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Abstract. Energy and electricity are foundational inputs for logistics networks, digital
services, and production systems, making accurate modelling of the energy—growth nexus
essential for service-system planning and infrastructure investment. This study revisits the
energy—growth relationship in six Middle Eastern economies over 1970-2022 and examines
whether widely reported nonlinearities reflect intrinsic economic dynamics or instead arise
from unmodelled structural breaks. Adopting a sequential empirical strategy, the analysis
combines baseline panel estimators (pooled OLS, fixed effects, and random effects),
quadratic-form diagnostics, and Bai—Perron multiple structural break tests. The results show
that apparent nonlinear patterns in the full-sample panel largely disappear once multiple
breaks are endogenously identified and regime-specific models are estimated. Break selection
based on the Bayesian Information Criterion reveals four statistically significant breakpoints,
partitioning the sample into five regimes. Within these regimes, the relationship between
energy use and economic output is well approximated by linear specifications with time-
varying coefficients. Regime-wise estimates indicate that per capita energy use has a
statistically significant and economically meaningful positive effect on output only during the
2003—-2011 period, associated with rapid demand expansion and investment cycles. In contrast,
per capita electricity consumption exhibits a consistently positive association with GDP
across baseline and regime-specific models, underscoring the critical role of reliable power
infrastructure for logistics, services, and digital activities. The findings caution against
interpreting nonlinear energy—GDP relationships without explicitly accounting for structural
instability. By demonstrating how unmodelled breaks can generate false nonlinearity, the
study contributes a transparent, regime-aware empirical workflow that is well suited for
energy, logistics, and service-system analytics and supports more adaptive, context-sensitive
policy and infrastructure planning.

Keywords: Energy—Growth Nexus, Structural Breaks, False Nonlinearity, Regime-
Dependent Panel Models, Electricity Infrastructure, Logistics- and Service-Intensive
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1. Introduction

Energy and electricity are foundational inputs into modern production systems, public services, and
logistics-intensive sectors. Global supply chains, transport networks, warehousing, and digital service
platforms all depend on reliable, cost-effective energy, making the energy—growth nexus highly relevant
to logistics, informatics, and service science. Consequently, the empirical relationship between energy
consumption and economic activity has been a long-standing theme in applied econometrics (Kraft &
Kraft, 1978; Stern, 2000; Ozturk, 2010). However, this literature often yields contradictory findings,
including mixed signs, unstable magnitudes, and competing claims about linear versus nonlinear effects,
which complicate strategic planning in energy-intensive logistics and service systems.

Many empirical models in economics and management science are built on the simplifying assumption
that relationships between variables are linear and stable over time (Fuxiao Li, Xiao, & Chen, 2025).
This assumption facilitates estimation, interpretation, and implementation in decision-support systems
and analytics platforms. However, real-world macroeconomic and sectoral data—exceptionally long
time series and panel data—are rarely generated by a single, stable regime. They are exposed to major
external shocks, including commodity price cycles, financial crises, regulatory reforms, global
pandemics, and geopolitical conflicts. These episodes induce what the statistical literature terms
structural breaks: points in time at which key parameters of the data-generating process (means,
variances, or regression coefficients) change markedly. When such breaks are ignored, empirical
models may yield biased and inconsistent estimates, misleading inference, and poor predictive
performance—outcomes that are particularly problematic when these models inform logistics planning,
infrastructure investment, and service system design.

A key methodological issue is that structural breaks can induce parameter instability that masquerades
as nonlinearity. When the actual data-generating process exhibits multiple regime shifts, fitting a single,
stable-parameter model can mistakenly create patterns that appear to exhibit curvature (or
“nonlinearity”), even if each regime is approximately linear. In other words, the relationship between
variables may not be globally linear over long horizons yet may display piecewise linearity within
relatively stable subperiods (Fuxiao Li et al., 2025). This study, therefore, asks whether apparent
nonlinearity in the energy—growth nexus is intrinsic, or instead a by-product of unmodelled structural
change—a phenomenon we refer to as “false nonlinearity.”

The research problem is sharpened by common empirical practice. When standard tests reject linearity
for the full sample, many researchers immediately adopt complex nonlinear frameworks (such as
threshold autoregressive (TAR) models, smooth transition autoregressive (STAR) models, or Markov-
switching specifications). While these models are robust and appropriate for genuinely nonlinear
dynamics, their use may be unwarranted if the instability in the data is primarily due to structural breaks
rather than intrinsic nonlinearity (Fuxiao Li et al., 2025). In applications to logistics and service
systems—where model transparency, interpretability, and computational tractability are important for
integration into information systems—unnecessarily complex nonlinear models can also hinder
practical uptake. This study proposes an intermediate and operationally useful solution: modelling the
process as a multi-regime linear system whose parameters change at endogenously determined
breakpoints (Baltagi, 2021).

