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Abstract. This study aims to explore China's optimal reserve strategy during crises. To this 
end, this study developed an AI-based inventory management framework for China, which 
combines random forest/gradient boosting tree (GBDT) ensemble learning with buffer 
inventory safety stock rules, and validated it using data from the International Monetary Fund 
(IMF), the State Administration of Foreign Exchange (SAFE), and Bloomberg from 2000 to 
2023. Compared to traditional linear models, the integrated model reduces the mean squared 
prediction error of optimal reserves by 74% (3.21 vs. 12.34), and compared to using only the 
random forest model, it reduces the error by 44% (3.21 vs. 5.78). Empirical elasticity analysis 
shows that a 1% increase in GDP growth rate leads to a 0.56% increase in optimal reserves 
(t=12.34); conversely, a 1% increase in exchange rate volatility results in a 0.32% decrease in 
optimal reserves (t=–7.65). Under a crisis scenario (trade balance of -$50 billion, exchange 
rate volatility of 6%), the framework recommends immediately adjusting the reserve 
composition, increasing the gold ratio from 10% to 25% and the strategic materials ratio from 
5% to 15%, which is expected to reduce the anticipated shortfall cost by $3.2 billion annually. 
Through robustness tests using 10 random subsamples and extreme value cleaning, coefficient 
deviations are all controlled within ±7%. The framework demonstrates significant stability in 
terms of parameter adjustments and sample variations. The study proposes policy 
recommendations including improving reserve decision-making, strengthening buffer stock 
mechanisms, promoting asset diversification, and establishing intelligent management 
systems. These recommendations provide a scientific framework for reserve operations during 
crises. 

Keywords: International Reserves; Crisis Management; Dynamic Reserve Adjustment; 
Integrated Learning; Buffer Inventory Model 
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1. Introduction 
In the midst of mounting global economic turbulence, the determination of the optimal size and 
configuration of reserves during periods of crisis has become a pivotal concern for the assurance of 
national economic security (Xiao, 2023). The 1997 Asian financial crisis and the 2008 global financial 
crisis have demonstrated the limitations of traditional reserve management models in dealing with 
complex market fluctuations (Jiang et al., 2021). At present, China's international reserves are 
considerable, with foreign exchange reserves accounting for over 80% of the total. This structure poses 
significant risks in conditions of exchange rate volatility and substantial capital flows. The majority of 
extant research relies on single models, lacking systematic consideration of nonlinear relationships and 
uncertainties (Zhang, 2021). The present study proposes an integration and updating of the buffer 
inventory model with ensemble learning. This integration is achieved by leveraging multi-source data 
mining and dynamic modelling techniques. The objective of this integration is to redefine the 
benchmark for reserve policies during crises. The objective of this study is to provide theoretical and 
practical support for enhancing the scientific rigor and risk resistance of China's reserve management 
(Li & Sun, 2018). 

The extant literature on optimal reserve management has primarily focused on the adequacy of 
reserves and the factors influencing reserve accumulation. For instance, Xiao measured the adequate 
size of China's foreign exchange reserves and found that the current level of reserves is sufficient to 
meet the country's external payment needs (Shi, 2017). Jiang et al. conducted a study to ascertain the 
impact of US partisan conflict on China's foreign exchange reserves. The study concluded that political 
uncertainty in the US exerts a significant effect on China's reserve management. Jiahao Zhang's analysis 
of China's foreign exchange reserves and their impact on the macroeconomy revealed that reserve 
accumulation exerts a dual impact on the economy, exhibiting both positive and negative effects. A 
plethora of studies have previously investigated the correlation between financial reserves and a variety 
of economic indicators, including but not limited to Gross Domestic Product (GDP) growth, inflation, 
and trade balance (Nie, 2017). However, these studies have not yet fully addressed the issue of optimal 
reserve management during crises, particularly in the context of China's unique economic and financial 
environment. 

During crises, financial contagion can significantly impact the effectiveness of reserve management 
strategies. Financial contagion refers to the rapid spread of financial disturbances from one market or 
institution to others, often exacerbating the severity of economic downturns (Forbes& Rigobon, 2002). 
Studies such as those by Forbes and Rigobon (2002) have demonstrated that financial contagion can 
lead to sudden capital outflows and sharp currency depreciations, which in turn affect the adequacy and 
structure of international reserves (Bekaert et al., 2014). Understanding the mechanisms of financial 
contagion is crucial for developing robust reserve management frameworks that can mitigate the 
adverse effects of crises. For example, during the 2008 global financial crisis, countries with higher 
levels of financial integration experienced more severe capital flight and exchange rate volatility, 
highlighting the need for proactive reserve management strategies to counteract such contagion effects 
(Kaminsky & Reinhart, 1999). 

