
 

176 
 

ISSN 2409-2665 
Journal of Logistics, Informatics and Service Science 

Vol. 12 (2025) No. 7, pp. 176-195 
DOI:10.33168/JLISS.2025.0711 

 

An Integrated Hypothesis-Based Evaluation of Meta-Learning, 
Behavioral Analysis, and Inventory Correction in Retail 

Forecasting 

B. S. Suresh1* and M. Suresh2 
1 Department of Management Studies, St. Peter’s Institute of Higher Education and Research, 

Chennai, India 
2 Department of Commerce, St. Peter’s Institute of Higher Education and Research, Chennai, India 

bssuresh29@gmail.com, commercehod@spiher.ac.in 
 

Abstract. The accurate retail sales forecasting remains a challenge because of dynamic 
market fluctuations, promotional interventions and heterogeneous customer behavior. 
Conventional forecasting models frequently misinterpret sales variations arise from inventory 
inaccuracies, campaign effects or behavioral diversity. This hypothesis paper develops and 
validates a comprehensive model combining process, marketing and behavioral dimensions 
to improve retail demand forecasting accuracy. Ten hypotheses (H1-H10) are developed, with 
Adaptive Inventory Correction, sales volatility modeling, marketing influence, RFDM-based 
behavioral profiling, customer satisfaction, segmentation, price sensitivity, cross-category 
dependency, retention and combined forecasting structure. The developed Meta-Learning 
Learnable Long Short-Term Memory (Meta-LLSTM) network enables adaptive learning 
across product classes. Experimental results using multi-category e-retail data obtains 
superior performance of 56% reduction in RMSE and 42% in MAPE when compared to 
traditional methods. 

Keywords: adaptive inventory correction, customer satisfaction, hypothesis, marketing 
influence, retail sales forecasting and sales volatility modeling 
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1. Introduction 
Retail sales forecasting is much crucial yet challenging tasks in e-commerce and conventional retail 
industries, as that directly impacts inventory management, marketing strategies, pricing decision and 
customer satisfaction (Petropoulos, F et al., 2025). Precise forecasting enables that organizations 
balances supply with demand (Babu, K.S, et al. 2024), reduce stockouts and overstocking and improve 
profitability (Riachy et al., 2025). Conventional forecasting methods like ARIMA and regression have 
majorly utilized but failed to capture complex (Kuo, R.J et al. 2023), nonlinear and dynamic nature of 
consumer demand in digital retail ecosystems (Trapero et al., 2024). The recent advancements in 
Machine Learning (ML) and Deep Learning (DL) like Recurrent Neural Networks (RNN) (Chan, H, et 
al. 2024), Long Short-Term Memory (LSTM) (Haval, A.M. et al. 2025) and hybrid methods (Jahin, 
M.A et al. 2024) have shown superior in enhancing prediction accuracy (Ginting, N.B, 2025). Though, 
these methods often consider sales as isolated time-series signals, essential external and behavioral 
parameters like inventory inaccuracies (Rafi, M.A et al., 2025), sudden demand volatility, marketing 
campaigns, customer engagement patterns, price elasticity (Wu, J, 2024) and cross-category 
dependency.  

By avoiding these aspects outcomes in biased predictions which misalign with managerial decisions 
in regions like replenishment planning, promotional budgeting and customer retention strategies 
(Suresh, B.S and Suresh M, 2024). For addressing these gaps, this hypothesis paper developed 
comprehensive model which combines adaptive inventory correction (Sharma, D.R et al., 2025), 
volatility modeling, marketing interventions, customer behavioral profiling (Juju, U et al., 2025), 
satisfaction signals, segmentation strategies (Kim, S et al. 2024), price sensitivity, cross-category 
relationship and retention dynamics. By systematically embedding these real-world parameters to 
forecasting frameworks (Walia, I.K et al., 2025), proposed model (Liang, M et al. 2024) is hypothesized 
to effectively enhancing predictive accuracy and managerial applicability when compared to traditional 
methods. 

1.1. Contribution 
The primary contribution of this paper is given below: 

• Hypothesis-based Forecasting Model – Developed and validated 10 different hypotheses (H1-
H10) spanning inventory dynamics, sales volatility, marketing influence, behavioral profiling 
(RFDM), customer satisfaction, segmentation, price sensitivity, cross-category dependencies, 
retention and systemic integration. Unlike traditional models, this unified hypothesis model 
connects process fidelity, customer behavior and strategic levers in e-retail forecasting. 

• Meta-Learning Improved Forecasting model – Developed an Integrated Meta-LSTM method 
with adaptive activation (MPELU) which dynamically integrates multi-source features. The 
model obtains superior error minimizations, determines robustness of integrating deep 
sequence modeling with hypothesis-guided input modeling. 

• Cross-Domain Feature Fusion – The model bridges quantitative signals like inventory levels, 
price elasticity, volatility with qualitative indicators like customer satisfaction, churn likelihood, 
segmentation by unified data pipeline. This cross-domain feature integration ensures 
interpretable predictions which are statistically accurate. 

The rest section of this manuscript is organized as: Section 2 provides literature review of existing 
models. Section 3 provides the hypothesis, methodology and dataset description. Section 4 explains the 
results and discussion of hypothesis. Section 5 concludes a paper. 

2. Literature Review 

2.1. Forecasting models 
Retail demand forecasting has analyzed from traditional time-series models towards data-based 
Machine Learning (ML) and Deep Learning (DL) algorithms which effectively capture nonlinearities, 



Suresh & Suresh, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 7, pp 176-195 

178 
 

seasonality and long-range dependencies (Zhang, X et al., 2024). Traditional methods remain useful for 
stationary series but fails on complex retail data highlighting promotions, stockouts and cross-category 
impacts. Hybrid and deep models (Mitra, R et al. 2024) have shown consistent enhancements in retail 
forecasting accuracy when comparing to single-architecture models. 

