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Abstract. Real-time visual perception is a critical informatics service in autonomous
driving systems, directly supporting downstream decision-making, control, and safety
assurance. Under adverse weather conditions such as rain, fog, snow, and low-light
environments, images captured by onboard cameras suffer from severe noise, contrast
degradation, and detail loss, which significantly reduce the reliability of perception services.
Moreover, perception algorithms are typically deployed on vehicle-grade embedded
platforms with limited computational resources, making heavyweight denoising and
enhancement models unsuitable for real-time operation. To address these challenges, this
paper proposes a lightweight image denoising and adverse weather enhancement method
designed for real-time autonomous driving perception services. A low-complexity denoising
network is developed based on shallow architecture, lightweight convolutional operators,
and residual learning. On this basis, targeted enhancement strategies are introduced for rainy,
foggy, and low-light scenes, enabling joint optimization of noise suppression and visual
enhancement under strict resource constraints. Experimental results on multiple autonomous
driving datasets demonstrate that the proposed method improves image quality, reduces
inference latency, and enhances the performance of downstream perception tasks such as
object detection and semantic segmentation. The results indicate that the proposed approach
provides an effective and deployable informatics solution for robust real-time perception
services in autonomous driving systems.
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1. Introduction

With the rapid development of artificial intelligence and intelligent transportation, autonomous
driving has become an important research topic in smart vehicles. In an autonomous driving system,
the environment perception module plays a key role in decision making and vehicle control, and its
performance is closely related to driving safety and overall system reliability, especially in complex
traffic environments. At present, most autonomous vehicles rely on onboard cameras to capture road
images, which are then processed by visual perception algorithms for tasks such as object detection,
lane detection, and semantic segmentation.

In real-world driving environments, autonomous vehicles inevitably operate under adverse
weather conditions such as rain, fog, snow, and night-time low-light scenes. These conditions
significantly interfere with the imaging process of onboard cameras, leading to increased noise,
reduced contrast, and loss of structural details. As illustrated in Figure 1, different weather conditions
introduce distinct degradation patterns, including rain streaks and strong reflections in rainy scenes,
contrast attenuation and detail loss in foggy environments, as well as severe sensor noise and low
signal-to-noise ratios under low-light conditions. Although the physical causes of degradation vary,
these adverse conditions share common negative effects on visual perception reliability, particularly
for object detection and semantic segmentation tasks. If such degraded images are directly used by
perception algorithms, the stability and accuracy of downstream perception services are significantly
compromised.

Adverse Weather Impacts on Autonomous Driving Vision

Low Light=

Fig.1: Impact of Adverse Weather Conditions on Autonomous Driving Visual Perception

To address image degradation caused by adverse weather, various approaches have been proposed.
Traditional denoising methods are mainly based on filtering or transform-domain techniques. While
these methods are computationally efficient, they often remove important image details when noise
characteristics become complex (Zheng et al., 2025). In recent years, deep learning - based methods
have demonstrated strong performance in image denoising and enhancement, as deep networks are
capable of modeling complex degradation patterns. However, these methods usually rely on deep
architectures with large model sizes and high computational demands, which makes them difficult to
deploy in real-time autonomous driving systems. Moreover, many existing weather enhancement
approaches are designed for a single type of adverse condition and employ complex model structures,
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further limiting their practical applicability.

In real-world applications, visual perception algorithms are typically deployed on vehicle-grade or
embedded computing platforms with limited computational resources. This imposes strict constraints
on model size, computational complexity, and inference latency. Based on this background, this paper
investigates lightweight image denoising and adverse weather enhancement for real-time perception
in autonomous driving systems. In this study, the term “lightweight” does not merely refer to a small
model size, but is defined from a practical deployment perspective. Specifically, a lightweight method
is characterized by a shallow network architecture, a limited number of parameters, and low
computational complexity, enabling low-latency inference and stable performance on vehicle-grade
embedded platforms with constrained resources. This definition emphasizes deployability and
real-time service reliability rather than pursuing maximal numerical performance. By analyzing image
degradation mechanisms under different adverse weather conditions, a low-complexity denoising
network and corresponding weather-aware enhancement strategies are designed. The proposed
method improves image quality while maintaining strict real-time constraints, providing a practical
solution for stable visual perception in complex driving environments.

