
207 
 

ISSN 2409-2665 
Journal of Logistics, Informatics and Service Science 

Vol. 13 (2026) No. 1, pp. 207-219 
DOI:10.33168/JLISS.2026.0111 

 

A Lightweight Image Denoising and Adverse Weather 
Enhancement Method for Real-Time Visual Perception Services 

in Autonomous Driving Systems 

Liang Fang *, Vladimir Y. Mariano 
National Nniversity, NU Manila, 551 M.F Jhocson St. Sampaloc Manila 1008, Philippines 

acemouse@163.com (Corresponding author), vymariano@national-u.edu.ph 
 

Abstract. Real-time visual perception is a critical informatics service in autonomous 
driving systems, directly supporting downstream decision-making, control, and safety 
assurance. Under adverse weather conditions such as rain, fog, snow, and low-light 
environments, images captured by onboard cameras suffer from severe noise, contrast 
degradation, and detail loss, which significantly reduce the reliability of perception services. 
Moreover, perception algorithms are typically deployed on vehicle-grade embedded 
platforms with limited computational resources, making heavyweight denoising and 
enhancement models unsuitable for real-time operation. To address these challenges, this 
paper proposes a lightweight image denoising and adverse weather enhancement method 
designed for real-time autonomous driving perception services. A low-complexity denoising 
network is developed based on shallow architecture, lightweight convolutional operators, 
and residual learning. On this basis, targeted enhancement strategies are introduced for rainy, 
foggy, and low-light scenes, enabling joint optimization of noise suppression and visual 
enhancement under strict resource constraints. Experimental results on multiple autonomous 
driving datasets demonstrate that the proposed method improves image quality, reduces 
inference latency, and enhances the performance of downstream perception tasks such as 
object detection and semantic segmentation. The results indicate that the proposed approach 
provides an effective and deployable informatics solution for robust real-time perception 
services in autonomous driving systems. 
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1. Introduction 
With the rapid development of artificial intelligence and intelligent transportation, autonomous 
driving has become an important research topic in smart vehicles. In an autonomous driving system, 
the environment perception module plays a key role in decision making and vehicle control, and its 
performance is closely related to driving safety and overall system reliability, especially in complex 
traffic environments. At present, most autonomous vehicles rely on onboard cameras to capture road 
images, which are then processed by visual perception algorithms for tasks such as object detection, 
lane detection, and semantic segmentation. 

In real-world driving environments, autonomous vehicles inevitably operate under adverse 
weather conditions such as rain, fog, snow, and night-time low-light scenes. These conditions 
significantly interfere with the imaging process of onboard cameras, leading to increased noise, 
reduced contrast, and loss of structural details. As illustrated in Figure 1, different weather conditions 
introduce distinct degradation patterns, including rain streaks and strong reflections in rainy scenes, 
contrast attenuation and detail loss in foggy environments, as well as severe sensor noise and low 
signal-to-noise ratios under low-light conditions. Although the physical causes of degradation vary, 
these adverse conditions share common negative effects on visual perception reliability, particularly 
for object detection and semantic segmentation tasks. If such degraded images are directly used by 
perception algorithms, the stability and accuracy of downstream perception services are significantly 
compromised. 
 

 
Fig.1: Impact of Adverse Weather Conditions on Autonomous Driving Visual Perception 

To address image degradation caused by adverse weather, various approaches have been proposed. 
Traditional denoising methods are mainly based on filtering or transform-domain techniques. While 
these methods are computationally efficient, they often remove important image details when noise 
characteristics become complex (Zheng et al., 2025). In recent years, deep learning–based methods 
have demonstrated strong performance in image denoising and enhancement, as deep networks are 
capable of modeling complex degradation patterns. However, these methods usually rely on deep 
architectures with large model sizes and high computational demands, which makes them difficult to 
deploy in real-time autonomous driving systems. Moreover, many existing weather enhancement 
approaches are designed for a single type of adverse condition and employ complex model structures, 
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further limiting their practical applicability. 
In real-world applications, visual perception algorithms are typically deployed on vehicle-grade or 