Empirically, we focus on six Middle Eastern economies over 1970-2022, a setting that plausibly
features repeated breaks due to oil-market dynamics, regional conflicts, and major policy reforms.
Using World Development Indicators series for GDP (current USS$), energy use (kg of oil equivalent
per capita), and electric power consumption (KWh per capita), we first estimate baseline panel models
and conduct conventional specification tests, which suggest rejection of global linearity. We then apply
Bai—Perron multiple structural break procedures (Bai & Perron, 1998, 2003) to endogenously identify
breakpoints and partition the sample into distinct regimes. Estimating regime-wise models reveals that
within each subperiod the energy—growth relationship is well approximated by a stable linear
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specification with regime-specific parameters, indicating that multiple structural breaks can generate
the illusion of a long-run nonlinear relationship when the underlying process is better characterised as
a sequence of distinct linear systems.

This study contributes to both the energy—growth literature and to empirical work in logistics in three
ways. First, it provides an explicit test for false nonlinearity by contrasting global nonlinear behaviour
with regime-wise linearity in a structurally unstable panel. Second, it delivers regime-specific estimates
that are directly interpretable for policy makers concerned with the evolution of energy-intensive
logistics and service infrastructures across different macroeconomic environments. Third, it offers a
transparent empirical workflow—combining standard panel estimators with Bai—Perron structural
break detection—that can be replicated with widely available software and readily adapted to other
logistics and service-oriented panel datasets.

2. Literature Review

2.1. Energy—Growth Nexus and Its Relevance for Logistics and Services

The relationship between energy use and economic activity has been widely studied across countries,
time periods, and econometric frameworks. Early contributions such as Kraft and Kraft (1978) sparked
debate on the direction of causality between energy consumption and output, while subsequent
multivariate cointegration work emphasised energy as a key production input rather than a mere by-
product of growth (Stern, 2000). Survey articles show that empirical conclusions about the energy—
growth nexus are highly sensitive to sample choice, measurement of energy variables, and econometric
methodology (Payne, 2010; Ozturk, 2010).

For logistics, informatics and service science, this nexus is more than a macroeconomic curiosity.
Energy and electricity underpin transport networks, warehousing, cold chains, digital service
infrastructure, and data centres. Mischaracterising the energy—growth relationship can therefore distort
the design of energy-intensive logistics systems, the planning of service capacity, and the evaluation of
efficiency gains from digital transformation.

2.2. Structural Breaks and Multi-Break Panel Econometrics

In response to the mixed evidence in the energy—growth literature, recent research has increasingly
turned to nonlinear and regime-switching models to capture asymmetries, thresholds, or time-varying
elasticities. However, nonlinear specifications can be highly sensitive to unmodelled parameter
instability. Structural-break econometrics offers a principled way to detect and model shifts at unknown
dates, avoiding the conflation of genuine nonlinearity with regime changes.

Bai and Perron (1998, 2003) developed widely used least-squares estimators and tests for multiple
structural breaks in linear models. Their framework provides tools to determine both the number and
location of breaks based on objective functions and sequential testing. It has become the cornerstone
for analysing macroeconomic series subject to repeated shocks. Building on this foundation, Ditzen,
Karavias, and Westerlund (2025) extend break detection to interactive-effects panel models, allowing
the unobserved common component to vary over time and across units while accommodating cross-
sectional dependence. This improves the estimation of slope coefficients in environments with strong
temporal and cross-sectional correlation—conditions typical for regional energy, logistics, and service
data.

In parallel, Li, Xiao, and Chen (2025) propose an estimation procedure for “common breaks” in linear
panel models, assuming synchronised break dates across units that reflect shared institutional shifts or
macroeconomic cycles. This common-break perspective enhances the power to detect structural change
when multiple economies or sectors experience the same shock and reduces biases associated with unit-
by-unit break estimation. At the algorithmic level, Li, Xiao, and Chen (2023) develop a screening-and-
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ranking approach to estimate multiple breaks efficiently in large panels, balancing statistical accuracy
with computational cost and automatically determining the number of breaks. These advances are
highly relevant for high-dimensional datasets that arise in logistics informatics, where many locations,
corridors, or service nodes are observed over long horizons.

