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Abstract. Energy and electricity are foundational inputs for logistics networks, digital 
services, and production systems, making accurate modelling of the energy–growth nexus 
essential for service-system planning and infrastructure investment. This study revisits the 
energy–growth relationship in six Middle Eastern economies over 1970–2022 and examines 
whether widely reported nonlinearities reflect intrinsic economic dynamics or instead arise 
from unmodelled structural breaks. Adopting a sequential empirical strategy, the analysis 
combines baseline panel estimators (pooled OLS, fixed effects, and random effects), 
quadratic-form diagnostics, and Bai–Perron multiple structural break tests. The results show 
that apparent nonlinear patterns in the full-sample panel largely disappear once multiple 
breaks are endogenously identified and regime-specific models are estimated. Break selection 
based on the Bayesian Information Criterion reveals four statistically significant breakpoints, 
partitioning the sample into five regimes. Within these regimes, the relationship between 
energy use and economic output is well approximated by linear specifications with time-
varying coefficients. Regime-wise estimates indicate that per capita energy use has a 
statistically significant and economically meaningful positive effect on output only during the 
2003–2011 period, associated with rapid demand expansion and investment cycles. In contrast, 
per capita electricity consumption exhibits a consistently positive association with GDP 
across baseline and regime-specific models, underscoring the critical role of reliable power 
infrastructure for logistics, services, and digital activities. The findings caution against 
interpreting nonlinear energy–GDP relationships without explicitly accounting for structural 
instability. By demonstrating how unmodelled breaks can generate false nonlinearity, the 
study contributes a transparent, regime-aware empirical workflow that is well suited for 
energy, logistics, and service-system analytics and supports more adaptive, context-sensitive 
policy and infrastructure planning. 

Keywords: Energy–Growth Nexus, Structural Breaks, False Nonlinearity, Regime-
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1. Introduction  
Energy and electricity are foundational inputs into modern production systems, public services, and 
logistics-intensive sectors. Global supply chains, transport networks, warehousing, and digital service 
platforms all depend on reliable, cost-effective energy, making the energy–growth nexus highly relevant 
to logistics, informatics, and service science. Consequently, the empirical relationship between energy 
consumption and economic activity has been a long-standing theme in applied econometrics (Kraft & 
Kraft, 1978; Stern, 2000; Ozturk, 2010). However, this literature often yields contradictory findings, 
including mixed signs, unstable magnitudes, and competing claims about linear versus nonlinear effects, 
which complicate strategic planning in energy-intensive logistics and service systems. 
Many empirical models in economics and management science are built on the simplifying assumption 
that relationships between variables are linear and stable over time (Fuxiao Li, Xiao, & Chen, 2025). 
This assumption facilitates estimation, interpretation, and implementation in decision-support systems 
and analytics platforms. However, real-world macroeconomic and sectoral data—exceptionally long 
time series and panel data—are rarely generated by a single, stable regime. They are exposed to major 
external shocks, including commodity price cycles, financial crises, regulatory reforms, global 
pandemics, and geopolitical conflicts. These episodes induce what the statistical literature terms 
structural breaks: points in time at which key parameters of the data-generating process (means, 
variances, or regression coefficients) change markedly. When such breaks are ignored, empirical 
models may yield biased and inconsistent estimates, misleading inference, and poor predictive 
performance—outcomes that are particularly problematic when these models inform logistics planning, 
infrastructure investment, and service system design. 
A key methodological issue is that structural breaks can induce parameter instability that masquerades 
as nonlinearity. When the actual data-generating process exhibits multiple regime shifts, fitting a single, 
stable-parameter model can mistakenly create patterns that appear to exhibit curvature (or 
“nonlinearity”), even if each regime is approximately linear. In other words, the relationship between 
variables may not be globally linear over long horizons yet may display piecewise linearity within 
relatively stable subperiods (Fuxiao Li et al., 2025). This study, therefore, asks whether apparent 
nonlinearity in the energy–growth nexus is intrinsic, or instead a by-product of unmodelled structural 
change—a phenomenon we refer to as “false nonlinearity.” 
The research problem is sharpened by common empirical practice. When standard tests reject linearity 
for the full sample, many researchers immediately adopt complex nonlinear frameworks (such as 
threshold autoregressive (TAR) models, smooth transition autoregressive (STAR) models, or Markov-
switching specifications). While these models are robust and appropriate for genuinely nonlinear 
dynamics, their use may be unwarranted if the instability in the data is primarily due to structural breaks 
rather than intrinsic nonlinearity (Fuxiao Li et al., 2025). In applications to logistics and service 
systems—where model transparency, interpretability, and computational tractability are important for 
integration into information systems—unnecessarily complex nonlinear models can also hinder 
practical uptake. This study proposes an intermediate and operationally useful solution: modelling the 
process as a multi-regime linear system whose parameters change at endogenously determined 
breakpoints (Baltagi, 2021). 
Empirically, we focus on six Middle Eastern economies over 1970–2022, a setting that plausibly 
features repeated breaks due to oil-market dynamics, regional conflicts, and major policy reforms. 
Using World Development Indicators series for GDP (current US$), energy use (kg of oil equivalent 
per capita), and electric power consumption (kWh per capita), we first estimate baseline panel models 
and conduct conventional specification tests, which suggest rejection of global linearity. We then apply 
Bai–Perron multiple structural break procedures (Bai & Perron, 1998, 2003) to endogenously identify 
breakpoints and partition the sample into distinct regimes. Estimating regime-wise models reveals that 
within each subperiod the energy–growth relationship is well approximated by a stable linear 
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specification with regime-specific parameters, indicating that multiple structural breaks can generate 
the illusion of a long-run nonlinear relationship when the underlying process is better characterised as 
a sequence of distinct linear systems. 
This study contributes to both the energy–growth literature and to empirical work in logistics in three 
ways. First, it provides an explicit test for false nonlinearity by contrasting global nonlinear behaviour 
with regime-wise linearity in a structurally unstable panel. Second, it delivers regime-specific estimates 
that are directly interpretable for policy makers concerned with the evolution of energy-intensive 
logistics and service infrastructures across different macroeconomic environments. Third, it offers a 
transparent empirical workflow—combining standard panel estimators with Bai–Perron structural 
break detection—that can be replicated with widely available software and readily adapted to other 
logistics and service-oriented panel datasets. 
. 

