This diverse disciplinary 
distribution facilitates examining university students' adoption of smart campus systems from varied 
academic perspectives, thereby enhancing the generalizability of research findings. 

In terms of institutional distribution, the sample originates from multiple higher education 
institutions in Nantong City, Jiangsu Province, encompassing both undergraduate universities and 
higher vocational colleges. The sample size distribution across institutions is relatively dispersed, 
avoiding concentration in any single institution, thereby demonstrating strong institutional diversity. 
This multi-institutional sample structure helps mitigate the potential influence of a single institutional 
context on research findings, enhancing the external validity of the study's conclusions. 

In summary, the sample for this study exhibits a reasonably balanced and diverse distribution across 
gender, grade level, major, and institution, effectively reflecting the overall profile of university 
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students in Nantong. This provides a reliable data foundation for subsequent empirical analysis of smart 
campus adoption behaviors. 

4.2 Reliability and Validity Test 
To examine the reliability and validity of the research scale, this study conducted a systematic analysis 
of the measurement model using SPSS 26.0 and AMOS 24.0. It primarily evaluated the measurement 
quality of the scale in terms of internal consistency reliability and convergent validity, As shown in 
Table 2. 

Table 2: Reliability and validity test 
 Constructs     Items Unstd. S.E. Z P Std. Alpha CR AVE 

PU 

PU1 1    0.838 

0.964 0.866 0.618 PU2 0.934 0.041 22.719 *** 0.754 
PU3 0.954 0.043 22.075 *** 0.737 
PU4 0.992 0.040 24.999 *** 0.811 

PEU 

PEU1 1    0.884 

0.898 0.866 0.694 PEU2 0.875 0.037 23.89 *** 0.729 
PEU3 1.045 0.036 28.723 *** 0.815 
PEU4 1.008 0.030 33.752 *** 0.896 

CMP 

CMP1 1    0.827 

0.875 0.876 0.639 CMP2 0.998 0.041 24.158 *** 0.797 
CMP3 1.04 0.043 24.045 *** 0.794 
CMP4 1.026 0.044 23.394 *** 0.778 

BI 

BI1 1    0.881 

0.936 0.938 0.685 

BI2 0.946 0.031 30.363 *** 0.824 
BI3 0.847 0.033 25.672 *** 0.749 
BI4 0.946 0.034 27.558 *** 0.781 
BI5 0.904 0.033 27.694 *** 0.783 
BI6 0.926 0.030 30.678 *** 0.828 
BI7 1.039 0.026 39.537 *** 0.933 

ASC 

ASC1 1    0.823 

0.92 0.921 0.627 

ASC2 0.985 0.038 25.925 *** 0.805 
ASC3 0.788 0.039 19.961 *** 0.665 
ASC4 1.083 0.041 26.434 *** 0.816 
ASC5 0.861 0.037 23.102 *** 0.743 
ASC6 0.949 0.038 25.087 *** 0.787 
ASC7 1.045 0.035 29.959 *** 0.886 

For internal consistency reliability, Cronbach's alpha coefficient and composite reliability (CR) 
were employed for assessment. Results indicate that Cronbach’s α coefficients for perceived usefulness 
(PU), perceived ease of use (PEU), compatibility (CMP), behavioral intention (BI), and smart campus 
adoption (ASC) all exceed 0.70, ranging from a minimum of 0.875 to a maximum of 0.964, 
demonstrating strong internal consistency (Nunnally, 1979). Regarding composite reliability (CR), all 
constructs exceeded 0.70. Data revealed a minimum CR of 0.866 and a maximum CR of 0.938, meeting 
the commonly accepted threshold for latent variable reliability in academic research (CR ≥ 0.70) 
(Bagozzi & Yi , 1988). This further confirms the stable and reliable measurement outcomes of each 
scale. 