From a service science perspective, this work treats visual perception as a real-time informatics
service within autonomous driving systems. The proposed lightweight preprocessing approach
enhances the reliability, responsiveness, and deployability of this service under adverse environmental
conditions, thereby supporting robust and continuous perception for downstream autonomous driving
tasks.

2. Real-Time Perception System Requirements for Autonomous Driving

In an autonomous driving system, the visual perception system is a core component for acquiring
information about the surrounding environment. Its main function is to understand and model road
scenes based on data collected from multiple sensors. Among these sensors, cameras are the most
important and information-rich, as they provide detailed visual data for road object recognition, traffic
element perception, and scene semantic understanding. A typical architecture of an autonomous
driving visual perception system is illustrated in Figure 2. The overall processing pipeline generally
includes image acquisition, image preprocessing, feature extraction, and high-level perception tasks,
with clear data dependencies between each stage (Wang et al., 2023).

Autonomous Driving Vision Perception System Architecture
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Fig.2: Architecture of the Autonomous Driving Visual Perception System
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At the front end of the system, onboard cameras continuously capture road scene images and
transmit raw image data to the perception processing unit. In real driving environments, these raw
images are often affected by various factors, such as sensor noise, motion blur, and adverse weather
conditions including rain, fog, and low-light scenes. These factors can significantly degrade image
quality and directly influence the stability and accuracy of subsequent perception algorithms. As a
result, image preprocessing is an essential step before high-level perception tasks are executed. This
stage typically includes image denoising, contrast enhancement, brightness correction, and image
recovery under adverse weather conditions (Aloufi et al., 2024). The main objective of preprocessing
is to improve overall image quality and visibility while preserving important structural information as
much as possible. After preprocessing, the processed images are input into perception algorithm
modules to perform tasks such as object detection, semantic segmentation, lane detection, and traffic
sign recognition. The high-level perception tasks usually rely on deep learning models to extract and
represent image features. Their performance is highly sensitive to input image quality. If noise is not
effectively suppressed or weather-related degradation is not properly addressed during preprocessing,
feature extraction may become incomplete, leading to higher error rates. This can ultimately affect the
safety of decision making and vehicle control in autonomous driving systems. It is important to note
that in real-time autonomous driving applications, the entire visual perception pipeline typically runs
on vehicle-grade embedded computing platforms (Choi & Jeong, 2022). These platforms impose strict
constraints on algorithm latency, computation cost, and resource usage. Therefore, as reflected in the
system architecture, the image preprocessing module must not only achieve effective denoising and
enhancement, but also satisfy lightweight and real-time requirements (Zhang et al., 2025). Based on
these system characteristics, this paper treats image denoising and adverse weather enhancement as
key foundational components of the visual perception pipeline, aiming to provide stable, reliable, and
high-quality image input for subsequent perception tasks.

3. Lightweight Image Denoising Algorithm Design

3.1. Overall Design Idea of the Denoising Model

In real-time autonomous driving perception systems, image denoising is an early and important step in
the visual pipeline. The denoising module must not only reduce noise and recover useful image details,
but also satisfy strict constraints on latency and resource usage on vehicle-grade embedded platforms.
For this reason, the proposed denoising model follows a “lightweight-first” design principle. While
maintaining effective denoising performance, the model aims to minimize parameter size and
computation cost so that it can run stably on platforms with limited computing power (Zheng et al.,
2025).
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Lightweight Image Denoising Model Architecture
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Fig.3: Architecture of the Proposed Lightweight Image Denoising Model