2.3. Structural Breaks in Energy and Sectoral Applications

Empirical applications that explicitly incorporate structural breaks demonstrate how crucial they are for
interpreting the energy—growth nexus and related sectoral dynamics. Bazan Navarro, Morocho Ruiz,
and Castillo Alvarado (2024) analyse the relationship between economic growth and electricity
consumption in Latin American and Caribbean countries using panel models and causality tests over
extended time horizons. By allowing for country heterogeneity and structural shifts, they show that
estimates of the energy—growth linkage are fundamentally shaped by the presence and timing of breaks;
ignoring these shifts can lead to misleading causal inferences. This has direct implications for planning
energy-intensive logistics and service infrastructures in emerging economies.

Similarly, Guliyev (2023) examines renewable energy and economic growth in European countries
using a panel framework that accounts for structural breaks. The contribution of renewable energy is
found to be regime-dependent: it increases during periods of supportive policies and price stability and
weakens during market disruptions or regulatory uncertainty. These results underscore that assuming a
single stable relationship over the entire sample can mask regime-specific effects that matter for energy
policy, transport decarbonisation, and sustainable logistics strategies. Empirical evidence from other
emerging economies suggests that political stability and macroeconomic conditions have substantial
effects on investment flows and structural dynamics (Khudari, Sapuan, & Fadhil, 2023), reinforcing the
expectation that macro and institutional shocks in the Middle East generate significant structural breaks
in the energy—growth relationship.

Adopting an “episodic” perspective, Bartak, Jabtonski, and Jastrzebska (2021) propose decomposing
economic history into structurally distinct episodes before conducting causal analysis. This reframes
the question from “Does energy cause growth?” to “When, where, and under which institutional system
does this causal relationship hold?” By making structural regimes the primary organising principle,
their approach is directly transferable to the study of energy-intensive logistics and service systems that
operate across shifting regulatory, technological, and geopolitical environments.

2.4. Identified Gap

Despite these advances, two gaps remain particularly salient for macro panels in the Middle East and
for applications relevant to logistics, informatics and service science. First, many studies adopt
nonlinear or regime-switching models without explicitly testing whether the observed curvature is
intrinsic or instead driven by structural breaks—Ileaving open the possibility of “false nonlinearity”
generated by unmodelled parameter shifts. Second, even when structural breaks are identified, relatively
few contributions translate them into regime-specific estimates that can inform energy infrastructure
planning, demand-management strategies, or logistics and service-system design.

Given that energy and electricity systems in Middle Eastern economies are tightly linked to industrial
upgrading, transport corridors, and public service delivery, policy responses are likely to be regime-
contingent rather than time-invariant. There is therefore a need for empirical frameworks that (i)
integrate modern multi-break detection procedures into standard panel models, (ii) discriminate
between intrinsic nonlinearity and false nonlinearity caused by structural change, and (iii) provide
transparent, regime-wise estimates that can guide decisions in energy-intensive logistics and service
contexts. The present study addresses this gap by applying Bai—Perron-type multi-break analysis to the
energy—growth nexus in six Middle Eastern economies and interpreting the resulting regimes from the
perspective of logistics and service-system policy.
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3. Research Design and Methodology

3.1. Methodological Positioning and Research Hypothesis

Recent panel econometric developments emphasise modelling structural breaks as an inherent feature
of longitudinal data rather than as statistical anomalies. Multi-break frameworks in interactive-effects
panels (Ditzen, Karavias, & Westerlund, 2025) and common-break models in linear panels (Li, Xiao,
& Chen, 2025) show that ignoring synchronised structural shifts can severely bias coefficient estimates
and distort inference, especially in settings with strong time and cross-sectional dependence. These
methodological advances are particularly relevant for energy—growth studies in regions exposed to
recurrent geopolitical and policy shocks, such as the Middle East, and for empirical work informing
energy-intensive logistics and service systems.

Against this background, the central null hypothesis of this study is:

HO: The relationship between the economic variables under study is piecewise linear with multiple
structural breaks induced by external shocks; apparent global nonlinearity in the full sample arises from
unmodelled parameter shifts rather than an intrinsically nonlinear data-generating process.

Under this hypothesis, the appropriate empirical specification is not a complex nonlinear model but a
sequence of linear models whose parameters change at endogenously determined breakpoints (Ditzen
et al., 2025; Rodriguez-Caballero, 2022). Testing HO therefore involves (i) comparing standard panel
estimators against multi-break specifications and (ii) assessing whether regime-wise linear models
deliver a statistically adequate description of the data.

3.2. Data, Sample, and Variables

The empirical analysis uses an unbalanced panel of six Middle Eastern economies that are both energy-
rich and central to regional logistics and service activity: Iraq, Kuwait, Saudi Arabia, Syria, United Arab
Emirates, and Iran.