2. Literature Review 

2.1. Energy–Growth Nexus and Its Relevance for Logistics and Services 
The relationship between energy use and economic activity has been widely studied across countries, 
time periods, and econometric frameworks. Early contributions such as Kraft and Kraft (1978) sparked 
debate on the direction of causality between energy consumption and output, while subsequent 
multivariate cointegration work emphasised energy as a key production input rather than a mere by-
product of growth (Stern, 2000). Survey articles show that empirical conclusions about the energy–
growth nexus are highly sensitive to sample choice, measurement of energy variables, and econometric 
methodology (Payne, 2010; Ozturk, 2010). 
For logistics, informatics and service science, this nexus is more than a macroeconomic curiosity. 
Energy and electricity underpin transport networks, warehousing, cold chains, digital service 
infrastructure, and data centres. Mischaracterising the energy–growth relationship can therefore distort 
the design of energy-intensive logistics systems, the planning of service capacity, and the evaluation of 
efficiency gains from digital transformation. 

2.2. Structural Breaks and Multi-Break Panel Econometrics 
In response to the mixed evidence in the energy–growth literature, recent research has increasingly 
turned to nonlinear and regime-switching models to capture asymmetries, thresholds, or time-varying 
elasticities. However, nonlinear specifications can be highly sensitive to unmodelled parameter 
instability. Structural-break econometrics offers a principled way to detect and model shifts at unknown 
dates, avoiding the conflation of genuine nonlinearity with regime changes. 
Bai and Perron (1998, 2003) developed widely used least-squares estimators and tests for multiple 
structural breaks in linear models. Their framework provides tools to determine both the number and 
location of breaks based on objective functions and sequential testing. It has become the cornerstone 
for analysing macroeconomic series subject to repeated shocks. Building on this foundation, Ditzen, 
Karavias, and Westerlund (2025) extend break detection to interactive-effects panel models, allowing 
the unobserved common component to vary over time and across units while accommodating cross-
sectional dependence. This improves the estimation of slope coefficients in environments with strong 
temporal and cross-sectional correlation—conditions typical for regional energy, logistics, and service 
data. 
In parallel, Li, Xiao, and Chen (2025) propose an estimation procedure for “common breaks” in linear 
panel models, assuming synchronised break dates across units that reflect shared institutional shifts or 
macroeconomic cycles. This common-break perspective enhances the power to detect structural change 
when multiple economies or sectors experience the same shock and reduces biases associated with unit-
by-unit break estimation. At the algorithmic level, Li, Xiao, and Chen (2023) develop a screening-and-
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ranking approach to estimate multiple breaks efficiently in large panels, balancing statistical accuracy 
with computational cost and automatically determining the number of breaks. These advances are 
highly relevant for high-dimensional datasets that arise in logistics informatics, where many locations, 
corridors, or service nodes are observed over long horizons. 