2.2. Meta-learning and adaptation for time-series 
The primary drawback of numerous forecasting models is limited adaptability for new stores, products 
or sudden shifts. Meta-learning has evolved as practical solution (Alparslan et al., 2024), recent 
researches have demonstrated that meta-learned initializations or meta-approaches facilitates quick 
adaptation over relevance time series and effectively enhance performance when few amounts of task-
specific information are available. Two phase meta-learning and collaborative meta-learning models 
(Mahin, M.P.R et al. 2025) have developed for handling concept drift and for transferring knowledge 
over heterogeneous time series, makes meta-learning especially attracts to dynamic retail environments. 
These outcomes motivate combining meta-learning to LSTM based forecasting for ensuring rapid 
adaptation for promotions, seasonality shifts and new-product behavior. 

2.3. Inventory inaccuracies and need to correction 
Inventory distortion involves phantom inventory, mis-recorded stock and delayed replenishments is 
huge, well-documented source of forecasting error and lost sales. Industry and academic studies 
quantify huge process and revenue costs of inventory imprecision, research represents that correcting 
inventory signals materially enhances downstream demand estimated and replenishment decisions. 
These outcomes directly justifies Adaptive Inventory Correction (AIC) hypothesis (Farias et al., 2024), 
methods that identify and correct inventory imprecision generate much reliable sales curves and less 
forecasting error. 

2.4. Promotions, pricing and causal drivers 
Promotional activity and price modifies are main divers of short-term sales spikes and subsequent bias 
forecasts whether acts as exogenous noise (Rungruang et al., 2024). Recent researches highlight that 
promotion metadata and price elasticity attributes substantially maximize forecasting accuracy, 
practically promotion-based and causally informed forecasting systems minimize promotional 
forecasting errors and enhance replenishment planning (Si, C et al. 2024) . Process on causal forecasting 
to pricing further suggest that explicitly modeling a causal prices to demand relationship generated good 
demand and pricing decision than purely correlational methods. 

2.5. Customer behavior, RFDM and segmentation 
Behavioral profiling by RFM and their extensions remains the powerful, interpretable algorithm to 
summarize customer purchase dynamics. Recent researches extend RFM (Eglite and Birzniece, 
2022)with diversity and temporal dynamics and integrate that with clustering or time-series clustering 
to generate dynamic segments which better extract heterogeneity in purchasing patterns. This 
segmentation enhances predictive performance and improves managerial interpretability, enables 
targeted promotions and inventory strategies to different customer cohorts. Embedding RFDM 
attributes to forecasting models have been shown to enhance predictions for products where cohort 
behavior is main demand driver.    

2.6. Cross-category interactions, retention and satisfaction signals 
Recent researches shows cross-category dependencies and customer retention or satisfaction signals as 
under-used but significance predictors (de Castro Moraes, T et al., 2024). Capturing product 
interdependencies enhances bundle and complement demand forecasts, satisfaction measures highly 
influence repurchase probability and that enhance medium to huge horizon forecasts while included to 
methods. These process and behavioral attributes complement time-series patterns and minimize 
systematic bias in long-term planning. 
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From the literature shows that deep models and meta-learning provides higher gains on complex 
and dynamic retail series, inventory distortions and promotional interventions are main real-world 
drivers of forecast error and RFDM and dynamic segmentation enhance method interpretability and 
cohort-level accuracy. Though, there is still no majorly adopted, unified model which combines 
inventory correction, volatility or promotion modeling, RFDM behavioral attributes, prices elasticity, 
cross-category dependency modeling and meta-learning adaptation in individual forecasting model. 
This motivated a group of hypotheses developed in manuscript, integrating this process and behavioral 
dimensions to Meta-LLSTM model enhance predictive measures and managerial applicability. 

3. Hypothesis 

3.1. H1 – Inventory Dynamics Hypothesis 
Inventory inaccuracies like phantom stockouts or delayed replenishments, develop mislead 
sales signals. Like, whether a product goes out of stack but remains recorded as available, the 
volume of sales appears low. Traditional forecasting methods interpret as minimized demand 
instead of misreported availability, causes under-forecasting in following times. Adaptive 
Inventory Correction (AIC) models identify those anomalies through reconciling Point-of-Sale 
(PoS) information with replenishment patterns, by restoring integrity of sales curves. By 
enhancing inventory data field, forecasts become much reliable to supply chain decisions, 
minimizing overstocking and lost sales. The incorporation of inventory correction mechanisms 
effectively minimizes forecasting error through overcoming distortive affect of inventory 
imprecision in e-retail information streams. 

3.2. H2 – Sales Volatility Hypothesis 
E-retail demand frequently experiences extreme fluctuations spikes in holiday promotions or 
deep troughs in off-seasons. Traditional methods optimized to trend smoothness, consider these 
fluctuations as statistical noise. Though, volatity is meaningful predictor, represents customer 
reposnsiveness for time-sensitive events. Explicits volatity introduced features which captured 
baseline demand, amplitude and frequency of short-term deviations. This allows managers for 
proactive prepare for flash sales, holiday rushes or sudden slowdowns, aligns resources much 
efficiently. Explicit modeling of sales volatility, encompassing dips and spikes, enhances 
forecasting precision comparing with method which generalizes demand by temporal 
averaging. 

3.3. H3 – Marketing Influence Hypothesis 
Marketing campaigns, advertisements and discounts develop significant but temporary demand 
lifts. Methods which ignore these interventions may misclassify campaign-based spikes as 
baseline development or fails to anticipate post-promotion deadlines. Including marketing 
attributes like campaign type, discount rate, frequency of exposure ensures forecasts to 
differentiate among organic demand and stimulated demand. This enhances feature accuracy, 
allows firms to validate marketing ROI and allocates budgets with precision. This also prevents 
overestimation of baseline demand once promotions end. This combination of marketing and 
promotional attributes into forecasting methods improves prediction accuracy through 
extracting campaign-based demand surges in e-retail environments. 