These countries have experienced repeated political and regional shocks—with direct implications for
energy markets, infrastructure investment, and service delivery—which makes them a natural
laboratory for studying structural breaks in the energy—growth nexus.

The study period spans 1970-2022 (52 years), subject to data availability for each country. This horizon
encompasses major oil price cycles, wars, sanctions, and policy reforms that plausibly generate multiple
structural breaks in macroeconomic and energy variables.

All macroeconomic and energy series are drawn from the World Development Indicators (WDI) and
related World Bank databases (World Bank, 2024). These sources provide harmonised, internationally
comparable statistics suitable for panel modelling and policy analysis in logistics- and service-intensive
sectors.

The core variables are:

- Gross domestic product (GDP;;)Aggregate economic output for the country iin year t. In line
with the original dataset, GDP is measured in current US dollars. For the econometric analysis,
GDP is transformed to logarithms to reduce heteroskedasticity and interpret coefficients as
elasticities where appropriate.

- Per capita energy use (energy_pc,,)Total primary energy use in kilograms of oil equivalent per
capita. This indicator captures overall energy intensity and is directly relevant for energy-
intensive logistics and service operations (transport, warechousing, digital infrastructure).

- Per capita electric power consumption (elec_pc;, )Electric power consumption in kilowatt-
hours per capita. This variable proxies the availability and use of electricity, a critical input for
service sectors, digital platforms, and logistics facilities.

Following standard practice in spatial and panel econometrics (Rodriguez-Caballero, 2022; Le Gallo &
Patuelli, 2023), the panel is cleaned for missing values, checked for outliers, and transformed into a
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country—year structure suitable for panel regression and structural break analysis.

3.3. Baseline Panel Model Specification
The starting point is a conventional linear panel model relating economic output to energy and
electricity use:

GDPy; = By + By energy_pc,, + B, elec_pc,, + uy,

where GDPj,is the (log) gross domestic product of the country iin year t, energy pc, is per capita
energy use, elec _pc,, 1s per capita electricity consumption, and U;;is the composite error term.

To account for unobserved country-specific heterogeneity, three standard panel estimators are
considered: Pooled OLS, Fixed Effects Model (FE), and Random Effects Model (RE)(Croissant &
Millo, 2008; Baltagi, 2021; Le Gallo & Patuelli, 2023).

The pooled ordinary least squares (OLS) model assumes no unobserved country-specific effect:

GDPy; = By + By energy_pc,, + B, elec_pc,, + ;.

This specification treats all observations as coming from a single pooled sample, which is restrictive
but provides a benchmark for subsequent models.

The fixed effects model (FE) allows for time-invariant unobserved heterogeneity across countries:
GDP;; = a; + By energy pc,, + B, elec_pc,, + uy,
where «; captures country-specific intercepts that absorb factors such as geography, long-run
institutional characteristics, and relatively stable structural features of national logistics and service
systems. The slope coefficients 5;and f3,are assumed to be homogeneous across countries.
The random effects model (RE) treats the country-specific effect as stochastic:
GDPy; = By + By energy_pc,, + B, elec pe,, + a; + uy,

where ¢;is a country-specific random effect, assumed to be uncorrelated with the regressors, and u;;is
the idiosyncratic error term. This formulation yields efficiency gains when the orthogonality assumption
holds.

The choice between FE and RE is guided by the Hausman test (Baltagi, 2021):

H = (BFE - BRE),[Var(BFE) - Var(BRE)]_l(ﬁFE - ﬁRE)'

where ﬁ rpand ﬁ rpare the vectors of slope coefficients from the fixed and random effects estimators,
respectively. Rejection of the null hypothesis (that RE is consistent) indicates that FE is preferred;
otherwise, RE is adopted as the baseline panel specification.

3.4. Structural Break Detection: Bai—Perron Multi-Break Procedure
To test the “false nonlinearity” hypothesis and identify regime-wise linear relationships, the study
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applies the Bai—Perron (1998, 2003) multiple structural break framework. In its canonical form, a linear
regression with mbreaks (and thus m + lregimes) can be written as:

Ve =x£ﬁj tu,t=Ti_1+1,..,T,j=1,..,m+1,

where:

y.is the dependent variable at time ¢,

X1s the vector of regressors,

B;is the regime-specific vector of coefficients in regime J,
T;denotes the break dates (with Ty = Oand Ty,41 = T), and
U, is the error term.