2.3. Structural Breaks in Energy and Sectoral Applications 
Empirical applications that explicitly incorporate structural breaks demonstrate how crucial they are for 
interpreting the energy–growth nexus and related sectoral dynamics. Bazán Navarro, Morocho Ruiz, 
and Castillo Alvarado (2024) analyse the relationship between economic growth and electricity 
consumption in Latin American and Caribbean countries using panel models and causality tests over 
extended time horizons. By allowing for country heterogeneity and structural shifts, they show that 
estimates of the energy–growth linkage are fundamentally shaped by the presence and timing of breaks; 
ignoring these shifts can lead to misleading causal inferences. This has direct implications for planning 
energy-intensive logistics and service infrastructures in emerging economies. 
Similarly, Guliyev (2023) examines renewable energy and economic growth in European countries 
using a panel framework that accounts for structural breaks. The contribution of renewable energy is 
found to be regime-dependent: it increases during periods of supportive policies and price stability and 
weakens during market disruptions or regulatory uncertainty. These results underscore that assuming a 
single stable relationship over the entire sample can mask regime-specific effects that matter for energy 
policy, transport decarbonisation, and sustainable logistics strategies. Empirical evidence from other 
emerging economies suggests that political stability and macroeconomic conditions have substantial 
effects on investment flows and structural dynamics (Khudari, Sapuan, & Fadhil, 2023), reinforcing the 
expectation that macro and institutional shocks in the Middle East generate significant structural breaks 
in the energy–growth relationship. 
Adopting an “episodic” perspective, Bartak, Jabłoński, and Jastrzębska (2021) propose decomposing 
economic history into structurally distinct episodes before conducting causal analysis. This reframes 
the question from “Does energy cause growth?” to “When, where, and under which institutional system 
does this causal relationship hold?” By making structural regimes the primary organising principle, 
their approach is directly transferable to the study of energy-intensive logistics and service systems that 
operate across shifting regulatory, technological, and geopolitical environments. 

2.4. Identified Gap 
Despite these advances, two gaps remain particularly salient for macro panels in the Middle East and 
for applications relevant to logistics, informatics and service science. First, many studies adopt 
nonlinear or regime-switching models without explicitly testing whether the observed curvature is 
intrinsic or instead driven by structural breaks—leaving open the possibility of “false nonlinearity” 
generated by unmodelled parameter shifts. Second, even when structural breaks are identified, relatively 
few contributions translate them into regime-specific estimates that can inform energy infrastructure 
planning, demand-management strategies, or logistics and service-system design. 
Given that energy and electricity systems in Middle Eastern economies are tightly linked to industrial 
upgrading, transport corridors, and public service delivery, policy responses are likely to be regime-
contingent rather than time-invariant. There is therefore a need for empirical frameworks that (i) 
integrate modern multi-break detection procedures into standard panel models, (ii) discriminate 
between intrinsic nonlinearity and false nonlinearity caused by structural change, and (iii) provide 
transparent, regime-wise estimates that can guide decisions in energy-intensive logistics and service 
contexts. The present study addresses this gap by applying Bai–Perron-type multi-break analysis to the 
energy–growth nexus in six Middle Eastern economies and interpreting the resulting regimes from the 
perspective of logistics and service-system policy. 
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3. Research Design and Methodology 

3.1.  Methodological Positioning and Research Hypothesis 
Recent panel econometric developments emphasise modelling structural breaks as an inherent feature 
of longitudinal data rather than as statistical anomalies. Multi-break frameworks in interactive-effects 
panels (Ditzen, Karavias, & Westerlund, 2025) and common-break models in linear panels (Li, Xiao, 
& Chen, 2025) show that ignoring synchronised structural shifts can severely bias coefficient estimates 
and distort inference, especially in settings with strong time and cross-sectional dependence. These 
methodological advances are particularly relevant for energy–growth studies in regions exposed to 
recurrent geopolitical and policy shocks, such as the Middle East, and for empirical work informing 
energy-intensive logistics and service systems. 
Against this background, the central null hypothesis of this study is: 
H0: The relationship between the economic variables under study is piecewise linear with multiple 
structural breaks induced by external shocks; apparent global nonlinearity in the full sample arises from 
unmodelled parameter shifts rather than an intrinsically nonlinear data-generating process. 
Under this hypothesis, the appropriate empirical specification is not a complex nonlinear model but a 
sequence of linear models whose parameters change at endogenously determined breakpoints (Ditzen 
et al., 2025; Rodríguez-Caballero, 2022). Testing H0 therefore involves (i) comparing standard panel 
estimators against multi-break specifications and (ii) assessing whether regime-wise linear models 
deliver a statistically adequate description of the data. 

3.2. Data, Sample, and Variables 
The empirical analysis uses an unbalanced panel of six Middle Eastern economies that are both energy-
rich and central to regional logistics and service activity: Iraq, Kuwait, Saudi Arabia, Syria, United Arab 
Emirates, and Iran. 
These countries have experienced repeated political and regional shocks—with direct implications for 
energy markets, infrastructure investment, and service delivery—which makes them a natural 
laboratory for studying structural breaks in the energy–growth nexus. 
The study period spans 1970–2022 (52 years), subject to data availability for each country. This horizon 
encompasses major oil price cycles, wars, sanctions, and policy reforms that plausibly generate multiple 
structural breaks in macroeconomic and energy variables. 
All macroeconomic and energy series are drawn from the World Development Indicators (WDI) and 
related World Bank databases (World Bank, 2024). These sources provide harmonised, internationally 
comparable statistics suitable for panel modelling and policy analysis in logistics- and service-intensive 
sectors. 
 