embedded computing platforms with limited computational resources. This imposes strict constraints 
on model size, computational complexity, and inference latency. Based on this background, this paper 
investigates lightweight image denoising and adverse weather enhancement for real-time perception 
in autonomous driving systems. In this study, the term “lightweight” does not merely refer to a small 
model size, but is defined from a practical deployment perspective. Specifically, a lightweight method 
is characterized by a shallow network architecture, a limited number of parameters, and low 
computational complexity, enabling low-latency inference and stable performance on vehicle-grade 
embedded platforms with constrained resources. This definition emphasizes deployability and 
real-time service reliability rather than pursuing maximal numerical performance. By analyzing image 
degradation mechanisms under different adverse weather conditions, a low-complexity denoising 
network and corresponding weather-aware enhancement strategies are designed. The proposed 
method improves image quality while maintaining strict real-time constraints, providing a practical 
solution for stable visual perception in complex driving environments. 

From a service science perspective, this work treats visual perception as a real-time informatics 
service within autonomous driving systems. The proposed lightweight preprocessing approach 
enhances the reliability, responsiveness, and deployability of this service under adverse environmental 
conditions, thereby supporting robust and continuous perception for downstream autonomous driving 
tasks. 

2. Real-Time Perception System Requirements for Autonomous Driving 
In an autonomous driving system, the visual perception system is a core component for acquiring 
information about the surrounding environment. Its main function is to understand and model road 
scenes based on data collected from multiple sensors. Among these sensors, cameras are the most 
important and information-rich, as they provide detailed visual data for road object recognition, traffic 
element perception, and scene semantic understanding. A typical architecture of an autonomous 
driving visual perception system is illustrated in Figure 2. The overall processing pipeline generally 
includes image acquisition, image preprocessing, feature extraction, and high-level perception tasks, 
with clear data dependencies between each stage (Wang et al., 2023). 

 
Fig.2: Architecture of the Autonomous Driving Visual Perception System 
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At the front end of the system, onboard cameras continuously capture road scene images and 
transmit raw image data to the perception processing unit. In real driving environments, these raw 
images are often affected by various factors, such as sensor noise, motion blur, and adverse weather 
conditions including rain, fog, and low-light scenes. These factors can significantly degrade image 
quality and directly influence the stability and accuracy of subsequent perception algorithms. As a 
result, image preprocessing is an essential step before high-level perception tasks are executed. This 
stage typically includes image denoising, contrast enhancement, brightness correction, and image 
recovery under adverse weather conditions (Aloufi et al., 2024). The main objective of preprocessing 
is to improve overall image quality and visibility while preserving important structural information as 
much as possible. After preprocessing, the processed images are input into perception algorithm 
modules to perform tasks such as object detection, semantic segmentation, lane detection, and traffic 
sign recognition. The high-level perception tasks usually rely on deep learning models to extract and 
represent image features. Their performance is highly sensitive to input image quality. If noise is not 
effectively suppressed or weather-related degradation is not properly addressed during preprocessing, 
feature extraction may become incomplete, leading to higher error rates. This can ultimately affect the 
safety of decision making and vehicle control in autonomous driving systems. It is important to note 
that in real-time autonomous driving applications, the entire visual perception pipeline typically runs 
on vehicle-grade embedded computing platforms (Choi & Jeong, 2022). These platforms impose strict 
constraints on algorithm latency, computation cost, and resource usage. Therefore, as reflected in the 
system architecture, the image preprocessing module must not only achieve effective denoising and 
enhancement, but also satisfy lightweight and real-time requirements (Zhang et al., 2025). Based on 
these system characteristics, this paper treats image denoising and adverse weather enhancement as 
key foundational components of the visual perception pipeline, aiming to provide stable, reliable, and 
high-quality image input for subsequent perception tasks. 