In the panel context, we treat the estimated panel model (e.g., the preferred FE or RE specification) as
the baseline and use Bai—Perron procedures to identify common breakpoints that segment the time
dimension into regimes. For each candidate number of breaks m, the algorithm estimates break dates
that minimise the residual sum of squares (RSS), subject to minimal segment-length constraints.

3.5. Model Selection Criterion: Bayesian Information Criterion (BIC)

To select the optimal number of breaks, the study employs the Bayesian Information Criterion (BIC),
which balances fit and parsimony (Ditzen et al., 2025; Feng Li, Xiao, & Chen, 2024; Karavias, Tzavalis,
& Zhang, 2022). For a candidate model with nobservations, residual sum of squares RSS, and kfree
parameters, the BIC is defined as:

RSS
BIC =n-In (T)+k-1n(n),

with

n
RSS = ) (v = 9%
i=1

Lower BIC values indicate a better trade-off between model fit and complexity. In the context of multi-
break models, increasing the number of breaks m improves fit (reduces RSS) but increases k. BIC
penalises overfitting by favouring models that achieve substantial reductions in RSS relative to the
additional complexity. This is particularly important for policy-relevant applications in logistics and
service systems, where overly complex models can be challenging to interpret and implement (Feng Li
et al., 2024; Karavias et al., 2022; Lee et al., 2023; Zhang et al., 2023).

For the practical implementation of the Bai—Perron multiple-break framework in R, we rely on the m
breaks package, which provides efficient routines for estimating and testing linear models with multiple
structural changes (CRAN, 2025).

All data preparation, panel estimation, and structural-break analysis are implemented in R, an open-
source statistical programming environment. R is chosen for several reasons:

Availability of specialised packages for panel data (e.g., PLM) and structural break analysis (e.g.,
strucchange, fixest, or Bai—Perron implementations), Strong support for reproducible workflows,
enabling transparent replication and extension of the empirical strategy, and Cross-platform availability
and active community support, which facilitate adoption by researchers and practitioners working with
logistics, energy, and service-related datasets (Qin & Al Amin, 2023).

123



Khudari et al., Journal of Logistics, Informatics and Service Science, Vol. 13 (2026), No 1, pp 117-132

The combination of standard panel methods, Bai—Perron structural break detection, and BIC-based
model selection yields an empirical workflow that is both methodologically rigorous and practically
implementable for analysing regime-dependent energy—growth relationships in Middle Eastern
economies and for drawing implications for energy-intensive logistics and service systems.

4. Empirical Results

4.1. Descriptive Patterns and Scatterplots
Figures 1 and 2 provide an initial visual assessment of the bivariate relationships between GDP and the
two energy variables.

Figure 1 plots GDP against per capita energy use (energy_pc) for all country—year observations. The
scatter (diffusion) diagram shows a clear upward pattern: countries and years with higher energy use
per capita tend to exhibit higher GDP levels. In the underlying graph, logarithmic scales compress
extreme values and allow the core cloud of observations to be seen more clearly despite differences in
levels across countries and over time. This visual evidence is consistent with a positive association
between energy intensity and economic scale in energy- and logistics-intensive economies.

GDP & ENERGY USE

100B 4
country

Iran, Islamic Rep.
Iraq

Kuwait

GDP

Saudi Arabia

10B 4 Syrian Arab Republic

United Arab Emirates

300 1,000 3,000 10,000
ENERGY USE

Fig.1: The Relationship between GDP and Energy Consumption

Figure 2 plots GDP against per capita electricity consumption (elec_pc). Similar to energy use, the
scatter reveals a strong positive correlation: higher electricity consumption per capita is systematically
associated with higher GDP. Again, the log transformation makes the relationship easier to detect by
reducing the influence of observations with very high income and consumption. Taken together, Figures
1 and 2 motivate a formal panel-data analysis in which GDP is modelled as a function of per capita
energy and electricity use, controlling for unobserved country effects and possible structural breaks.
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GDP & ELECTRICAL POWER CONSUMPTION
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Fig.2: The relationship between electricity consumption per capita and GDP

4.2. Baseline Panel Estimates for the Full Sample (1970-2022)

Similar to energy consumption, there is a strong positive correlation between per capita electricity
consumption and GDP. This is to be expected, as economic and industrial growth require more
electricity. Table 1 reports the baseline panel regressions estimated over the whole period 1970-2022
under three standard specifications: pooled OLS, fixed effects (FE), and random effects (RE).