The core variables are: 

- Gross domestic product (GDP𝑖𝑖𝑖𝑖)Aggregate economic output for the country 𝑖𝑖in year 𝑡𝑡. In line 
with the original dataset, GDP is measured in current US dollars. For the econometric analysis, 
GDP is transformed to logarithms to reduce heteroskedasticity and interpret coefficients as 
elasticities where appropriate. 

- Per capita energy use (energy_pc𝑖𝑖𝑖𝑖)Total primary energy use in kilograms of oil equivalent per 
capita. This indicator captures overall energy intensity and is directly relevant for energy-
intensive logistics and service operations (transport, warehousing, digital infrastructure). 

- Per capita electric power consumption (elec_pc𝑖𝑖𝑖𝑖 )Electric power consumption in kilowatt-
hours per capita. This variable proxies the availability and use of electricity, a critical input for 
service sectors, digital platforms, and logistics facilities. 

Following standard practice in spatial and panel econometrics (Rodríguez-Caballero, 2022; Le Gallo & 
Patuelli, 2023), the panel is cleaned for missing values, checked for outliers, and transformed into a 
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country–year structure suitable for panel regression and structural break analysis. 
 

3.3. Baseline Panel Model Specification 
The starting point is a conventional linear panel model relating economic output to energy and 
electricity use: 
 

GDP𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 energy_pc𝑖𝑖𝑖𝑖 + 𝛽𝛽2 elec_pc𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖 , 
 
where GDP𝑖𝑖𝑖𝑖is the (log) gross domestic product of the country 𝑖𝑖in year 𝑡𝑡, energy_pc𝑖𝑖𝑖𝑖is per capita 
energy use, elec_pc𝑖𝑖𝑖𝑖 is per capita electricity consumption, and 𝑢𝑢𝑖𝑖𝑖𝑖is the composite error term. 
To account for unobserved country-specific heterogeneity, three standard panel estimators are 
considered: Pooled OLS, Fixed Effects Model (FE), and Random Effects Model (RE)(Croissant & 
Millo, 2008; Baltagi, 2021; Le Gallo & Patuelli, 2023). 
 
The pooled ordinary least squares (OLS) model assumes no unobserved country-specific effect: 
 

GDP𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 energy_pc𝑖𝑖𝑖𝑖 + 𝛽𝛽2 elec_pc𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖 . 
 
This specification treats all observations as coming from a single pooled sample, which is restrictive 
but provides a benchmark for subsequent models. 
 
The fixed effects model (FE) allows for time-invariant unobserved heterogeneity across countries: 
 

GDP𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽1 energy_pc𝑖𝑖𝑖𝑖 + 𝛽𝛽2 elec_pc𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖 , 
 
where 𝛼𝛼𝑖𝑖 captures country-specific intercepts that absorb factors such as geography, long-run 
institutional characteristics, and relatively stable structural features of national logistics and service 
systems. The slope coefficients 𝛽𝛽1and 𝛽𝛽2are assumed to be homogeneous across countries. 
 
The random effects model (RE) treats the country-specific effect as stochastic: 
 

GDP𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 energy_pc𝑖𝑖𝑖𝑖 + 𝛽𝛽2 elec_pc𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖 , 
 
where 𝛼𝛼𝑖𝑖is a country-specific random effect, assumed to be uncorrelated with the regressors, and 𝑢𝑢𝑖𝑖𝑖𝑖is 
the idiosyncratic error term. This formulation yields efficiency gains when the orthogonality assumption 
holds. 
 
The choice between FE and RE is guided by the Hausman test (Baltagi, 2021): 
 

𝐻𝐻 = (𝛽̂𝛽𝐹𝐹𝐹𝐹 − 𝛽̂𝛽𝑅𝑅𝑅𝑅)′�Var(𝛽̂𝛽𝐹𝐹𝐹𝐹) −Var(𝛽̂𝛽𝑅𝑅𝑅𝑅)�
−1

(𝛽̂𝛽𝐹𝐹𝐹𝐹 − 𝛽̂𝛽𝑅𝑅𝑅𝑅), 
 
where 𝛽̂𝛽𝐹𝐹𝐹𝐹and 𝛽̂𝛽𝑅𝑅𝑅𝑅are the vectors of slope coefficients from the fixed and random effects estimators, 
respectively. Rejection of the null hypothesis (that RE is consistent) indicates that FE is preferred; 
otherwise, RE is adopted as the baseline panel specification. 