3. Lightweight Image Denoising Algorithm Design 

3.1. Overall Design Idea of the Denoising Model 
In real-time autonomous driving perception systems, image denoising is an early and important step in 
the visual pipeline. The denoising module must not only reduce noise and recover useful image details, 
but also satisfy strict constraints on latency and resource usage on vehicle-grade embedded platforms. 
For this reason, the proposed denoising model follows a “lightweight-first” design principle. While 
maintaining effective denoising performance, the model aims to minimize parameter size and 
computation cost so that it can run stably on platforms with limited computing power (Zheng et al., 
2025).  
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Fig.3: Architecture of the Proposed Lightweight Image Denoising Model 

As shown in Figure 3, the proposed lightweight image denoising model adopts a shallow network 
structure. The overall model size is controlled by reducing network depth and the number of feature 
channels. Unlike traditional deep denoising networks that rely on many stacked layers, this model 
focuses on efficient modeling of key low-level visual features. This helps avoid redundant feature 
extraction and unnecessary computation (Bradley et al., 2021). Structurally, the network is composed 
of an input feature mapping stage, lightweight feature extraction modules, and an output 
reconstruction stage. The data flow is simple and clear, which supports fast inference on embedded 
platforms. To further reduce resource consumption, parameter sharing and module reuse are applied. 
The lightweight convolution blocks with the same structure are reused at different stages, allowing the 
model to maintain representation ability while reducing the number of trainable parameters. In 
addition, low-complexity operators such as small convolution kernels and depthwise separable 
convolutions are used. These operators reduce FLOPs and lower hardware load, which shortens 
per-frame processing time. To handle diverse and time-varying noise in driving scenes, residual 
learning is introduced. As shown in Figure 3, residual connections pass the input image directly to the 
output, helping preserve structural information and avoid over-smoothing. Overall, the proposed 
lightweight denoising model is optimized at structural, parameter, and operator levels, providing an 
efficient and practical solution for real-time image preprocessing in autonomous driving systems 
(Walambe et al., 2021). 

3.2. Construction of the Lightweight Network Structure 

The denoising network in this paper is designed with a clear strategy: focusing on low-level details, 
using lightweight operators as the core, and applying residual learning as the main structure. The goal 
is to achieve real-time denoising that can be stably deployed on vehicle-grade embedded platforms 
(Anoop & Deivanathan,2025). The network consists of four parts: shallow input mapping, a 
lightweight feature extraction backbone, lightweight attention enhancement, and output reconstruction. 
A global residual path is introduced to keep structural information and brightness consistency. This 
design helps the model mainly learn noise components instead of repeatedly learning the original 
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image content. The overall data flow, shown in Figure 3-1, follows “Noisy Input → Input Feature 
Mapping → Lightweight Blocks → Output Reconstruction → Denoised Output”, with skip 
connections running through the network. In the input feature mapping stage, one or two small 
convolution layers, such as 3×3 kernels, are used to encode shallow texture and edge information 
from the RGB image. Spatial resolution is kept unchanged to avoid early detail loss, which is 
important for later detection and segmentation tasks. Channel numbers are kept small to reduce 
computation and memory access cost. The main feature extraction backbone is built from repeated 
lightweight convolution blocks. Each block mainly uses depthwise separable convolution, which 
greatly reduces parameters and computation. A typical block includes a depthwise 3×3 convolution, a 
pointwise 1×1 convolution, and a nonlinear activation. This design preserves edge and texture 
information while lowering hardware load. Residual learning is applied at both local and global levels. 
Local residuals help information flow across layers, while the global residual adds the input image to 
the predicted noise, making the task focus on noise estimation. Lightweight attention modules are also 
used to enhance important features without heavy computation. Finally, a small number of 
convolution layers reconstruct the output image, which can be directly used by later perception 
modules. 