Regarding convergent validity, assessment was conducted using standardized factor loadings and 
Average Variance Extracted (AVE). All items exhibited significant standardized factor loadings on 
their respective latent variables, with most loadings exceeding 0.70. This indicates that the measurement 
items adequately reflect the characteristics of the latent variables. The AVE values for each construct 
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exceeded 0.50, ranging from a minimum of 0.618 to a maximum of 0.694. This satisfies the criterion 
for convergent validity (AVE ≥ 0.50) (Fornell & Larcker, 1981), indicating that the latent variables 
explain a substantial portion of the variance in their measured items and that the scales exhibit good 
convergent validity. 

In summary, the scales developed in this study meet recommended standards across multiple 
metrics, including Cronbach's α, composite reliability (CR), and average variance extracted (AVE). The 
measurement model demonstrates high reliability and validity, providing a robust data foundation for 
subsequent path analysis and hypothesis testing within the structural equation model. 

4.3 Discriminant Validity 
To examine the discriminant validity among latent variables in the scale, this study employs the 

criterion proposed by Fornell and Larcker (1981), as shown in the table. This method assesses 
discriminant validity by comparing the square root of the average variance extracted (AVE) for each 
latent variable against its correlation coefficients with other latent variables. If the square root of the 
AVE for each latent variable exceeds its correlation coefficient with other latent variables, it indicates 
conceptual independence among latent variables and confirms the scale possesses good discriminant 
validity (Fornell & Larcker, 1981). 

Table 3: Discriminant validity test 
  ASC BI CMP PEU PU 

ASC 0.792     
BI 0.573 0.828    

CMP 0.416 0.389 0.799   
PEU 0.4 0.359 0.565 0.833  
PU 0.41 0.41 0.643 0.657 0.786 

As shown in Table 3, the five variables which are Adoption of Smart Campus (ASC), Behavioral 
Intention (BI), Compatibility (CMP), Perceived Ease of Use (PEU), and Perceived Usefulness (PU)—
exhibited average variance extracted root squares of 0.792, 0.828, 0.799, 0.833, and 0.786, respectively. 
All these values exceeded the respective correlation coefficients between each variable and the other 
latent variables. This indicates that the concepts measured by each latent variable are clearly 
distinguishable, and the items accurately reflect the characteristics of their respective latent variables 
without being confounded by other latent variables. 

Specifically, the correlation coefficient between Adoption of Smart Campus (ASC) and Behavioral 
Intent (BI) is 0.573, which is lower than the square root of the average variance extracted (AVE) for 
ASC, 0.792; The correlation coefficient between Compatibility (CMP) and Perceived Ease of Use (PEU) 
is 0.565, also below their respective mean square root of variance extracted: CMP at 0.799 and PEU at 
0.833. 

Comparisons among all latent variables meet the criterion, further indicating the scales demonstrate 
good conceptual independence and measurement accuracy. 

In summary, the scales developed in this study demonstrate strong discriminant validity. These 
scales not only effectively distinguish between latent variables but also provide a reliable measurement 
foundation for subsequent structural equation modeling and path analysis. This finding aligns with 
previous research on information systems and technology acceptance, further validating the scientific 
rigor and practical applicability of the adopted scales. 

4.4 Modeling Fit Indices Test 
To verify the overall fit of the structural equation model, this study examined the model's fit indices, 
including χ²/df (Chi-square / degrees of freedom), P-value, Comparative Fit Index (CFI), Tucker-Lewis 
Index (TLI), and Root Mean Square Error of Approximation (RMSEA), as shown in Figure 3. 
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Fig. 3: Measurement Model 