3.4. Structural Break Detection: Bai–Perron Multi-Break Procedure 
To test the “false nonlinearity” hypothesis and identify regime-wise linear relationships, the study 
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applies the Bai–Perron (1998, 2003) multiple structural break framework. In its canonical form, a linear 
regression with 𝑚𝑚breaks (and thus 𝑚𝑚 + 1regimes) can be written as: 
 

𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡′𝛽𝛽𝑗𝑗 + 𝑢𝑢𝑡𝑡, 𝑡𝑡 = 𝑇𝑇𝑗𝑗−1 + 1, … ,𝑇𝑇𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚 + 1, 
 
where: 
𝑦𝑦𝑡𝑡is the dependent variable at time 𝑡𝑡, 
𝑥𝑥𝑡𝑡is the vector of regressors, 
𝛽𝛽𝑗𝑗is the regime-specific vector of coefficients in regime 𝑗𝑗, 
𝑇𝑇𝑗𝑗denotes the break dates (with 𝑇𝑇0 = 0and 𝑇𝑇𝑚𝑚+1 = 𝑇𝑇), and 
𝑢𝑢𝑡𝑡is the error term. 
In the panel context, we treat the estimated panel model (e.g., the preferred FE or RE specification) as 
the baseline and use Bai–Perron procedures to identify common breakpoints that segment the time 
dimension into regimes. For each candidate number of breaks 𝑚𝑚, the algorithm estimates break dates 
that minimise the residual sum of squares (RSS), subject to minimal segment-length constraints. 
 

3.5. Model Selection Criterion: Bayesian Information Criterion (BIC) 
To select the optimal number of breaks, the study employs the Bayesian Information Criterion (BIC), 
which balances fit and parsimony (Ditzen et al., 2025; Feng Li, Xiao, & Chen, 2024; Karavias, Tzavalis, 
& Zhang, 2022). For a candidate model with 𝑛𝑛observations, residual sum of squares 𝑅𝑅𝑅𝑅𝑅𝑅, and 𝑘𝑘free 
parameters, the BIC is defined as: 

BIC = 𝑛𝑛 ⋅ ln �
𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛 �+ 𝑘𝑘 ⋅ ln (𝑛𝑛), 

 
with 

𝑅𝑅𝑅𝑅𝑅𝑅 = �(
𝑛𝑛

𝑖𝑖=1

𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2. 

 
Lower BIC values indicate a better trade-off between model fit and complexity. In the context of multi-
break models, increasing the number of breaks 𝑚𝑚 improves fit (reduces RSS) but increases 𝑘𝑘. BIC 
penalises overfitting by favouring models that achieve substantial reductions in RSS relative to the 
additional complexity. This is particularly important for policy-relevant applications in logistics and 
service systems, where overly complex models can be challenging to interpret and implement (Feng Li 
et al., 2024; Karavias et al., 2022; Lee et al., 2023; Zhang et al., 2023).  
 
For the practical implementation of the Bai–Perron multiple-break framework in R, we rely on the m 
breaks package, which provides efficient routines for estimating and testing linear models with multiple 
structural changes (CRAN, 2025). 
All data preparation, panel estimation, and structural-break analysis are implemented in R, an open-
source statistical programming environment. R is chosen for several reasons: 
Availability of specialised packages for panel data (e.g., PLM) and structural break analysis (e.g., 
strucchange, fixest, or Bai–Perron implementations), Strong support for reproducible workflows, 
enabling transparent replication and extension of the empirical strategy, and Cross-platform availability 
and active community support, which facilitate adoption by researchers and practitioners working with 
logistics, energy, and service-related datasets (Qin & Al Amin, 2023). 
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The combination of standard panel methods, Bai–Perron structural break detection, and BIC-based 
model selection yields an empirical workflow that is both methodologically rigorous and practically 
implementable for analysing regime-dependent energy–growth relationships in Middle Eastern 
economies and for drawing implications for energy-intensive logistics and service systems. 
 

4. Empirical Results 

4.1. Descriptive Patterns and Scatterplots 
Figures 1 and 2 provide an initial visual assessment of the bivariate relationships between GDP and the 
two energy variables. 
Figure 1 plots GDP against per capita energy use (energy_pc) for all country–year observations. The 
scatter (diffusion) diagram shows a clear upward pattern: countries and years with higher energy use 
per capita tend to exhibit higher GDP levels. In the underlying graph, logarithmic scales compress 
extreme values and allow the core cloud of observations to be seen more clearly despite differences in 
levels across countries and over time. This visual evidence is consistent with a positive association 
between energy intensity and economic scale in energy- and logistics-intensive economies. 
 

 
Fig.1: The Relationship between GDP and Energy Consumption 

Figure 2 plots GDP against per capita electricity consumption (elec_pc). Similar to energy use, the 
scatter reveals a strong positive correlation: higher electricity consumption per capita is systematically 
associated with higher GDP. Again, the log transformation makes the relationship easier to detect by 
reducing the influence of observations with very high income and consumption. Taken together, Figures 
1 and 2 motivate a formal panel-data analysis in which GDP is modelled as a function of per capita 
energy and electricity use, controlling for unobserved country effects and possible structural breaks. 
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Fig.2: The relationship between electricity consumption per capita and GDP 

4.2. Baseline Panel Estimates for the Full Sample (1970–2022) 
Similar to energy consumption, there is a strong positive correlation between per capita electricity 
consumption and GDP. This is to be expected, as economic and industrial growth require more 
electricity. Table 1 reports the baseline panel regressions estimated over the whole period 1970–2022 
under three standard specifications: pooled OLS, fixed effects (FE), and random effects (RE). 
 