3.4. H4 – Customer Behavioral Hypothesis 
The RFDM model provides multidimensional representation of customer engagement: 

• Recency extracts how recently a customer has purchased 
• Frequency represents repeat purchasing  
• Monetary value calculates contribution to revenue 
• Diversity represents product variety, differentiating loyalist buyers from exploratory ones. 
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Embedding RFDM attributes allows method to segment and predict demand depended on original 
consumer psychology, not just raw transaction counts. This ensures forecasting methods to identify 
revenue concentration in high-value customers, predict adoption of new products through exploratory 
buyers and superior extraction of cohort-specific purchasing rhythms. Behavioral profiling through 
RFDM effectively enhances demand forecasting performance through embedding customer 
engagement dynamics into predictive methods. 

3.5. H5 – Customer Satisfaction Hypothesis 
Repeat purchase behavior is highly influenced through satisfaction with factors like product quality, 
delivery reliability, customer service and checkout ease. Conventional forecasting assumes uniform 
repurchase probability, ignores churn caused through dissatisfaction. Combining satisfaction signals 
transfers qualitative feedback to quantitative predictors of future sales. Incorporating satisfaction 
ensures long-term forecasts are grounded in what customers buy and also if it will continue buying. 
This helps proactive strategies to enhance service quality and preserve churn. Incorporation of customer 
satisfaction indicators in forecasting pipelines improves long-term predictive accuracy of e-retail 
demand methods. 

3.6. H6 – Segmentation Hypothesis 
Customer populations are not homogeneous. High-value customer, price-sensitive shoppers and 
occasional buyers exhibits various purchasing trajectories. Forecasts in aggregate level blur these 
variances. By employing clustering models like K-means to RFDM vectors, cohorts with different 
behaviors are identified. Forecasting methods which process in cohort level and next aggregate 
outcomes obtain high precision. Segmentation enhances accuracy and also improves managerial 
interpretability, enables target marketing strategies and varied inventory allocation. Forecasting 
methods augmented with customer segmentation obtain better accuracy through preventing behavioral 
heterogeneity across different customer cohorts.  

3.7. H7 – Price Sensitivity Hypothesis 
Demand elasticity varied across classes and customers. Electronics may experience sharp spikes while 
discounted, when significant items remain stable. Forecasting which ignores pricing elasticity risks 
underestimates discount-based surges and overstating baseline stability. Through embedding discount 
rates, competitor prices and elasticity coefficients, methods become sensitive to price-based demand 
shifts. This helps dynamic pricing strategies, ensures firms to increase revenue when balancing stock 
levels against price elasticity. Dynamic representation of price sensitivity enhances forecasting 
method’s capability for predicting demand fluctuations in e-retail environments. 

3.8. H8 – Cross-Category Dependency Hypothesis 
Purchases in e-retail are rarely independent. Smartphones based charger and case sales, groceries based 
complementary product purchases. Forecasting methods which consider classes independently fails to 
extract these dependencies. Capturing inter-category relationships includes bundle effects, improving 
accuracy. This enhances forecasting upselling, cross-selling and bundle promotions, directly helping 
merchandising strategies. The explicit modeling of cross-category dependencies improves demand 
forecasting accuracy through using inter-product correlations in e-retail transactions. 

3.9. H9 – Customer Retention Hypothesis 
Long-term dema trajectories are shaped through retention and churn. Forecasts assuming static 
engagement overestimated future sales volumes. By including loyalty indicators and churn, methods 
generate calibrated forecasts which represents original customer persistence. This process allows firms 
to stabilize long-term planning, discounting overoptimistic projections and developing interventions to 
enhace retention. Forecasting methods which icnludes likelihood and loyalty scores obatin much precise 
projections of future sales volumes than methods relies solely on historical purchase data. 
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3.10. H10 – Integrated Framework Hypothesis 
While each of previous hypotheses addresses single forecasting dimension, retail demand is shaped 
through intersection of all. Integrated forecasting model which integrated inventory field (H1-H2), 
marketing and pricing (H3, H7), behavioral and satisfaction dimensions (H4-H5), structural 
heterogeneity (H6), relational interdependencies (H8) and retention effects (H9) obtains holistic 
improvements. The integrated model enhances forecasting metrics like RMSE, MAE, R2, MAPE and 
SMAPE, provides strategic interpretability, enables to align forecasts with actionable levers like 
replenishment, promotions, pricing and retention. A unified forecasting model which combines 
inventory correction, volatility modeling, marketing influence, behavioral profiling, customer 
satisfaction, segmentation, price sensitivity, class dependencies and retention indicators outperformed 
isolated methods in predictive accuracy and managerial applicability. The conceptual overlap between 
some hypothesis especially H3 (price elasticity) and H5 (marketing promotion) is evaluated to ensure 
orthogonality and different causal interpretation. Though both variables represent marketing uses 
influencing short-term demand, its mechanisms of action varied fundamentally. 

• Price elasticity (H3) captures continuous sensitivity of demand for price variations, by elasticity 
coefficients and price indices. 

• Promotion intensity (H5) captures binary or episodic marketing events which temporarily 
modified consumer awareness and conversion rates. 

Every hypothesis is evaluated by corresponding measurable constructs dived from transaction logs, 
promotional metadata or behavioral indices. Enhancements are quantified as percentage changes in 
forecasting metrics related to baseline LSTM and ARIME methods. Thos ensures that every hypothesis 
is empirically verified in unified Meta-LLSTM learning model. The below Table 1 represents the 
hypothesis definition, conceptual relations quantitative constructs and validation metrics for hypotheses 
H1 to H10. 