3.3. Loss Function and Training Strategy 
In real-time perception for autonomous driving, image denoising algorithms should not only achieve 
good numerical results, but also keep important structure and semantic information for later 
perception tasks. Based on this goal, the loss function in this paper considers both pixel-level error 
and structure consistency. This design guides the lightweight denoising network to remove noise 
while keeping key visual information, such as lane markings and object boundaries. The basic goal of 
image denoising is to reduce the difference between the denoised image and the clean reference image. 
Therefore, mean squared error (MSE) loss is first used as the basic constraint to measure pixel-level 
reconstruction error. This loss is simple and stable, and it is easy to train efficiently on embedded 
platforms. The MSE loss is defined as shown in Formula 1: 
 

LMSE= 1
N
∑ �Îi-Ii�2

2N
i=1                             （1） 

 
where Îi is the denoised output image, Ii is the corresponding clean reference image, and N is 

the number of training samples. This loss can effectively control overall brightness and color 
distribution. However, under complex weather conditions, it may cause over-smoothing of local 
structures. To better keep structural information, a structure-aware constraint is added during training 
and combined with the MSE loss using weighted summation. The structure constraint mainly focuses 
on edges and texture regions. It helps the model recover key areas in rainy, foggy, and low-light 
scenes. The final loss function is expressed as a linear combination of multiple loss terms. This design 
balances numerical accuracy and visual structure quality. For training strategy, supervised learning is 
adopted. Paired noisy images and clean images are used as training data. Mini-batch stochastic 
gradient descent is applied, together with an adaptive learning rate optimizer, to improve training 
stability. Since noise distributions are different under various adverse weather conditions, the training 
dataset includes samples with different noise levels and weather types. This helps improve model 
generalization. In the later training stage, the learning rate is gradually reduced to avoid instability or 
overfitting caused by the lightweight network structure. With this loss design and training strategy, the 
proposed denoising model can achieve stable performance while meeting real-time requirements. It 
also provides reliable input for later image enhancement and perception tasks (Appiah & 
Mensah,2025). 
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4. Adverse Weather Image Enhancement Algorithm Design 
In real-time perception systems for autonomous driving, adverse weather often causes reduced 
contrast, blurred details, and color distortion in images. Denoising alone is not enough to fully recover 
image quality. Therefore, after basic denoising, it is necessary to apply image enhancement for typical 
complex scenes such as rain, fog, and low-light conditions. This helps improve image clarity and 
stability. Based on the proposed lightweight denoising model, this chapter designs an image 
enhancement framework that considers both enhancement performance and real-time deployability. In 
foggy and low-contrast scenes, image degradation mainly comes from atmospheric scattering. This 
causes gray appearance and loss of distant details. According to a classical imaging model, a foggy 
image can be expressed as shown in Formula 2: 
 

I(x)=J(x)t(x)+A(1-t(x))                          （2） 

 
where I(x) is the observed foggy image, J(x) is the clean scene image, A is the atmospheric light, 

and t(x) is the transmission map. To meet real-time requirements, this paper does not directly solve 
complex physical inversion. Instead, a lightweight network is used to implicitly model 
transmission-related features. This improves contrast and depth perception while keeping low 
computation cost. In rainy and snowy scenes, image degradation often appears as streak-like or 
point-like high-frequency noise, together with local brightness changes. To avoid noise amplification 
during enhancement, a guided enhancement strategy is applied after denoising. Low-frequency 
structures and high-frequency details are processed differently. The enhanced image is expressed as 
shown in Formula 3: 

 
Ienh(x)=Iden(x)+α⋅G(x)                         （3） 

  
where Iden is the denoised image, G(x) is the enhancement guidance extracted by lightweight 

feature modules, and α controls enhancement strength. This form allows targeted enhancement of 
important structures, such as lane lines and vehicle contours, without greatly increasing model 
complexity. In night-time or low-light conditions, image signal-to-noise ratio is usually very low. 
Simple linear stretching often causes noise amplification and color imbalance. To solve this problem, 
an adaptive brightness remapping strategy is used. Pixel values are adjusted based on local brightness 
distribution as shown in Formula 4: 

 