Table 1: Model values for the first methodology that takes the data as a complete batch 
Model Estimate 

energy_pc 
p-value 

energy_pc 
Estimate 
elec_pc 

p-value 
elec_pc R² Adj. R² N Test 

Pooled OLS -15,513,278 0.017 22,671,606 ≈1.5e-6 0.136 0.130 312 F=24.32 
(p<1e-9) 

Fixed Effects 
(within) 

-4,399,681 0.540 34,388,814 <2e-16 0.367 0.353 312 F=88.19 
(p<2e-16) 

Random Effects 
(Swamy–Arora) 

-7,785,379 0.265 34,376,598 <2e-16 0.351 0.347 312 Chi²=167.2
1 (p<2e-

16) 
 

• Pooled OLS yields a negative and statistically significant coefficient on energy_pc (p ≈ 0.017), 
while elec_pc is positive and highly significant (p ≈ 1.5×10⁻⁶). The model explains about 13.6% 
of the variation in GDP (R² = 0.136). 

• Fixed effects absorb time-invariant country heterogeneity. In this specification, the coefficient 
on energy_pc becomes statistically insignificant (p = 0.540), while elec_pc remains very 
strongly significant (p < 2×10⁻¹⁶). The explanatory power improves substantially (R² = 0.367). 

• Random effects (Swamy–Arora) produce results very similar to FE: the coefficient on 
energy_pc is again insignificant (p = 0.265), while elec_pc remains highly significant (p < 
2×10⁻¹⁶), with R² = 0.351. 

Taken together, these estimates indicate that, over the full sample, electricity consumption is a robust 
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predictor of GDP. At the same time, the effect of per capita energy use is weak once country-specific 
unobservables are controlled. 
To determine whether the FE or RE specification should be preferred as the baseline for subsequent 
analysis (including the structural break procedure), we apply the Hausman test. The test compares the 
FE and RE estimators under the null that the RE estimator is consistent and efficient. Table 2 
summarises the Hausman results. 
 

Table 2. Hausman test comparing fixed-effects and random-effects panel models 
Test χ² statistic df p-value Decision (α = 0.05) Preferred model 
FE vs. RE (GDP on 
energy_pc, elec_pc) 

4.20 2 0.1223 Do not reject H₀ (RE 
consistent) 

Random effects 

 
The χ² statistic of 4.20 with 2 degrees of freedom yields a p-value of 0.1223, which is above the 
conventional 5% significance level. Thus, we do not reject the null hypothesis that the RE estimator is 
consistent. The random-effects model is therefore adopted as the preferred baseline specification for the 
full sample, and it serves as the starting point for the subsequent structural break analysis. 

4.3. Testing for Multiple Structural Breaks 
To relax the assumption of parameter stability, the Bai–Perron multiple structural break procedure is 
applied to the panel model. Table 3 summarises the candidate break structures (m = 0,…,5) along with 
the associated residual sum of squares (RSS) and Bayesian Information Criterion (BIC) values. 
 

Table 3: Bai-Perron Test Results 
M Breakpoints at observation 

number 
Corresponding to break dates 

1 212 0.666666666666667 
2 165, 212 0.518867924528302, 0.666666666666667 
3 53, 165, 212 0.166666666666667, 0.518867924528302, 0.666666666666667 
4 53, 165, 212, 271 0.166666666666667, 0.518867924528302, 0.666666666666667, 

0.852201257861635 
5 53, 106, 165, 212, 271 0.166666666666667, 0.333333333333333, 0.518867924528302, 

0.666666666666667, 0.852201257861635 
 
 
The BIC monotonically improves as breaks are added up to m = 4 (BIC = 17,341), after which the 
criterion worsens slightly for m = 5 (BIC = 17,352). This indicates that a four-break specification (and 
hence five regimes) provides the best balance between fit and parsimony. The estimated breakpoints 
corresponding to the following calendar years are shown in Table 4. 
 
Table 4: Comparison of the results to determine the significant value based on the Bayesian criterion 

m 
(number of change points) RSS BIC 

0 11365405398060229082480640 17428 

1 10913002672652402940706816 17426 

2 8851782884192879888039936 17371 

3 8110752768978508541067264 17355 

4 7486998345632580330586112 17341 

5 7471861516186935854366720 17352 
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These dates align well with significant regional and global events affecting energy markets and 
economic activity, including oil price shocks, conflict episodes, and the post-2011 political transitions. 
They partition the sample into five distinct economic regimes. 

4.4. Regime-Wise Panel Estimates 
Following breakpoint identification, the panel model is re-estimated separately for each of the five 
regimes, allowing coefficients to differ across periods while maintaining a linear structure within each 
regime, as shown in Table 5.  
 