The results show that the model's χ²/df is 1.777, below the recommended threshold of 3 (Bagozzi 
& Yi, 1988), indicating overall good model fit. The P-value is 0.000, which is normal and acceptable 
given the large sample size. Other fit indices further validate the model's excellent fit. CFI and TLI were 
0.984 and 0.982, respectively, both exceeding the recommended standard of 0.90 (Bagozzi & Yi , 1988; 
Kline, 2005), indicating excellent model fit in both comparative and non-normative fit metrics. RMSEA 
was 0.032, significantly below the judgment threshold of 0.08 (Browne, M.W. and Cudeck, 1993), 
suggesting minimal model error and ideal fit. In summary, the structural equation model constructed in 
this study demonstrates overall good fit and reliability, reasonably reflecting the structural relationships 
among latent variables. Therefore, the model can be considered to have sufficient fit, providing a solid 
foundation for subsequent path analysis and hypothesis testing, ensuring the scientific validity and 
credibility of the structural equation analysis results. 

4.5 Path Hypothesis Test 
This study employs path analysis based on structural equation modeling to examine the direct effects 
of perceived usefulness, perceived ease of use, and compatibility on behavioral intention and smart 
campus adoption, as well as the direct role of behavioral intention in smart campus adoption, as 
illustrated in Figure 4. According to statistical standards for structural equation modeling, a P-value less 
than 0.05 is generally considered statistically significant (Fisher, 1925). The path estimation results are 
presented in Table 4. 
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Fig. 4: Structural Models 

Table 4: Hypothesis 1-7 results 
Hypothesis Path  Unstd. S.E. Z P Estimate Results 

H1 PU->BI 0.236 0.041 5.807 *** 0.226 Supported 
H2 PEU->BI 0.144 0.037 3.898 *** 0.146 Supported 
H3 CMP->BI 0.221 0.041 5.392 *** 0.208 Supported 
H4 PU->ASC 0.065 0.032 2.069 0.039 0.074 Supported 
H5 PEU->ASC 0.116 0.029 4.043 *** 0.14 Supported 
H6 CMP->ASC 0.124 0.032 3.901 *** 0.14 Supported 
H7 BI->ASC 0.382 0.033 11.752 *** 0.456 Supported 

The results indicate that perceived usefulness significantly influences behavioral intention, with a 
P-value less than 0.001, supporting Hypothesis H1. Perceived ease of use significantly influences 
behavioral intention, with a P-value less than 0.001, validating Hypothesis H2. Compatibility 
significantly influences behavioral intention, with a P-value less than 0.001, supporting Hypothesis H3. 

Regarding smart campus adoption, perceived usefulness significantly and directly influences 
adoption behavior, with a P-value of 0.039, supporting hypothesis H4. The direct effect of perceived 
ease of use on adoption behavior is significant, with a P-value less than 0.001, validating hypothesis 
H5. The direct effect of compatibility on adoption behavior is significant, with a P-value less than 0.001, 
supporting hypothesis H6. Furthermore, behavioral intention exhibits the most significant direct effect 
on smart campus adoption behavior, with a P-value less than 0.001, validating hypothesis H7. 

In summary, all direct paths in the structural equation model reached statistical significance, 
indicating that perceived usefulness, perceived ease of use, and compatibility all positively influence 
college students' behavioral intentions. Simultaneously, these factors and behavioral intentions exert a 
significant positive effect on the adoption of smart campus systems. The overall path analysis results 
validate the validity of the research model, providing reliable data support for subsequent discussions 
and research conclusions. 

4.6 Mediating Effects Test 
To further examine the mediating effect of behavior intention, this study employs the Bootstrap method 
for mediation analysis. By conducting 1,000 repeated samples, 95% confidence intervals were 
constructed to test the indirect effect, direct effect, and total effect, as shown in Table 5. When the 



Cao et al., Journal of Logistics, Informatics and Service Science, Vol. 13 (2026), No 2, pp 62-81 

76 
 

confidence interval for the indirect effect does not include zero, it indicates a significant mediating 
effect (Preacher & Hayes, 2008). 