As shown in Figure 3, the proposed lightweight image denoising model adopts a shallow network
structure. The overall model size is controlled by reducing network depth and the number of feature
channels. Unlike traditional deep denoising networks that rely on many stacked layers, this model
focuses on efficient modeling of key low-level visual features. This helps avoid redundant feature
extraction and unnecessary computation (Bradley et al., 2021). Structurally, the network is composed
of an input feature mapping stage, lightweight feature extraction modules, and an output
reconstruction stage. The data flow is simple and clear, which supports fast inference on embedded
platforms. To further reduce resource consumption, parameter sharing and module reuse are applied.
The lightweight convolution blocks with the same structure are reused at different stages, allowing the
model to maintain representation ability while reducing the number of trainable parameters. In
addition, low-complexity operators such as small convolution kernels and depthwise separable
convolutions are used. These operators reduce FLOPs and lower hardware load, which shortens
per-frame processing time. To handle diverse and time-varying noise in driving scenes, residual
learning is introduced. As shown in Figure 3, residual connections pass the input image directly to the
output, helping preserve structural information and avoid over-smoothing. Overall, the proposed
lightweight denoising model is optimized at structural, parameter, and operator levels, providing an
efficient and practical solution for real-time image preprocessing in autonomous driving systems
(Walambe et al., 2021).

3.2. Construction of the Lightweight Network Structure

The denoising network in this paper is designed with a clear strategy: focusing on low-level details,
using lightweight operators as the core, and applying residual learning as the main structure. The goal
is to achieve real-time denoising that can be stably deployed on vehicle-grade embedded platforms
(Anoop & Deivanathan,2025). The network consists of four parts: shallow input mapping, a
lightweight feature extraction backbone, lightweight attention enhancement, and output reconstruction.
A global residual path is introduced to keep structural information and brightness consistency. This
design helps the model mainly learn noise components instead of repeatedly learning the original
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image content. The overall data flow, shown in Figure 3-1, follows ‘“Noisy Input — Input Feature
Mapping — Lightweight Blocks — Output Reconstruction — Denoised Output”, with skip
connections running through the network. In the input feature mapping stage, one or two small
convolution layers, such as 3x3 kernels, are used to encode shallow texture and edge information
from the RGB image. Spatial resolution is kept unchanged to avoid early detail loss, which is
important for later detection and segmentation tasks. Channel numbers are kept small to reduce
computation and memory access cost. The main feature extraction backbone is built from repeated
lightweight convolution blocks. Each block mainly uses depthwise separable convolution, which
greatly reduces parameters and computation. A typical block includes a depthwise 3x3 convolution, a
pointwise 1x1 convolution, and a nonlinear activation. This design preserves edge and texture
information while lowering hardware load. Residual learning is applied at both local and global levels.
Local residuals help information flow across layers, while the global residual adds the input image to
the predicted noise, making the task focus on noise estimation. Lightweight attention modules are also
used to enhance important features without heavy computation. Finally, a small number of
convolution layers reconstruct the output image, which can be directly used by later perception
modules.

3.3. Loss Function and Training Strategy

In real-time perception for autonomous driving, image denoising algorithms should not only achieve
good numerical results, but also keep important structure and semantic information for later
perception tasks. Based on this goal, the loss function in this paper considers both pixel-level error
and structure consistency. This design guides the lightweight denoising network to remove noise
while keeping key visual information, such as lane markings and object boundaries. The basic goal of
image denoising is to reduce the difference between the denoised image and the clean reference image.
Therefore, mean squared error (MSE) loss is first used as the basic constraint to measure pixel-level
reconstruction error. This loss is simple and stable, and it is easy to train efficiently on embedded
platforms. The MSE loss is defined as shown in Formula 1:

LMSE:§Z£1 |ii'Ii||z (1

where I; is the denoised output image, I; is the corresponding clean reference image, and N is
the number of training samples. This loss can effectively control overall brightness and color
distribution. However, under complex weather conditions, it may cause over-smoothing of local
structures. To better keep structural information, a structure-aware constraint is added during training
and combined with the MSE loss using weighted summation. The structure constraint mainly focuses
on edges and texture regions. It helps the model recover key areas in rainy, foggy, and low-light
scenes. The final loss function is expressed as a linear combination of multiple loss terms. This design
balances numerical accuracy and visual structure quality. For training strategy, supervised learning is
adopted. Paired noisy images and clean images are used as training data. Mini-batch stochastic
gradient descent is applied, together with an adaptive learning rate optimizer, to improve training
stability. Since noise distributions are different under various adverse weather conditions, the training
dataset includes samples with different noise levels and weather types. This helps improve model
generalization. In the later training stage, the learning rate is gradually reduced to avoid instability or
overfitting caused by the lightweight network structure. With this loss design and training strategy, the
proposed denoising model can achieve stable performance while meeting real-time requirements. It
also provides reliable input for later image enhancement and perception tasks (Appiah &
Mensah,2025).
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4. Adverse Weather Image Enhancement Algorithm Design

In real-time perception systems for autonomous driving, adverse weather often causes reduced
contrast, blurred details, and color distortion in images. Denoising alone is not enough to fully recover
image quality. Therefore, after basic denoising, it is necessary to apply image enhancement for typical
complex scenes such as rain, fog, and low-light conditions. This helps improve image clarity and
stability. Based on the proposed lightweight denoising model, this chapter designs an image
enhancement framework that considers both enhancement performance and real-time deployability. In
foggy and low-contrast scenes, image degradation mainly comes from atmospheric scattering. This
causes gray appearance and loss of distant details. According to a classical imaging model, a foggy
image can be expressed as shown in Formula 2:

I(X)=J)tX)+A(1-t(x)) 2)

where 1(x) is the observed foggy image, J(x) is the clean scene image, A is the atmospheric light,
and t(x) is the transmission map. To meet real-time requirements, this paper does not directly solve
complex physical inversion. Instead, a lightweight network is used to implicitly model
transmission-related features. This improves contrast and depth perception while keeping low
computation cost. In rainy and snowy scenes, image degradation often appears as streak-like or
point-like high-frequency noise, together with local brightness changes. To avoid noise amplification
during enhancement, a guided enhancement strategy is applied after denoising. Low-frequency
structures and high-frequency details are processed differently. The enhanced image is expressed as
shown in Formula 3:

Ienh (X):Iden (X)+U~ ' G(X) 3

where lj., is the denoised image, G(x) is the enhancement guidance extracted by lightweight
feature modules, and o controls enhancement strength. This form allows targeted enhancement of
important structures, such as lane lines and vehicle contours, without greatly increasing model
complexity. In night-time or low-light conditions, image signal-to-noise ratio is usually very low.
Simple linear stretching often causes noise amplification and color imbalance. To solve this problem,
an adaptive brightness remapping strategy is used. Pixel values are adjusted based on local brightness
distribution as shown in Formula 4:

Lin U
Lou (0= )

where [;,(x) is the input brightness component, L(x) is the local brightness estimation, y is an
adjustment factor, and ¢ is a small constant for numerical stability. This method improves visibility in
dark regions while suppressing noise growth. It works well with lightweight network structures.
Overall, the proposed adverse weather image enhancement algorithm is not designed for a single
weather condition. Instead, a unified lightweight enhancement framework is used to model and adjust
different degradation mechanisms. While keeping good enhancement quality, computation cost and
inference delay are effectively controlled. This allows smooth integration into real-time autonomous
driving perception systems and provides clearer and more stable visual input for later object detection
and semantic segmentation tasks (Shafiee et al.,2021).