 
Table 1. Hypothesis definition, conceptual relations, quantitative constructs and validation metrics for 

Hypotheses H1 to H10 
Hypothesis 

 
Conceptual Relation Quantitative Mapping 

(Variable/ Constructs) 
Validation Metric 

H1 – Inventory 
Dynamics 

Correcting stock 
distortions enhances 

forecasts 

Inventory distortion index 𝑠𝑠𝑡𝑡 − �𝑠𝑠{𝑡𝑡−1} − 𝑦𝑦𝑡𝑡 + 𝑟𝑟𝑡𝑡� 

H2 – Sales 
Volatility 

Explicit volatility features 
enhance forecasts 

Volatility features = 𝜎𝜎𝑡𝑡(𝑦𝑦), 
over rolling window, 

captured through feature 
embedding 

MAE reduction, R2 

H3 – Marketing 
Influence 

Promotion metadata 
enhanced prediction 

Binary/continuous campaign 
variables (discount rate, ad 
frequency) added to input 

tensor 

MAPE, campaign period 
RMSE 

H4 – Customer 
Behavior (RFDM) 

Behavioral profiling 
enhances accuracy 

RFDM features normalized 
in input vector – recency, 

frequency, monetary, 
diversity 

R2 across customer 
segment 

H5 – Customer 
Satisfaction 

Satisfaction signals 
enhance long-term 

accuracy 

Numeric satisfaction values 
(1-5) or binary feedback 

sentiment features 

RMSE at 3-6 month 
horizon 

H6 - Segmentation Segment-wise forecasting 
minimizes bias 

Cluster assignments 
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖) as categorical 

RMSE per cluster, 
weighted aggregate 
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variable to per-segment 
submodel 

H7 – Price 
Sensitivity 

Dynamic price elasticity 
enhances forecast 

Elasticity = 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ , discount 
rate and competitor price 

embeddings 

MAPE in promotion 
periods 

H8 – Cross 
category 

Dependency 

Inter-class correlations 
improve accuracy 

Pairwise cross-correlation 
matric of category sales as 

auxiliary graph 

SMAPE bundle forecast 
gain 

H9 - Retention Loyalty or churn 
probability enhances long-

term projection 

Retention score = exp(-
churnrate*t) from historical 

transactions 

R2 and long horizon 
RMSE 

H10 – Integrated 
Framework 

Integrated dimensions 
outperformed isolated 

Meta-LLSTM with all 
modules vs ablated models 

Aggregate RMSE, R2 

 
The hypotheses (H1-H10) directly guided structural design of Meta-LLSTM model. Every managerial 
and behavioral constructs like promotion, elasticity, RFDM and inventory correction is presented as 
corresponding input feature or adaptive component in model. The H1 and H8 motivated incorporation 
of AIC module, H4 to H6 influenced behavioral embedding layer derived from RFDM and cross-
category features and H9 to H10 shaped meta-learning update mechanism. This alignment ensures that 
model process relationship in hypothesis model.  

3.11. Dataset 
The dataset used in this research contains 25,118 records collected from different cities. The data 
accounts for 60% from Bangalore, 20% from Hyderabad, 15% from Chennai, and 5% from Delhi and 
Mumbai. The data distribution in terms of age, gender, commodities and monthly income is illustrated 
in Figure 2. The Point of Sales (PoS) data is collected from retail stores involved in clothing, electronics, 
and other sectors. This PoS data includes the following information: customer data, promotion data, 
category-specific data, transaction data and store data. The customer data is also labelled with gender, 
purchase frequency, age group and loyalty status, while the promotion data includes a record of ongoing 
marketing campaigns during purchase, transaction data includes applied discounts, product ID, 
transaction time and date, sale details, quantity and price, store data includes regional factors, store size 
and location, and finally, category-specific data includes the information about specific product details. 
Additionally, inventory data is also considered for forecasting retail sales. The figure 1 represents 
dataset disctribution 

 
Fig. 1: Dataset distribution in terms of age, gender, commodity and monthly income 
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3.11.1. Pre-processing of data 
The raw retail sales data included customer, product, promotion and transaction-level features gathered 
from Point-of-Sale (PoS) systems. Data cleaning involves removing duplicates, resolving inconsistent 
entries and transferring categorical features using label encoding. All continuous variables are 
normalized by Min-Max normalization to maintain uniform scale between 0 and 1, enhancing 
convergence behaviour of Meta-LLSTM method. The essential phase in pre-processing is handling 
missing values, that occurred in sales and inventory records because of delayed updates, sensor errors 
or incomplete customer data. To validate influence of various imputation strategies on forecasting 
accuracy, three different cases are examined. 

Case 1 – Removing Missing values 
In this model, all records including missing or null entries are removed. Though this algorithm 
minimizes the dataset size, this ensures that use of complete and reliable data. The dataset is actually 
large and well-distributed, data loss did not highly impact learning diversity. Model trained on this 
refined data shows highest accuracy, as data noise and statistical bias caused by imputation are removed. 

Case 2 – Expectation-Maximization (EM) Imputation 
EM approach is utilized to iteratively evaluate missing values by maximum likelihood estimation. In 
Expectation phase (E-Step), missing entries are predicted by observed variables, when in Maximization 
phase (M-step), model parameters are updated to increase likelihood of observed data. EM preserved 
feature interdependencies and temporal correlations, obtained enhanced outcomes when comparing 
with simple averaging models. Though, minor estimation bias is introduced because of iterative 
approximation. 

Case 3 – Mean Imputation 
In this case, missing values are filled with arithmetic mean of every feature. Though computationally 
simple, this algorithm distorted variance and weakened relationships between correlated features. The 
resulting dataset become less representative of original sales fluctuations causes decline in forecasting 
accuracy. 

3.12. Meta-LLSTM  
The proposed Meta-LLSTM network extends traditional LSTM forecasting through including a bilevel 
meta-learning structure which ensures cross-task adaptation between heterogeneous product categories. 
Unlike one LSTM trained on pooled data, Meta-LLSTM performed two-phase optimization same to 
Model-Agnostic Meta-Learning (MAML). In inner level, every product class or time-series segment is 
acts as an independent forecasting task 𝑇𝑇𝑖𝑖. Model parameters 𝜃𝜃𝑖𝑖 are updated locally for that task by few 
gradient steps on task-specific training data 𝐷𝐷𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, its mathematical expression is given as Equation 
(1), 
 

𝜃𝜃𝑖𝑖′ = 𝜃𝜃 − 𝛼𝛼∇𝜃𝜃𝐿𝐿𝑇𝑇𝑖𝑖�𝑓𝑓𝜃𝜃 ,𝐷𝐷𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�                                                        (1) 
 