Table 1: Model values for the first methodology that takes the data as a complete batch

Model Estimate p-value Estimate | p-value R? Adi.R*| N Test
energy pc | energy pc elec_pc elec_pc

Pooled OLS -15,513,278 0.017 22,671,606 | =1.5e-6 | 0.136 | 0.130 | 312 F=24.32
(p<le-9)

Fixed Effects -4,399,681 0.540 34,388,814 | <2e-16 | 0.367 | 0.353 | 312 F=88.19

(within) (p<2e-16)

Random Effects -7,785,379 0.265 34,376,598 | <2e-16 | 0.351 | 0.347 | 312 | Chi*=167.2

(Swamy—Arora) 1 (p<2e-

16)

¢ Pooled OLS yields a negative and statistically significant coefficient on energy pc (p = 0.017),
while elec_pc is positive and highly significant (p = 1.5%107¢). The model explains about 13.6%
of the variation in GDP (R? = 0.136).
¢ Fixed effects absorb time-invariant country heterogeneity. In this specification, the coefficient
on energy pc becomes statistically insignificant (p = 0.540), while elec_pc remains very
strongly significant (p < 2x107'¢). The explanatory power improves substantially (R* = 0.367).
e Random effects (Swamy—Arora) produce results very similar to FE: the coefficient on
energy pc is again insignificant (p = 0.265), while elec_pc remains highly significant (p <
2x107%¢), with R*=0.351.
Taken together, these estimates indicate that, over the full sample, electricity consumption is a robust
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predictor of GDP. At the same time, the effect of per capita energy use is weak once country-specific
unobservables are controlled.

To determine whether the FE or RE specification should be preferred as the baseline for subsequent
analysis (including the structural break procedure), we apply the Hausman test. The test compares the
FE and RE estimators under the null that the RE estimator is consistent and efficient. Table 2
summarises the Hausman results.

Table 2. Hausman test comparing fixed-effects and random-effects panel models

Test y? statistic | df p-value | Decision (a = 0.05) Preferred model
FE vs. RE (GDP on | 4.20 2 0.1223 Do not reject Ho (RE | Random effects
energy pc, elec_pc) consistent)

The y? statistic of 4.20 with 2 degrees of freedom yields a p-value of 0.1223, which is above the
conventional 5% significance level. Thus, we do not reject the null hypothesis that the RE estimator is
consistent. The random-effects model is therefore adopted as the preferred baseline specification for the
full sample, and it serves as the starting point for the subsequent structural break analysis.

4.3. Testing for Multiple Structural Breaks

To relax the assumption of parameter stability, the Bai—Perron multiple structural break procedure is
applied to the panel model. Table 3 summarises the candidate break structures (m =0,...,5) along with
the associated residual sum of squares (RSS) and Bayesian Information Criterion (BIC) values.

Table 3: Bai-Perron Test Results

M Breakpoints at observation Corresponding to break dates
number

1 212 0.666666666666667

2 165,212 0.518867924528302, 0.666666666666667

3 53,165, 212 0.166666666666667, 0.518867924528302, 0.666666666666667

4 53, 165,212,271 0.166666666666667, 0.518867924528302, 0.666666666666667,
0.852201257861635

5 53,106, 165, 212, 271 0.166666666666667, 0.333333333333333, 0.518867924528302,
0.666666666666667, 0.852201257861635

The BIC monotonically improves as breaks are added up to m = 4 (BIC = 17,341), after which the
criterion worsens slightly for m = 5 (BIC = 17,352). This indicates that a four-break specification (and
hence five regimes) provides the best balance between fit and parsimony. The estimated breakpoints
corresponding to the following calendar years are shown in Table 4.

Table 4: Comparison of the results to determine the significant value based on the Bayesian criterion

(number of c?ange points) RES BIC
0 11365405398060229082480640 17428
1 10913002672652402940706816 17426
2 8851782884192879888039936 17371
3 8110752768978508541067264 17355
4 7486998345632580330586112 17341
5 7471861516186935854366720 17352
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These dates align well with significant regional and global events affecting energy markets and
economic activity, including oil price shocks, conflict episodes, and the post-2011 political transitions.
They partition the sample into five distinct economic regimes.

4.4. Regime-Wise Panel Estimates

Following breakpoint identification, the panel model is re-estimated separately for each of the five
regimes, allowing coefficients to differ across periods while maintaining a linear structure within each
regime, as shown in Table 5.

Table 5 summarises the regime-specific.