Table 5: Hypothesis 8 results (bootstrap) 

Path  
relationship 

Point  
estimate 

Product of coefficient 
Bootstrap 1000 times 95% CI 

Bias-corrected Percentile 
SE Z-value Lower Upper Lower Upper 

 
PU->BI->ASC 0.09 0.024 3.75 0.045 0.14 0.044 0.139 

 
PU->ASC 0.065 0.043 1.511628 -0.017 0.147 -0.017 0.147 

 
PU->ASC 0.156 0.047 3.319149 0.063 0.247 0.069 0.25 

 
PEU->BI->ASC 0.055 0.02 2.75 0.019 0.096 0.019 0.096 

 
PEU->ASC 0.116 0.036 3.222222 0.045 0.19 0.042 0.188 

 
PEU->ASC 0.171 0.04 4.275 0.094 0.249 0.093 0.247 

 
CMP->BI->ASC 0.084 0.019 4.421053 0.053 0.124 0.052 0.123 

 
CMP->ASC 0.124 0.04 3.1 0.046 0.206 0.045 0.205 

 
CMP->ASC 0.209 0.039 5.358974 0.132 0.285 0.135 0.286 

The results indicate that within the perceived usefulness path, perceived usefulness exerts a 
significant indirect effect on smart campus adoption through behavioral intention. The estimated 
indirect effect is 0.090, with both the lower and upper bounds of the 95% confidence intervals (Bias-
corrected and Percentile) not containing zero. This confirms that behavioral intention plays a significant 
mediating role between perceived usefulness and smart campus adoption. Meanwhile, the direct effect 
of perceived usefulness on smart campus adoption was insignificant, with its 95% confidence interval 
containing zero. However, the total effect was significant, indicating that behavioral intention fully 
mediates this path. 

In the perceived ease of use pathway, perceived ease of use exerts a significant indirect effect on 
smart campus adoption through behavioral intention, with an indirect effect estimate of 0.055 and a 95% 
confidence interval that does not include zero. Simultaneously, perceived ease of use also exhibits a 
significant direct effect on smart campus adoption, with its confidence interval not containing zero. The 
overall effect is significant, indicating that behavioral intention partially mediates the relationship 
between perceived ease of use and smart campus adoption. 

In the compatibility pathway, compatibility significantly mediates the indirect effect on smart 
campus adoption through behavioral intention, with an estimated indirect effect of 0.084. Both the Bias-
corrected and Percentile confidence intervals exclude zero. Concurrently, compatibility exerts a 
significant direct effect on smart campus adoption, and the total effect also reaches statistical 
significance. This indicates that behavioral intention partially mediates the relationship between 
compatibility and smart campus adoption. 

In summary, behavior intention plays a significant mediating role between perceived usefulness, 
perceived ease of use, compatibility, and the adoption of smart campuses. Specifically, behavior 
intention acts as a full mediator in the perceived usefulness pathway and as a partial mediator in the 



Cao et al., Journal of Logistics, Informatics and Service Science, Vol. 13 (2026), No 2, pp 62-81 

77 
 

perceived ease of use and compatibility pathways. This finding further validates the applicability of the 
Extended Technology Acceptance Model in the smart campus context and reveals the critical role of 
behavior intention in the adoption mechanism of smart campuses. 

5 Conclusion 

5.1 Theoretical Contributions 
This study makes significant theoretical contributions to the fields of smart campuses and technology 
acceptance theory. First, building upon the traditional Technology Acceptance Model (TAM), this 
paper introduces compatibility as a crucial technology-specific factor, thereby constructing an extended 
model for the adoption of IoT-based smart campuses. Compared to traditional information systems, 
IoT-based smart campuses exhibit characteristics such as high system integration, complex application 
scenarios, and strong technological convergence. Incorporating compatibility into the analytical 
framework facilitates a more comprehensive explanation of the alignment between smart campus 
systems and students' existing learning styles, usage habits, and technological experiences, thereby 
expanding TAM's explanatory power within the smart campus context. 