In outer level, shared meta-parameters 𝜃𝜃  are optimized through reducing aggregated loss on 
validation data 𝐷𝐷𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣 across all tasks, its mathematical expression is given as Equation (2), 
 

𝜃𝜃 ← 𝜃𝜃 − 𝛽𝛽∇𝜃𝜃 ∑ 𝐿𝐿𝑇𝑇𝑖𝑖 �𝑓𝑓𝜃𝜃𝑖𝑖′ ,𝐷𝐷𝑖𝑖
𝑣𝑣𝑣𝑣𝑣𝑣�𝑖𝑖                                                       (2) 

 
This meta-optimization learns globally effective initialization which allows rapid adaptation to 

unseen product categories or promotional contexts with minimal data. By this bilevel process, model 
learns to learn retail dynamics, enables superior generalization under domain shifts like new seasons, 
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price regimes or campaign events. Figure 2 represents the architecture of Meta-LLSTM network. 

 
Fig. 2 Architecture of Meta-LLSTM network 

Algorithm 
Initialize shared meta-parameters 𝜃𝜃 
For every meta-iteration do 
 Sample 𝑎𝑎 batch of tasks {T1, T2, …, Tn} 
 for every task Ti do 
  Compute task-specific parameters: 
   𝜃𝜃𝑖𝑖 = 𝜃𝜃 − 𝛼𝛼∇𝜃𝜃𝐿𝐿𝑇𝑇𝑖𝑖�𝑓𝑓𝜃𝜃 ,𝐷𝐷𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� 
 end for 
 Update meta-parameters using validation loss 
  𝜃𝜃 ← 𝜃𝜃𝜃𝜃∇𝜃𝜃 ∑ 𝐿𝐿𝑇𝑇𝑖𝑖�𝑓𝑓𝜃𝜃𝑖𝑖 ,𝐷𝐷𝑖𝑖

𝑣𝑣𝑣𝑣𝑣𝑣�𝑖𝑖  
end for 
Return optimized meta-parameters 𝜃𝜃∗ 

In retail forecasting, every product class exhibits unique demand characteristics but shares common 
behavioral and marketing structures. Meta-LLSTM captures these shared dynamics by meta-parameter 
initialization, when the inner adaptation fine-tuned local behavior patterns. This allows effective 
transfer of forecasting knowledge across product classes, support adaptive learning across product 
classes. 

3.12.1. Inventory correction 
Here, explicit model a small correction network which predict an additive correction 𝛿𝛿𝑡𝑡 to observe sales 
for inventory mis-reporting, its mathematical expression is given as Equation (3), 
 

𝛿𝛿𝑡𝑡 = 𝑟𝑟∅(𝑥𝑥𝑡𝑡 − 𝐿𝐿𝑡𝑡 , 𝑠𝑠𝑡𝑡 − 𝐿𝐿𝑡𝑡)  𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦�𝑡𝑡 = 𝑦𝑦𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑡𝑡                                               (3) 
 

In the above Equation (3), the 𝑟𝑟∅ represents small MLP/RNN parameters, 𝑠𝑠𝑡𝑡  represents stock or 
replenishment signals and 𝑦𝑦�𝑡𝑡 represents corrected sales utilized as forecasting target. Include explicit 
inventory-correction loss, so the correction is learned instead of hand-specified. 

3.12.2. Exogeneous Variables and Missing Data handling 
Meta-LLSTM model includes exogenous like price, promotion, elasticity and retention indicators 
directly into recurrent computation to enable that short-term interventions and long-term behavioral 
shifts influence hidden-state dynamics. Every time step vector 𝑥𝑥𝑡𝑡, its mathematical expression is given 
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as Equation (4), 
 

𝑥𝑥𝑡𝑡 = [𝑦𝑦𝑡𝑡−1,𝑝𝑝𝑡𝑡 ,𝜋𝜋𝑡𝑡 , 𝑒𝑒𝑡𝑡 , 𝑟𝑟𝑡𝑡 ,𝑏𝑏𝑡𝑡]                                                                         (4) 
 

In the above Equation (4), the 𝑦𝑦𝑡𝑡−1 represents previous or corrected sales, 𝑝𝑝𝑡𝑡 represents normalized 
price at time 𝑡𝑡, 𝜋𝜋𝑡𝑡  represents promotion or campaign intensity variable, 𝑒𝑒𝑡𝑡 represents price-elasticity 
estimate or discount ratio, 𝑟𝑟𝑡𝑡  represents retention or churn probability at time 𝑡𝑡  and 𝑏𝑏𝑡𝑡  represents 
behavioral vector contains LSTM gates by standard recurrence. The incorporation of 𝑥𝑥𝑡𝑡 ensures that 
exogeneous marketing and behavioral signals modify both cell-state update and hidden representation 
in every time step, enables model to adapt forecasts dynamically to contextual shifts like discounts or 
seasonal campaigns  

3.12.3. Embedding and Normalization Strategy 
Categorical variable like promotion type, campaign channel, customer segment are initially encoded by 
learned embedding layer, its mathematical expression is given as Equation (5), 
 

𝑧𝑧𝑡𝑡 = 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡)||𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡)                                              (5) 
 

Which is concatenated with numerical vector before fed to recurrent cell, its mathematical 
expression is given as Equation (6), 
 

𝑥𝑥𝑡𝑡 = [𝑦𝑦𝑡𝑡−1,𝑝𝑝𝑡𝑡 ,𝑒𝑒𝑡𝑡 , 𝑟𝑟𝑡𝑡 ,𝑏𝑏𝑡𝑡 ,𝑧𝑧𝑡𝑡]                                                                 (6) 
 

All continuous features are standardized in every category, its mathematical expression is given as 
Equation (7), 
 

𝑥𝑥𝑡𝑡
(𝑗𝑗) =

𝑥𝑥𝑡𝑡
(𝑗𝑗)−𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

                                                                              (7) 
This prevents scale imbalance between numerical and embedded inputs. 

3.12.4. Handling Missing and Irregular Data 
Because of retail data frequently includes missing promotions, delayed prices or absent feedback, Meta-
LLSTM combines hybrid mask-imputation mechanism. 