Period | Span R? Adj. R? Estimate p-value Significance | Notes on year dummies
(energy pc) | (energy pc)
1 [ <1978 | 0.628 | 0.486 | 3,839,195 | 0.235 ns. | ate-1970s dummies
significantly positive
2 | Y0133 | 0109 | 3.443.438 | 0232 ns, | o clear pattern; 1990
1995 marginal
30| 1996 o611 | 0450 | 3,296,031 | 0.266 ns. | 20002002 dummies
2002 strongly positive
4 | 2093710728 | 0.631 | 48190072 | 0.021 * 2006-2011 dummies
2011 strongly positive
2020 dummy negative;
5 >2011 | 0.293 0.062 | —22,809,885 0.358 n.s. others mostly
insignificant

n.s. = not statistically significant at conventional levels.

The key findings are:

e Periods 1-3 (<1978, 1979-1995, 1996-2002): The coefficient on energy pc is not statistically
significant, although time dummies capture important period-specific shocks (e.g., late-1970s
and early-2000s positive dummies).

e Period 4 (2003-2011, the oil-boom era): The coefficient on energy pc becomes large, positive,
and statistically significant (p ~ 0.021). This is the only regime in which per capita energy
consumption shows a clear, robust positive association with GDP.

e Period 5 (post-2011): The coefficient on energy pc is again statistically insignificant, with
some evidence of negative shocks (e.g., 2020).

Thus, the regime-wise analysis reveals that the energy—growth relationship is not time-invariant: energy
use per capita matters for GDP only during the 2003-2011 boom, while in other regimes its effect is
weak or negligible once common shocks and country heterogeneity are accounted for.

4.5. Specification Tests for Regime-Wise Linearity
To assess whether the linear model is adequate within each regime or whether additional nonlinearity
remains, the Ramsey RESET test is applied to each regime-specific regression.

Table 6 summarises the results.

Time Period RESET df (1, p-value Decision (o = Conclusion
Period statistic 2) 0.05)

<1978 1 0.53 (2,43) | 0.5928 Do not reject Ho | Linear model adequate
1979-1995 2 1.17 (2,97) | 0.3140 Do not reject Ho | Linear model adequate
19962002 3 1.17 (2,37) | 0.3209 Do not reject Ho | Linear model adequate
2003-2011 4 0.11 (2,49) | 0.8991 Do not reject Ho | Linear model adequate

< . Evidence of

> 2011 5 32.94 (2,61) 0.0001 Reject Ho nonlincarity
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For periods 1-4, the RESET p-values are well above 0.05, indicating no evidence against the linear
specification within each regime. For period 5 (post-2011), the RESET statistic is large and highly
significant, suggesting that the linear model is misspecified and that nonlinearities or additional omitted

dynamics may be important in the most recent regime.

4.6. Diagnostic Plots
Residualfitted plots for the preferred RE specification show residuals randomly scattered around zero

with no strong patterns in the early regimes, consistent with homoskedastic errors and adequate
specification. At the same time, deviations are more pronounced in the post-2011 period. As shown in
Figure 3. the dots should be randomly scattered around the red horizontal line at zero, without any
obvious pattern. This suggests that error variance is a constant (homoskedasticity).

Residuals vs. Fitted Plot
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Fig.3: Residuals versus fitted values (diagnostic)

Actual-fitted plots indicate that the models fitted within regimes 1—4 track observed GDP reasonably
well, whereas predictive performance is weaker in regime 5. As shown in Figure 4. the dots should
cluster close around the dashed blue line (45° line). The closer the points are to this line, the better the
model's predictive performance, indicating that it explains a large percentage of the variance in the

dependent variable.
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Fig.4: Actual versus fitted values (diagnostic).
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Coefficient plots with confidence intervals make clear which coefficients are precisely estimated and
which are not, reinforcing the regime-dependent nature of the energy effect. As shown in Figure 7, the
chart indicates that the confidence intervals for both energy pc and elec_pc lie entirely to the right of
zero, confirming that their impact on GDP is positive and statistically significant.

Confidence Intervals with 95%
GCoefficient Plot

independent variable
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(Effect Size)

Fig.5: Coefficient plot with 95% confidence intervals (baseline model)

5. Discussion

When estimated over the full 1970-2022 period and augmented with quadratic terms in energy pc and
elec_pc, the baseline panel models suggest that the relationship between energy variables and GDP is
nonlinear, with evidence of curvature in the energy—growth nexus. Taken at face value, this could justify
the use of more complex nonlinear models (e.g., threshold or Markov-switching specifications).
However, the structural break analysis reveals that this apparent nonlinearity is largely a false
nonlinearity. Once the sample is partitioned into endogenous break regimes, linear specifications
provide an adequate fit in four out of five regimes, as confirmed by the RESET tests. The pronounced
curvature observed in the full-sample model is therefore driven by pooling structurally distinct regimes
into a single equation, rather than by intrinsic nonlinear behaviour within the regimes.