Table 5 summarises the regime-specific. 
Period Span R² Adj. R² Estimate 

(energy_pc) 
p-value 

(energy_pc) Significance Notes on year dummies 

1 ≤ 1978 0.628 0.486 3,839,195 0.235 n.s. Late-1970s dummies 
significantly positive 

2 1979–
1995 0.133 −0.109 3,443,438 0.232 n.s. No clear pattern; 1990 

marginal 

3 1996–
2002 0.611 0.450 −3,296,031 0.266 n.s. 2000–2002 dummies 

strongly positive 

4 2003–
2011 0.728 0.631 48,190,072 0.021 * 2006–2011 dummies 

strongly positive 

5 > 2011 0.293 0.062 −22,809,885 0.358 n.s. 
2020 dummy negative; 
others mostly 
insignificant 

n.s. = not statistically significant at conventional levels. 
 
The key findings are: 

• Periods 1–3 (≤1978, 1979–1995, 1996–2002): The coefficient on energy_pc is not statistically 
significant, although time dummies capture important period-specific shocks (e.g., late-1970s 
and early-2000s positive dummies). 

• Period 4 (2003–2011, the oil-boom era): The coefficient on energy_pc becomes large, positive, 
and statistically significant (p ≈ 0.021). This is the only regime in which per capita energy 
consumption shows a clear, robust positive association with GDP. 

• Period 5 (post-2011): The coefficient on energy_pc is again statistically insignificant, with 
some evidence of negative shocks (e.g., 2020). 

Thus, the regime-wise analysis reveals that the energy–growth relationship is not time-invariant: energy 
use per capita matters for GDP only during the 2003–2011 boom, while in other regimes its effect is 
weak or negligible once common shocks and country heterogeneity are accounted for. 
 

4.5. Specification Tests for Regime-Wise Linearity 
To assess whether the linear model is adequate within each regime or whether additional nonlinearity 
remains, the Ramsey RESET test is applied to each regime-specific regression.  
 

Table 6 summarises the results. 
Time 

Period Period RESET 
statistic 

df (1, 
2) p-value Decision (α = 

0.05) Conclusion 

≤ 1978 1 0.53 (2, 43) 0.5928 Do not reject H₀ Linear model adequate 
1979–1995 2 1.17 (2, 97) 0.3140 Do not reject H₀ Linear model adequate 
1996–2002 3 1.17 (2, 37) 0.3209 Do not reject H₀ Linear model adequate 
2003–2011 4 0.11 (2, 49) 0.8991 Do not reject H₀ Linear model adequate 

> 2011 5 32.94 (2, 61) < 
0.0001 Reject H₀ Evidence of 

nonlinearity 
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For periods 1–4, the RESET p-values are well above 0.05, indicating no evidence against the linear 
specification within each regime. For period 5 (post-2011), the RESET statistic is large and highly 
significant, suggesting that the linear model is misspecified and that nonlinearities or additional omitted 
dynamics may be important in the most recent regime. 
 

4.6. Diagnostic Plots  
Residual–fitted plots for the preferred RE specification show residuals randomly scattered around zero 
with no strong patterns in the early regimes, consistent with homoskedastic errors and adequate 
specification. At the same time, deviations are more pronounced in the post-2011 period.  As shown in 
Figure 3. the dots should be randomly scattered around the red horizontal line at zero, without any 
obvious pattern. This suggests that error variance is a constant (homoskedasticity). 

 

 
Fig.3: Residuals versus fitted values (diagnostic) 

 
Actual–fitted plots indicate that the models fitted within regimes 1–4 track observed GDP reasonably 
well, whereas predictive performance is weaker in regime 5. As shown in Figure 4. the dots should 
cluster close around the dashed blue line (45° line). The closer the points are to this line, the better the 
model's predictive performance, indicating that it explains a large percentage of the variance in the 
dependent variable. 

 

 
Fig.4: Actual versus fitted values (diagnostic). 



Khudari et al., Journal of Logistics, Informatics and Service Science, Vol. 13 (2026), No 1, pp 117-132 

129 
 

 
Coefficient plots with confidence intervals make clear which coefficients are precisely estimated and 
which are not, reinforcing the regime-dependent nature of the energy effect. As shown in Figure 7, the 
chart indicates that the confidence intervals for both energy_pc and elec_pc lie entirely to the right of 
zero, confirming that their impact on GDP is positive and statistically significant. 
 

 

 
Fig.5: Coefficient plot with 95% confidence intervals (baseline model) 

 

5. Discussion 
When estimated over the full 1970–2022 period and augmented with quadratic terms in energy_pc and 
elec_pc, the baseline panel models suggest that the relationship between energy variables and GDP is 
nonlinear, with evidence of curvature in the energy–growth nexus. Taken at face value, this could justify 
the use of more complex nonlinear models (e.g., threshold or Markov-switching specifications). 
However, the structural break analysis reveals that this apparent nonlinearity is largely a false 
nonlinearity. Once the sample is partitioned into endogenous break regimes, linear specifications 
provide an adequate fit in four out of five regimes, as confirmed by the RESET tests. The pronounced 
curvature observed in the full-sample model is therefore driven by pooling structurally distinct regimes 
into a single equation, rather than by intrinsic nonlinear behaviour within the regimes. 
 