3.12.5. Feature-wise masking 
The binary mask vector 𝑚𝑚𝑡𝑡 represents observed features (1=observed, 0=missing). The LSTM input 
becomes, its mathematical expression is given as Equation (8), 
 

𝑥𝑥𝑡𝑡′ = 𝑚𝑚𝑡𝑡⨀𝑥𝑥𝑡𝑡 + (1 −𝑚𝑚𝑡𝑡)⨀𝑥𝑥�𝑡𝑡                                                               (8) 
 

In the above Equation (8), the 𝑥𝑥�𝑡𝑡 represents imputed estimate. 

3.12.6. Temporal imputation 
Continuous variables are forward-filled for short gaps, larger gaps are replaced through learnable linear 
interpolation model trained with forecasting module, its mathematical expression is given as Equation 
(9), 
 

𝑥𝑥�𝑡𝑡 = 𝑊𝑊𝑚𝑚[𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡+1] + 𝑏𝑏𝑚𝑚                                                                  (9) 
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3.12.7. Dropout regularization 
The temporal dropout layer randomly masks 5 to 10% of features in training to enhance robustness to 
real missingness. 

3.12.8. Auxiliary missingness encoding 
Mask vector 𝑚𝑚𝑡𝑡  itself is concatenated to input, allows network to learn pattern of missingness as 
informative signal. This algorithm maintains temporal consistency when reducing bias from ad-hoc 
imputations. The model evaluated by experimental design which links model behavior to hypothesis 
verification. By including every hypothesis variable as different feature block, Meta-LLSTM learn its 
relative contributions by weight adaptation and feature importance. The evaluation protocol, acts as 
performance benchmark and also statistical test of hypothesized relationship, measures how every 
factor impacts predictive accuracy. 

4. Results and Discussion by Hypothesis 
This section presented empirical validation and essential discussion for every 10 hypotheses. 
Quantitative outcomes are acquired by RMSE, MAE, R2, MAPE and SMAPE across gathered and 
benchmark datasets. Qualitative results are evaluated in terms of managerial applicability. The dataset 
included 25,118 retail transaction records gathered from Bangalore, Hyderabad, Chennai, Delhi and 
Mumbai is temporally ordered and separated to training, validation and testing partitions. Chronological 
integrity is preserved so that model learned from previous information to predict unseen demand 
patterns. 70% of data is used to train Meta-LLSTM and baseline models across all product categories, 
15% of data is used to hyperparameter tuning, includes learning rate, batch size, meta-learning rate and 
dropout threshold. Early stopping is employed when validation RMSE didn’t enhance for 15 
consecutive epochs and 15% of data used for testing for performance evaluation and statistical analysis 
of forecasting accuracy. All forecast in this manuscript is conducted at a daily temporal granularity, 
consistent with PoS transaction timestamps available in dataset. Every time step 𝑡𝑡 defines single day of 
aggregated sales and inventory activity per product category and store region. This is motivated by 
process cadence of retail decision-making, where the replenishment and promotion planning generally 
occurs on daily basis. The below Table 2 represents parameter description of the proposed model. 

 
Table 2. Hyperparameter description of proposed model 

Parameter Description Value 
Total records PoS + inventory dataset 25,118 

Input Window (L) Historical look-back length 28 days 
Forecast horizon (H) Future prediction window 7 days 
Validation method Rolling-origin, 5-folds Weekly stride = 7 

Optimizer Adam 0.001 
Batch size Sequences per update 64 

 
The quantitative outcomes derived from Meta-LLSTM are interpreted in context of 10 hypotheses 

formulated earlier. Performance measures like RMSE, MAPE and R2 with ablation and correlation 
analysis act as empirical results for hypothesis testing. Particularly, feature-specific enhancements and 
sensitivity results are mapped to theoretical constructs allows results section to transition from 
predictive evaluation to hypothesis validation. The below Table 3 represents the performance evaluation 
of proposed model with baseline algorithms. 

 
Table 3. Performance evaluation of proposed model with baseline algorithms 

Model RMSE (±𝟗𝟗𝟗𝟗% 𝑪𝑪𝑪𝑪) MAPE (±𝟗𝟗𝟗𝟗% 𝑪𝑪𝑪𝑪) p-value 
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Baseline ARIMA 2.68±0.18 14.8%±1.4% 0.009 
Baseline LSTM 2.34±0.12 12.3%±1.1% 0.007 

Meta-LLSTM without AIC 1.45±0.10 9.0%±0.8% 0.005 
Meta-LLSTM with AIC 1.03±0.09 7.1%±0.7% 0.004 
 
The mean performance measures show superiority of Meta-LLSTM as represented in below Table 

4, evaluates error variability across product classes is crucial to validate robustness of improvements. 
In accordance with RMSE and MAPE values are aggregated across all five rolling-origin test fold and 
its mean, standard deviation are calculated for every method.  

 
Table 4. Statistical analysis of proposed model with baseline algorithms 

Model Mean 
RMSE 

Std Dev 
(RMSE) 

Mean MAPE Std Dev (MAPE) 

Baseline ARIMA 2.68 0.18 14.8 1.4 
Baseline LSTM 2.34 0.12 12.3 1.1 

Meta-LLSTM without AIC 1.45 0.10 9.0 0.8 
Meta-LLSTM with AIC 1.03 0.09 7.1 0.7 
 
The recent advancements in deep time-series forecasting have introduced transformer-based and 

decomposition-based models like Temporal Fusion Transformer (TFT), N-BEATSx, PatchTST and 
Crossformer that obtain high accuracy. Though, retail PoD dataset utilized in this study differed from 
these standardized benchmarks in data density and feature heterogeneity including behavioral RFDM, 
inventory and promotion-specific variables not generally available on open datasets. The available data 
provides limited long-horizon continuity per category, makes transformer method causes overfitting. 
Meta-LLSTM’s gated recurrence is much stable under sparse, irregular retail series. Unlike TFT or 
Patch TST, Meta-LLSTM combined AIC mechanism and meta-learning update rule, provides 
interpretable corrections and rapid adaptation across product categories for managerial decision-making. 
Transformer-based forecast models requires high training resources and hyperparameter tuning, where 
Meta-LLSTM obtains superior short-horizon accuracy with less computational overhead as represented 
in below Table 5. 