The regime-wise results show that per capita energy use has a statistically significant positive effect on
GDP only in the 2003-2011 oil-boom period, and is insignificant in all other regimes. This pattern is
consistent with the region's economic history: during the boom, high oil prices and expanded energy
production directly translated into higher output and investment, including in logistics and service
infrastructure. Outside that period, the marginal contribution of additional energy use to GDP appears
weak or muted, possibly due to inefficiency, saturation effects, or structural constraints.

Electricity consumption, by contrast, displays a robust positive association with GDP in the full-sample
models, highlighting its critical role as a complementary input for production, logistics, and digital
services. The contrast between the unstable effect of energy pc and the more stable role of elec pc
suggests that the composition and efficiency of energy use, rather than aggregate volume alone, is
crucial for supporting sustainable growth in logistics-intensive economies.

From a methodological perspective, the comparison between the “single-regime” and “multi-regime”
approaches is instructive. The first approach (full-sample, time-invariant coefficients) yields a single,
misleading average effect—no significant role for energy pc—which does not reflect the underlying
economic history. The second approach, combining Bai—Perron structural break detection with regime-
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wise estimation, recovers a richer, more nuanced dynamic story of how the energy—growth relationship
evolves across distinct economic episodes.

This supports the view that structural breaks should be treated as a central modelling feature rather than
a nuisance, particularly in regions and sectors subject to recurrent shocks.

6. Conclusion

This study set out to examine whether the apparent nonlinearity in the energy—growth relationship in
six Middle Eastern economies is intrinsic or mainly a consequence of unmodelled structural breaks.
Using panel data for 1970-2022, we first estimated standard pooled, fixed-effects, and random-effects
models, then applied Bai—Perron multiple structural break tests to identify common break dates, and
finally re-estimated models within each structurally stable regime.

The main conclusions are:

1. Full-sample panel models suggest that per capita energy use does not have a stable, statistically
significant effect on GDP once country heterogeneity is controlled for, while per capita
electricity consumption has a robust positive effect.

2. Structural break analysis identifies four statistically significant breakpoints (1978, 1995, 2002,
2011), partitioning the sample into five regimes that correspond to distinct economic and
political episodes.

3. Regime-wise estimations reveal that the effect of energy pc on GDP is significantly positive
only during the 20032011 oil-boom period and insignificant in all other regimes. In contrast,
linear models are adequate within the first four regimes.

4. RESET tests indicate that linearity holds within regimes 1-4, while the post-2011 regime
exhibits residual nonlinearity, suggesting that more complex dynamics may characterise the
recent period.

Taken together, these findings demonstrate that what appears to be nonlinear behaviour in long-horizon
panel data can be explained mainly by structural instability. The energy—growth nexus in the region is
better characterised as a sequence of regime-dependent linear relationships than as a stable nonlinear
function over the entire sample.

The results carry several implications:

1. Regime-contingent planning of energy-intensive logistics systems. The strong, statistically
significant impact of energy use on GDP during the 2003-2011 boom, contrasted with its
insignificance in other periods, implies that the effectiveness of energy-intensive investments
in transport corridors, warehousing, and port infrastructure is highly regime-dependent.
Planning frameworks should therefore incorporate scenario analysis aligned with structural
regimes rather than extrapolating from full-sample averages.

2. Prioritising electricity reliability for service and digital platforms. The consistent importance of
electricity consumption as a predictor of GDP underscores the central role of reliable power
supply for modern service systems and digital logistics platforms. Investments in electricity
infrastructure, grid stability, and renewable integration can have broad productivity effects,
particularly for logistics, e-commerce, and information services.

3. Model choice for decision-support and analytics. For practitioners building decision-support
tools and analytics systems, the findings caution against automatically adopting complex
nonlinear models whenever full-sample tests reject linearity. Instead, structural break
diagnostics and regime-wise linear models may offer a more interpretable and operationally
useful basis for forecasting and policy evaluation, especially when models need to be embedded
in information systems used by non-specialist decision makers.
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4. Design of adaptive, regime-aware policies. Policymakers should recognise that energy policies
that worked effectively during one regime (e.g., the oil boom) may not be appropriate in others
(e.g., post-2011). Adaptive, regime-aware strategies—such as adjusting fuel subsidies,
investing in logistics efficiency, or diversifying energy sources—are more likely to succeed
than uniform, time-invariant policy rules.
Overall, the transition from static, single-regime analysis to dynamic, regime-aware panel modelling is
not merely a technical refinement; it is a necessary step toward a more realistic and policy-relevant
understanding of energy-driven growth processes in logistics- and service-intensive economies.
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