The regime-wise results show that per capita energy use has a statistically significant positive effect on 
GDP only in the 2003–2011 oil-boom period, and is insignificant in all other regimes. This pattern is 
consistent with the region's economic history: during the boom, high oil prices and expanded energy 
production directly translated into higher output and investment, including in logistics and service 
infrastructure. Outside that period, the marginal contribution of additional energy use to GDP appears 
weak or muted, possibly due to inefficiency, saturation effects, or structural constraints. 
Electricity consumption, by contrast, displays a robust positive association with GDP in the full-sample 
models, highlighting its critical role as a complementary input for production, logistics, and digital 
services. The contrast between the unstable effect of energy_pc and the more stable role of elec_pc 
suggests that the composition and efficiency of energy use, rather than aggregate volume alone, is 
crucial for supporting sustainable growth in logistics-intensive economies. 
 
From a methodological perspective, the comparison between the “single-regime” and “multi-regime” 
approaches is instructive. The first approach (full-sample, time-invariant coefficients) yields a single, 
misleading average effect—no significant role for energy_pc—which does not reflect the underlying 
economic history. The second approach, combining Bai–Perron structural break detection with regime-
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wise estimation, recovers a richer, more nuanced dynamic story of how the energy–growth relationship 
evolves across distinct economic episodes.  
This supports the view that structural breaks should be treated as a central modelling feature rather than 
a nuisance, particularly in regions and sectors subject to recurrent shocks. 
 

6. Conclusion 
This study set out to examine whether the apparent nonlinearity in the energy–growth relationship in 
six Middle Eastern economies is intrinsic or mainly a consequence of unmodelled structural breaks. 
Using panel data for 1970–2022, we first estimated standard pooled, fixed-effects, and random-effects 
models, then applied Bai–Perron multiple structural break tests to identify common break dates, and 
finally re-estimated models within each structurally stable regime.  
The main conclusions are: 

1. Full-sample panel models suggest that per capita energy use does not have a stable, statistically 
significant effect on GDP once country heterogeneity is controlled for, while per capita 
electricity consumption has a robust positive effect. 

2. Structural break analysis identifies four statistically significant breakpoints (1978, 1995, 2002, 
2011), partitioning the sample into five regimes that correspond to distinct economic and 
political episodes. 

3. Regime-wise estimations reveal that the effect of energy_pc on GDP is significantly positive 
only during the 2003–2011 oil-boom period and insignificant in all other regimes. In contrast, 
linear models are adequate within the first four regimes. 

4. RESET tests indicate that linearity holds within regimes 1–4, while the post-2011 regime 
exhibits residual nonlinearity, suggesting that more complex dynamics may characterise the 
recent period. 

Taken together, these findings demonstrate that what appears to be nonlinear behaviour in long-horizon 
panel data can be explained mainly by structural instability. The energy–growth nexus in the region is 
better characterised as a sequence of regime-dependent linear relationships than as a stable nonlinear 
function over the entire sample. 
 
The results carry several implications: 

1. Regime-contingent planning of energy-intensive logistics systems. The strong, statistically 
significant impact of energy use on GDP during the 2003–2011 boom, contrasted with its 
insignificance in other periods, implies that the effectiveness of energy-intensive investments 
in transport corridors, warehousing, and port infrastructure is highly regime-dependent. 
Planning frameworks should therefore incorporate scenario analysis aligned with structural 
regimes rather than extrapolating from full-sample averages. 

2. Prioritising electricity reliability for service and digital platforms. The consistent importance of 
electricity consumption as a predictor of GDP underscores the central role of reliable power 
supply for modern service systems and digital logistics platforms. Investments in electricity 
infrastructure, grid stability, and renewable integration can have broad productivity effects, 
particularly for logistics, e-commerce, and information services. 

3. Model choice for decision-support and analytics. For practitioners building decision-support 
tools and analytics systems, the findings caution against automatically adopting complex 
nonlinear models whenever full-sample tests reject linearity. Instead, structural break 
diagnostics and regime-wise linear models may offer a more interpretable and operationally 
useful basis for forecasting and policy evaluation, especially when models need to be embedded 
in information systems used by non-specialist decision makers. 
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4. Design of adaptive, regime-aware policies. Policymakers should recognise that energy policies 
that worked effectively during one regime (e.g., the oil boom) may not be appropriate in others 
(e.g., post-2011). Adaptive, regime-aware strategies—such as adjusting fuel subsidies, 
investing in logistics efficiency, or diversifying energy sources—are more likely to succeed 
than uniform, time-invariant policy rules. 

Overall, the transition from static, single-regime analysis to dynamic, regime-aware panel modelling is 
not merely a technical refinement; it is a necessary step toward a more realistic and policy-relevant 
understanding of energy-driven growth processes in logistics- and service-intensive economies. 
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