 
Table 5. Performance evaluation of proposed model with transformer-based models 
Methods RMSE MAPE 

TFT 1.14 7.4 
N-BEATSx 1.22 7.8 
PatchTST 1.09 7.2 

Crossformer 1.06 7.0 
Proposed Meta-LLSTM 1.03 7.1 

 
To evaluate independent contribution of every hypothesis-based feature block promotion, price 

elasticity, behavioral RFDM and inventory correction, the ablation study is conducted in below Table 6. 
In every variant, one feature component is eliminated from Meta-LLSTM input vector when keeping 
all other setting constant. This process isolates marginal impact of every variable on forecasting 
accuracy and validated theoretical hypotheses (H1-H9) links managerial factors for predictive results.  

 
Table 6. Ablation study of proposed model 

Models Feature removed RMSE MAPE 
Meta-LLSTM (Complete model) All features included 1.03 7.1 

Without Promotion features Promotion intensity, campaign type 1.21 8.2 
Without elasticity variables Price elasticity, discount ratio 1.16 7.9 

Without RFDM features Recency, Frequency, Monetary, Diversity 1.27 8.6 
Without AIC correction Inventory correction and volatility index 1.45 9.0 
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Without Cross-category linkages Category correlation embedding 1.18 8.0 
 

Among these three algorithms, removing incomplete records (Case 1) obtained much reliable 
forecasting accuracy, enhancing RMSE by 4.9% when compared to EM-based imputation and by 16.8% 
when compared to mean imputation as represented in table 7. EM algorithm offers superior trade-off 
between data preservation and statistical accuracy, while mean imputation introduced bias through 
flattening data variability. Therefore, for huge and clean data, record removal remains much efficient 
pre-processing phase, whereas EM imputation is recommended for small or incomplete data where data 
retention is crucial. The performance of Meta-LLSTM model under every pre-processing scenario is 
calculated by RMSE, MAE and Coefficient of Determination. The below Table 8 represents the 
performance improvements of hypotheses. 

 
Table 7. Performance of proposed Meta-LLSTM model under every pre-processing scenario 

Cases Methods RMSE MAE R2 
 Case 1  Removing Missing values 0.985 0.142 0.993 

Case 2 Filling Missing values using EM 1.037 0.156 0.988 
Case 3 Filling Missing values using Mean 1.184 0.181 0.974 

 
The figures 3 to 5 represents comparative evaluation of 10 hypotheses in terms of forecasting 

performance enhancements measured by RMSE, R2 and MAPE metrics. RMSE improvements 
represents that hypotheses H1, H4 and H10 obtained high error reduction, shows that these are much 
effectively reduced prediction deviations. R2 improvement shows a consistent between H5 and H1 
determines strong power, represents improved correlation among predicted and actual sales values. The 
MAPE reduction shows that H4 and H10 obtained high percentage decrease, shows superior stability 
and generalization in forecasting. These results shows that model including optimized feature selection 
and adaptive learning outperformed by obtained less errors and strong by validating developed 
hypotheses regarding effectiveness of meta-learning.  

 
Fig. 3: Hypotheses performance in terms of RMSE 

 
Fig. 4: Hypotheses performance in terms of R2 
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Fig. 5: Hypotheses performance in terms of MAPE 

The figures 6 to 11 represents effect of six influencing factors such as inventory correction, sales 
volatility, marketing influence, customer behavior (RFDM), customer satisfaction and customer 
retention on overall forecasting and business performance measures. The results shows consistent 
improvements across all dimensions after employing proposed strategies. In H1, inventory correction 
effectively improved stock accuracy, order fulfillment and overall forecasting reliability, determines 
value of inventory issues. H2 represents that volatility optimization enhanced demand stability and sales 
forecast consistency, shows model capability to overcome unpredictable fluctuations. H3 shows that 
marketing adjustments increased engagement, conversion and recall shows impact of integrated 
marketing analytics. H4 determines that customer behavior modeling using RFDM features enhanced, 
loyalty and predictive accuracy, supports incorporation of behavioral profiling. H5 shows that 
satisfaction analysis improved delivery, checkout and service quality, enhanced overall customer 
perception. At last, H9 shows that retention optimization enhanced repeat purchase rated and brand 
affinity when minimizing churn. 

 
Fig. 6: Performance of H1 (Inventory correction) 

 
Fig. 7: Performance of H2 (Sales volatility) 
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Fig. 8: Performance of H3 (Marketing Influence) 

 
Fig. 9: Performance of H2 (Customer Behavior RFDM) 

 
Fig. 10: Performance of H5 (Customer Satisfaction) 

 
Fig. 11: Performance of H9 (Customer Retention) 
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Table 8. Performance improvements of H1 to H10 hypothesis 
Hypothesis Focus area RMSE 

Improvement 
R2 

Improvement 
MAPE 

Reduction 
Managerial 
impact 

H1 Inventory 
Correction 

56%↓ 17%↑ 42%↓ Enhanced 
replenishment 
scheduling and 
minimized lost 

sales 
H2 Sales 

Volatility 
24%↓ 11%↑ 21%↓ Improved 

forecasting in 
seasonal peaks 
and promotions 

H3 Marketing 
Influence 

33%↓ 14%↑ 28%↓ Enhanced 
campaign ROI 
estimation and 

budget allocation 
H4 Customer 

Behavior 
(RFDM) 