Iout(x)=( Iin(x)
L(x)+ε

)
γ
                            （4） 

 
where Iin(x) is the input brightness component, L(x) is the local brightness estimation, γ is an 

adjustment factor, and ε is a small constant for numerical stability. This method improves visibility in 
dark regions while suppressing noise growth. It works well with lightweight network structures. 
Overall, the proposed adverse weather image enhancement algorithm is not designed for a single 
weather condition. Instead, a unified lightweight enhancement framework is used to model and adjust 
different degradation mechanisms. While keeping good enhancement quality, computation cost and 
inference delay are effectively controlled. This allows smooth integration into real-time autonomous 
driving perception systems and provides clearer and more stable visual input for later object detection 
and semantic segmentation tasks (Shafiee et al.,2021). 
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5. Experimental Design and Results Analysis 

5.1. Experimental Environment and Dataset Description 

To fully evaluate the effectiveness and deployability of the proposed lightweight image denoising and 
adverse weather enhancement algorithm in real-time autonomous driving scenarios, experiments are 
designed from two aspects: dataset coverage and experimental platform configuration. On the data 
side, several representative public autonomous driving vision datasets are selected (Tasnim et 
al.,2025). These datasets are further filtered and extended according to adverse weather conditions. 
This ensures that the experimental results can reflect real image degradation in complex road 
environments. On the platform side, vehicle-grade embedded deployment conditions are considered, 
and the real-time performance and resource consumption of the algorithm are evaluated. For dataset 
selection, public datasets that are widely used in autonomous driving research are preferred. These 
datasets have clear advantages in scene diversity, annotation quality, and academic comparability. At 
the same time, to improve coverage of adverse weather scenes, special attention is given to images 
captured under rain, fog, snow, and low-light conditions. In addition, synthetic degradation is applied 
in some cases to build a self-collected adverse weather dataset. This helps compensate for the lack of 
extreme weather samples in real data. Different datasets focus on different scene types, weather 
conditions, and data scales. Their basic information is summarized in Table 1. 

Table 1. Overview of Autonomous Driving Adverse Weather Image Datasets Used in 
Experiments 

Dataset Scene Type Weather 
Conditions 

Number of 
Images Main Purpose 

Cityscapes Urban roads Clear, 
cloudy 5,000 

Baseline 
denoising and 
enhancement 

BDD100K Urban & 
highway 

Rain, fog, 
night 10,000 Multi-weather 

evaluation 

ACDC Urban roads Rain, fog, 
snow, night 4,000 

Adverse 
weather 
testing 

Self-built 
dataset Urban roads 

Heavy rain, 
dense fog, 
low light 

3,500 Robustness 
validation 

 
As shown in Table 1 public datasets provide standardized evaluation benchmarks, while the 

self-built dataset extends the sample distribution under adverse weather. This makes the experimental 
results closer to real autonomous driving applications. Cross-dataset evaluation allows a more 
comprehensive analysis of model adaptability under different weather types and degradation levels. 
For experimental platform configuration, model training is conducted on a workstation with GPU 
acceleration to ensure training efficiency and stability. For inference and performance testing, 
embedded and vehicle-grade deployment conditions are emphasized. An ARM-based embedded 
computing platform is used together with a lightweight inference framework. Single-frame processing 
latency, memory usage, and power consumption are measured. With this setup, the proposed method 
can be evaluated both in image quality improvement and engineering feasibility (Wang et al.,2022). 

5.2. Quantitative Analysis of Denoising and Enhancement Performance 
To objectively evaluate the performance of the proposed lightweight image denoising and adverse 
weather enhancement algorithm, peak signal-to-noise ratio (PSNR) and structural similarity index 
(SSIM) are selected as main quantitative metrics. PSNR measures pixel-level reconstruction accuracy 
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between the processed image and the reference image. SSIM evaluates structural similarity from 
brightness, contrast, and texture perspectives. Together, these two metrics provide a balanced 
evaluation of numerical accuracy and structural preservation, which is important for autonomous 
driving scenarios. First, from an overall performance comparison perspective, the proposed method is 
compared with several typical denoising and enhancement algorithms on the same adverse weather 
test datasets. The comparison methods include traditional filtering-based approaches and 
representative deep learning models. Figure 4 reports the average PSNR and SSIM results. 