213



Fang & Mariano, Journal of Logistics, Informatics and Service Science, Vol. 13 (2026), No 1, pp 207-219

S. Experimental Design and Results Analysis

5.1. Experimental Environment and Dataset Description

To fully evaluate the effectiveness and deployability of the proposed lightweight image denoising and
adverse weather enhancement algorithm in real-time autonomous driving scenarios, experiments are
designed from two aspects: dataset coverage and experimental platform configuration. On the data
side, several representative public autonomous driving vision datasets are selected (Tasnim et
al.,2025). These datasets are further filtered and extended according to adverse weather conditions.
This ensures that the experimental results can reflect real image degradation in complex road
environments. On the platform side, vehicle-grade embedded deployment conditions are considered,
and the real-time performance and resource consumption of the algorithm are evaluated. For dataset
selection, public datasets that are widely used in autonomous driving research are preferred. These
datasets have clear advantages in scene diversity, annotation quality, and academic comparability. At
the same time, to improve coverage of adverse weather scenes, special attention is given to images
captured under rain, fog, snow, and low-light conditions. In addition, synthetic degradation is applied
in some cases to build a self-collected adverse weather dataset. This helps compensate for the lack of
extreme weather samples in real data. Different datasets focus on different scene types, weather
conditions, and data scales. Their basic information is summarized in Table 1.

Table 1. Overview of Autonomous Driving Adverse Weather Image Datasets Used in

Experiments
Weather Number of
Dataset i
atase Scene Type Conditions Images Main Purpose
Baseline
. Clear, ..
Cityscapes Urban roads 5,000 denoising and
cloudy
enhancement
BDD100K Qrban & Ran.l, fog, 10,000 Multl—we.ather
highway night evaluation
Rain. fo Adverse
ACDC Urban roads ’ .g, 4,000 weather
snow, night .
testing
. Heavy rain
1f-built ’
Self-bui Urban roads dense fog, 3,500 Rob.ustt.less
dataset . validation
low light

As shown in Table 1 public datasets provide standardized evaluation benchmarks, while the
self-built dataset extends the sample distribution under adverse weather. This makes the experimental
results closer to real autonomous driving applications. Cross-dataset evaluation allows a more
comprehensive analysis of model adaptability under different weather types and degradation levels.
For experimental platform configuration, model training is conducted on a workstation with GPU
acceleration to ensure training efficiency and stability. For inference and performance testing,
embedded and vehicle-grade deployment conditions are emphasized. An ARM-based embedded
computing platform is used together with a lightweight inference framework. Single-frame processing
latency, memory usage, and power consumption are measured. With this setup, the proposed method
can be evaluated both in image quality improvement and engineering feasibility (Wang et al.,2022).

5.2. Quantitative Analysis of Denoising and Enhancement Performance

To objectively evaluate the performance of the proposed lightweight image denoising and adverse
weather enhancement algorithm, peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) are selected as main quantitative metrics. PSNR measures pixel-level reconstruction accuracy
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between the processed image and the reference image. SSIM evaluates structural similarity from
brightness, contrast, and texture perspectives. Together, these two metrics provide a balanced
evaluation of numerical accuracy and structural preservation, which is important for autonomous
driving scenarios. First, from an overall performance comparison perspective, the proposed method is
compared with several typical denoising and enhancement algorithms on the same adverse weather
test datasets. The comparison methods include traditional filtering-based approaches and
representative deep learning models. Figure 4 reports the average PSNR and SSIM results.

Proposed
317
30.46 method
Deep enhancement - | _31.05
30.2 mOdeI B- 3046/
g 3021  yraditional Deep denoising _ 7 30.46
% filtering model A -30.12
w) 27.84 [
a
T et
0.78 — i 0.88

0.85 5
2 045, 0.84 0.67

Fig.4: Performance Comparison on Adverse Weather Datasets
The results show that traditional methods have low computation cost but poor recovery of image
details. Some deep models achieve higher PSNR but show limited SSIM improvement due to
over-smoothing. In contrast, the proposed method achieves balanced improvement in both PSNR and
SSIM, indicating good trade-off between noise removal and structure preservation. To further analyze
adaptability under different weather conditions, experiments are conducted separately on rainy, foggy,
and low-light scenes. The results are shown in Figure 5.
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Fig.5: Performance of the Proposed Method under Different Weather Conditions

The proposed method shows stable performance across different weather conditions. The SSIM
improvement is especially clear in fog and low-light scenes, which confirms the effectiveness of the
targeted enhancement strategies.