76%↓ 50%↑ 52%↓ Good 
targeting of loyal 
and exploratory 

customers 
H5 Customer 

Satisfaction 
19%↓ 9%↑ 18%↓ Enhanced 

long-term 
forecasting by 

churn prevention 
H6 Customer 

Segmentation 
22%↓ 12%↑ 20%↓ Much 

accurate cohort-
level forecasting 

and inventory 
allocation 

H7 Price 
Sensitivity 

24%↓ 10%↑ 23%↓ Enables 
dynamic pricing 

and discount 
optimization 

H8 Cross-
Category 

Dependency 

17%↓ 8%↑ 15%↓ Enhanced 
upselling and 

bundle promotion 
forecasting 

H9 Customer 
Retention 

22%↓ 12%↑ 19%↓ Precise long-
term planning 

through loyalty-
based adjustments 

H10 Integrated 
model 

58%↓ 19%↑ 44%↓ Unified 
enhancement 

across all 
forecasting 
dimensions 

4.1. H1 – Inventory Dynamics Hypothesis 
The inclusion of Adaptive Inventory Correction (AIC) minimized RMSE from 2.34 to 1.03 on gathered 
data, when R2 enhanced from 0.80 to 0.94. MAPE reduced by 42%. These outcomes shows that 
inventory correction prevents misinterpretation of stockouts as demand decline. Corrected demand 
curves aligned with physical stock movements, stabilizes forecasts. Retailers avoid overestimating 
demand drops, by enhancing replenishment scheduling and reducing lost sales. 
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4.2. H2 – Sales Volatility Hypothesis 
Models that explicitly extracted volatility obtained MAE minimization of 24% when comparing with 
baseline LSTM. The holiday sales, off-season declines are forecasted with high fidelity. Volatility 
features prevents smoothing of demand surges, ensures responsiveness to short-term fluctuations. 
Retailers anticipate staffing, logistics and inventory needs in high-volatility periods, minimizing 
operational bottlenecks. 

4.3. H3 – Marketing Influence Hypothesis 
Incorporating campaign metadata minimized forecasting error in promotion periods by 33%. For 
instance, RMSE in discount weeks dropped from 1.94 without marketing features to 1.33 with 
marketing features. The method efficiently separated baseline and promotion-based demand. Campaign 
spikes are precisely forecast without long-term demand curves. This helps precise ROI estimation to 
campaigns, enables budget reallocation towards high-performance interventions. 

4.4. H4 – Customer Behavioral Hypothesis 
RFDM integration minimized RMSE from 4.24 to 1.00, when R2 increased from 0.47 to 0.97, SMAPE 
enhanced by 52%. Behavioral signals, especially diversity, effectively enhanced accuracy through 
differentiating loyal buyers from exploratory customers. This ensures identification of high-value 
customer groups and informed targeted product recommendations, improving personalization.  

4.5. H5 – Customer Satisfaction Hypothesis 
Including satisfaction metrics like delivery ratings, checkout feedback, enhanced long-term forecasting 
accuracy. RMSE for quarterly predictions enhanced by 19% when comparing with methods without 
satisfaction data. Satisfaction signals predicted repeat purchase likelihood, stabilizes medium to long 
horizon forecasts. This allows proactive service enhancements in regions or cohorts with declining 
satisfaction, minimizing churn risk. 

4.6. H6-Segmentation Hypothesis 
Segment-based forecasting enhanced RMSE through 22% on customer-level predictions. High-value 
and in risk segments exhibited different demand trajectories which are precisely captures post-
segmentation. Segmentation preserves heterogeneity, minimizing dilution effect seen on aggregate-
level forecasts. This ensures differentiated marketing campaigns, retention strategies and inventory 
allocation across customer cohorts. 

4.7. H7 – Price Sensitivity Hypothesis 
Methods with dynamic pricing variables obtained 24% enhancement on MAPE when comparing with 
static-price methods. Discount-based surges, especially in electronics are forecast with high precision. 
Elasticity-based methods avoided overestimation of post-discount demand and underestimation of 
promotional spikes. This supports optimum discount depth calculation and dynamic pricing strategies 
for maximizing revenue without overstocking. 

4.8. H8 – Cross-Category Dependency Hypothesis 
Including cross-category dependencies enhanced RMSE by 17% in bundle-related classes. 
Complementary product sales are predicted with high reliability. Capturing inter-product correlations 
revealed hidden drivers of demand not visible in isolated class forecasts. This ensures much accurate 
upselling and cross-selling strategies, enhancing inventory co-planning and bundle promotions. 

4.9. H9 – Customer Retention Hypothesis 
Forecasting methods augmented with churn likelihood minimized long-term forecast error by 22%. R2 
maximized from 0.82 to 0.94 in 6 month of horizon predictions. Retention-based methods calibrated 
projections through discounting demand from high-risk customers and amplifying loyal segments. This 
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helps proactive retention strategies, loyalty program improvements and precise revenue planning across 
extended horizons. 

4.10. H10 – Integrated Framework Hypothesis 
The integrated Meta-LSTM model outperformed all models. Across datasets: RMSE=1.003, 
MAE=0.156, R2=0.991. MAPE minimized through 50 to 60% when comparing with traditional models. 
The integrated method obtained better adaptability, accuracy and generalization across datasets 
(Marketing Campaign, E-commerce). Statistical significance testing shown robustness. This provides 
holistic forecasting solution which directly informed replenishment, campaign planning, dynamic 
pricing, cross-category strategies and retention initiatives. 

5. Conclusion 
This hypothesis-based study determines that retail sales forecasting performance is substantially 
improved when process and behavioral dimensions are modeled together in adaptive learning model. 
The validation of 10 interlinked hypotheses shows that including inventory correction, volatility 
modeling, marketing metadata, RFDM behavioral attributes, satisfaction indicators, customer 
segmentation, pricing elasticity, cross-category dependencies and retention dynamics causes 
statistically significant accuracy gains across all forecasting measures. The combined Meta-LLSTM 
model obtained to 58% enhancement in RMSSE and 19% in R2 when comparing to conventional 
models, shows the model robustness of proposed model. These outcomes shows that demand 
forecasting as a time-series issue but a holistic decision-support model integrating marketing, process 
and customer relationship management. These results developed bridge predictive analytics with 
strategic business intelligence, enables data-based actions in pricing, replenishment and retention 
planning. 
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