Second, this study empirically verified the mediating role of behavioral intention between 
technology-specific factors and the adoption of IoT-based smart campuses. Existing research has 
primarily focused on the direct impact of factors such as perceived usefulness and perceived ease of use 
on adoption behavior, while relatively limited attention has been paid to exploring their underlying 
mechanisms. The findings reveal that perceived usefulness, perceived ease of use, and compatibility do 
not directly influence smart campus adoption behavior. Instead, they exert indirect effects through the 
key psychological variable of behavioral intention. This deepens our understanding of the underlying 
mechanisms in the smart campus adoption process and provides new empirical evidence for expanding 
the path relationships within the Technology Acceptance Model. 

Finally, this study conducted an empirical investigation into the adoption behavior of IoT-based 
smart campuses among university students, thereby enriching the relevant literature in the fields of 
smart education and educational informatization. Existing technology acceptance research has 
predominantly focused on commercial or organizational information system applications, while 
empirical studies on smart campuses in higher education remain relatively scarce. By adopting a higher 
education perspective and applying technology acceptance theory to the IoT smart campus context, this 
paper further expands the scope of relevant theoretical applications within the educational domain. 

5.2 Practical Contributions 
This study offers multifaceted implications for practical implementation. First, for administrators 
overseeing smart campus development in higher education institutions, the findings indicate that 
perceived usefulness, perceived ease of use, and compatibility are key factors influencing students' 
behavioral intentions. Therefore, as universities advance IoT-based smart campus initiatives, they 
should prioritize the effectiveness and usability of service functions. Ensuring that smart systems 
tangibly enhance learning efficiency, information accessibility, and campus management effectiveness 
will strengthen students' perception of the value delivered by smart applications. Second, regarding the 
design and development of smart campus systems, the study reveals that students' perceptions of system 
usability and operational experience significantly influence their adoption levels. Consequently, 
software developers and technical service providers should optimize user interfaces, enhance system 
response speeds, and improve cross-platform compatibility. This reduces operational costs, enables 
students to enjoy a seamless experience during use, and promotes sustained system adoption. 
Furthermore, the significant impact of compatibility highlights that universities must prioritize 
integration with existing teaching methods, curriculum systems, and campus life habits when deploying 
IoT technologies. Through scenario adaptation, learning resource consolidation, and the establishment 
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of information exchange mechanisms, the smart campus ecosystem can be seamlessly integrated into 
students' daily learning and living contexts. 

Finally, this study validates the mediating role of behavior intention in the adoption of smart campus 
technologies, which offers valuable insights for universities during project implementation. Higher 
education institutions must not only provide smart infrastructure but also enhance interest and 
psychological acceptance through training seminars, usage guidance, and promotional campaigns of 
students. This fosters positive behavior intention, thereby advancing smart campus development from 
merely “having technology” to achieving “active utilization and tangible value.” In summary, this study 
offers actionable pathways for smart campus construction and promotion within the context of 
educational digital transformation.    It provides practical guidance for policymakers, administrators, 
and technology providers.  

5.3 Limitation 
Although this study has achieved certain theoretical and practical outcomes in the field of IoT-based 
smart campus adoption, several limitations remain that require further refinement in subsequent 
research. First, the data in this study originates from a sample of students at a specific university, 
exhibiting geographical and demographic limitations. The sample structure is relatively homogeneous, 
failing to encompass diverse roles such as faculty and administrators. Consequently, the 
externalizability of the research conclusions may be constrained. Future research should expand the 
sample scope to include participants from different regions, multiple types of universities, or diverse 
roles to enhance the universality and explanatory power of the findings. Second, the cross-sectional 
questionnaire approach used in this study only reflects static relationships between variables and fails 
to capture the dynamic process of behavioral intentions and actual adoption behaviors over time. 
Subsequent studies may consider employing longitudinal tracking data or experimental designs to 
explore the evolutionary mechanisms of smart campus adoption behavior in greater depth. 
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