 
Fig.4: Performance Comparison on Adverse Weather Datasets 

The results show that traditional methods have low computation cost but poor recovery of image 
details. Some deep models achieve higher PSNR but show limited SSIM improvement due to 
over-smoothing. In contrast, the proposed method achieves balanced improvement in both PSNR and 
SSIM, indicating good trade-off between noise removal and structure preservation. To further analyze 
adaptability under different weather conditions, experiments are conducted separately on rainy, foggy, 
and low-light scenes. The results are shown in Figure 5. 
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Fig.5: Performance of the Proposed Method under Different Weather Conditions 

 
The proposed method shows stable performance across different weather conditions. The SSIM 

improvement is especially clear in fog and low-light scenes, which confirms the effectiveness of the 
targeted enhancement strategies. 

5.3. Impact on Autonomous Driving Perception Tasks 
The final goal of image denoising and enhancement in autonomous driving is not only to improve 
image quality metrics, but also to provide better input for high-level perception tasks. Therefore, this 
section evaluates the impact of image enhancement on object detection and semantic segmentation 
performance.For object detection, common autonomous driving targets such as vehicles, pedestrians, 
and cyclists are selected. The same detection model is applied to original adverse weather images and 
enhanced images. Mean average precision (mAP) is used as the evaluation metric. The results are 
shown in Figure 6. 
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Fig.6: Object Detection Performance before and after Enhancement (mAP, %) 

Without enhancement, adverse weather clearly reduces detection accuracy. After applying the 
proposed method, detection performance improves across all target categories.For semantic 
segmentation, the influence of image enhancement on pixel-level scene understanding is analyzed. 
Mean intersection over union (mIoU) is used as the evaluation metric. The results are shown in Figure 
7. 

 
Fig.7: Semantic Segmentation Performance before and after Enhancement (mIoU, %) 

The enhanced images lead to clearer boundaries and better segmentation accuracy, especially for 
road regions and object edges. These results show that the proposed method improves perception 
performance at the system level. From a system-level perspective, the observed improvements in 
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object detection and semantic segmentation performance can be interpreted through a clear causal 
chain. Lightweight image denoising and adverse weather enhancement act as a foundational 
preprocessing step that directly improves the quality and stability of visual inputs. Clearer and less 
noisy images facilitate more reliable feature extraction, which enhances the robustness of perception 
results and reduces uncertainty in downstream perception outputs. As a consequence, improved 
preprocessing quality contributes to higher perception reliability and ultimately supports safer and 
more stable decision-making and control processes in autonomous driving systems. 

Moreover, under adverse weather conditions, image quality should be regarded not only as a 
performance factor but also as a key determinant of perception service continuity. Severe noise, low 
contrast, and visibility degradation can lead to intermittent or unreliable perception outputs, 
effectively disrupting real-time perception services. By suppressing noise and enhancing visibility 
while maintaining low inference latency, the proposed lightweight preprocessing method helps sustain 
continuous and reliable visual perception services even in challenging environmental conditions. 
From a service science perspective, this capability is critical for autonomous driving systems that are 
required to operate without interruption across diverse and dynamic weather scenarios. 

6. Conclusion 
This paper addresses the problem of image degradation and computational constraints in real-time 
autonomous driving perception services operating under adverse weather conditions. A lightweight 
image denoising and adverse weather enhancement method is proposed to improve the reliability and 
efficiency of visual perception as a core informatics service. By combining a shallow denoising 
network with lightweight operators and weather-adaptive enhancement strategies, the proposed 
method effectively suppresses noise, enhances visual clarity, and preserves key structural information 
while maintaining low computational complexity. Experimental evaluations demonstrate consistent 
improvements in image quality metrics as well as measurable gains in downstream perception tasks, 
including object detection and semantic segmentation, under multiple adverse weather scenarios. At 
the same time, inference latency and model size remain compatible with vehicle-grade embedded 
deployment. Overall, this study provides a practical and service-oriented image preprocessing solution 
that enhances the robustness, stability, and real-time performance of autonomous driving perception 
systems, offering valuable insights for the design of reliable intelligent transportation and perception 
service architectures. 
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