5.3. Impact on Autonomous Driving Perception Tasks

The final goal of image denoising and enhancement in autonomous driving is not only to improve
image quality metrics, but also to provide better input for high-level perception tasks. Therefore, this
section evaluates the impact of image enhancement on object detection and semantic segmentation
performance.For object detection, common autonomous driving targets such as vehicles, pedestrians,
and cyclists are selected. The same detection model is applied to original adverse weather images and
enhanced images. Mean average precision (mAP) is used as the evaluation metric. The results are
shown in Figure 6.
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Fig.6: Object Detection Performance before and after Enhancement (mAP, %)

Without enhancement, adverse weather clearly reduces detection accuracy. After applying the
proposed method, detection performance improves across all target categories.For semantic
segmentation, the influence of image enhancement on pixel-level scene understanding is analyzed.
Mean intersection over union (mloU) is used as the evaluation metric. The results are shown in Figure
7.

M Original images

80| W Enhanced images 80
68.7
60 - 62.1 -70
75.8
69.2 g
—_— 40_ _60 —_—
=S =S
a >
= 20- 50 2
E -
0- 40

s

Road Vehicle Pedstrian eraII moU

Fig.7: Semantic Segmentation Performance before and after Enhancement (mlIoU, %)
The enhanced images lead to clearer boundaries and better segmentation accuracy, especially for
road regions and object edges. These results show that the proposed method improves perception
performance at the system level. From a system-level perspective, the observed improvements in

217



Fang & Mariano, Journal of Logistics, Informatics and Service Science, Vol. 13 (2026), No 1, pp 207-219

object detection and semantic segmentation performance can be interpreted through a clear causal
chain. Lightweight image denoising and adverse weather enhancement act as a foundational
preprocessing step that directly improves the quality and stability of visual inputs. Clearer and less
noisy images facilitate more reliable feature extraction, which enhances the robustness of perception
results and reduces uncertainty in downstream perception outputs. As a consequence, improved
preprocessing quality contributes to higher perception reliability and ultimately supports safer and
more stable decision-making and control processes in autonomous driving systems.

Moreover, under adverse weather conditions, image quality should be regarded not only as a
performance factor but also as a key determinant of perception service continuity. Severe noise, low
contrast, and visibility degradation can lead to intermittent or unreliable perception outputs,
effectively disrupting real-time perception services. By suppressing noise and enhancing visibility
while maintaining low inference latency, the proposed lightweight preprocessing method helps sustain
continuous and reliable visual perception services even in challenging environmental conditions.
From a service science perspective, this capability is critical for autonomous driving systems that are
required to operate without interruption across diverse and dynamic weather scenarios.

6. Conclusion

This paper addresses the problem of image degradation and computational constraints in real-time
autonomous driving perception services operating under adverse weather conditions. A lightweight
image denoising and adverse weather enhancement method is proposed to improve the reliability and
efficiency of visual perception as a core informatics service. By combining a shallow denoising
network with lightweight operators and weather-adaptive enhancement strategies, the proposed
method effectively suppresses noise, enhances visual clarity, and preserves key structural information
while maintaining low computational complexity. Experimental evaluations demonstrate consistent
improvements in image quality metrics as well as measurable gains in downstream perception tasks,
including object detection and semantic segmentation, under multiple adverse weather scenarios. At
the same time, inference latency and model size remain compatible with vehicle-grade embedded
deployment. Overall, this study provides a practical and service-oriented image preprocessing solution
that enhances the robustness, stability, and real-time performance of autonomous driving perception
systems, offering valuable insights for the design of reliable intelligent transportation and perception
service architectures.
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