Institutional capacity also plays a vital role in managing economic uncertainty, particularly during 
crises. Strong institutional frameworks can enhance the resilience of reserve management by providing 
a stable environment for policy implementation and reducing the impact of external shocks (Rodrik, 
2018). Studies such as those by Rodrik (2008) have emphasized the importance of institutional quality 
in determining the effectiveness of economic policies, including reserve management (Rodrik, 2018). 
Countries with robust financial institutions and well-developed regulatory frameworks are better 
equipped to manage their reserves during crises, as they can more effectively allocate resources and 
respond to market fluctuations. For instance, the experience of emerging economies during the Asian 
financial crisis highlighted the importance of strong institutional capacity in mitigating the adverse 
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effects of capital outflows and exchange rate volatility (Stiglitz, 1998). 
Furthermore, the strategic reserve competition framework provides insights into the interactions 

between countries in managing their reserves. This framework examines how countries strategically 
adjust their reserve holdings to achieve macroeconomic stability and gain a competitive edge in 
international markets (Jeanne & Rancière, 2006). Studies such as those by Jeanne and Rancière have 
analyzed the strategic interactions between countries in managing their reserves and the implications 
for global financial stability (Jeanne & Rancière, 2011). In a world of imperfect capital mobility and 
exchange rate volatility, countries may engage in reserve competition to stabilize their currencies or to 
gain an advantage in international trade. For example, during periods of global economic uncertainty, 
countries may increase their reserve holdings to signal financial strength and attract foreign investment, 
thereby influencing the dynamics of global reserve management (Obstfeld & Rogoff, 2002). 

The present study proposes an integration and updating of the buffer inventory model with ensemble 
learning. This integration is achieved by leveraging multi-source data mining and dynamic modelling, 
with the aim of redefining the benchmark for reserve policies during crises. The objective of this study 
is to furnish theoretical and practical assistance to enhance the scientific rigour and risk resistance of 
China's reserve management (Fang & Liu, 2010). The present study proposes a methodology that 
combines the strengths of ensemble learning algorithms, such as random forests and GBDT, with the 
buffer inventory model. This combination of methodologies addresses a methodological gap in the 
extant literature. The model is notable for its ability to account for the nonlinear relationships and 
uncertainties that are inherent in reserve management. Furthermore, it provides a more robust and 
accurate framework for determining optimal reserve levels during crises. This integrated approach 
provides a novel perspective and practical guidance for improving China's reserve management during 
crises, a subject that has not been adequately addressed in previous studies. 

2. Method 

2.1 Multi-dimensional integration of research methods 
This study employs a comprehensive quantitative and qualitative analysis approach to explore the 
optimal reserve of China in a crisis period from multiple dimensions. 

In quantitative analysis, data mining technology is utilised to extract key information from vast 
amounts of financial data, thereby providing a solid foundation for subsequent analysis and modelling 
(Vanaga et al., 2020; Li et al., 2016). Time series analysis is employed to process time series data, 
including the scale of international reserves, the composition of foreign exchange reserves, and 
economic growth indicators, to uncover trends and patterns over time. Correlation analysis is a method 
of assessing the strength of relationships between different variables. For instance, it can be used to 
identify the primary factors influencing international reserves by examining the correlation between 
these reserves and exchange rate fluctuations, trade balances, and capital flows. 

In qualitative analysis, case studies are utilised to select representative crisis events, such as the 
1997 Asian financial crisis and the 2008 global financial crisis. These studies examine the reserve 
management strategies, policy responses, and outcomes of countries during these crises. By analysing 
these cases, the successes and failures of reserve management in different crisis situations are 
summarised, providing valuable insights for China's reserve management during crises (Neely, 2020). 
Furthermore, a range of experts were interviewed and existing literature was reviewed to gather and 
organise the views and research findings of domestic and international experts on international reserve 
management. This approach provides a solid theoretical foundation for the study by exploring the 
methods and strategies for determining optimal reserves during crises. 
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2.2 Data collection channels and processing strategies 
The data collection for this study encompasses a broad spectrum of significant domains, including 
reserve sizes, economic indicators, and market fluctuations. The collection of data from multiple 
channels is an essential step in ensuring the comprehensiveness and accuracy of the final results (Zhang 
et al., 2015; Al-Hassan et al., 2022). One of the primary sources is the database of international 
organisations, particularly the official database of the International Monetary Fund (IMF), which 
provides detailed information on global international reserves, including foreign exchange and gold 
reserves. This data is considered authoritative and comprehensive, offering a global perspective on 
reserve sizes for research. The World Bank database contains extensive economic indicator data, 
including but not limited to GDP, inflation rates, and interest rates. These are crucial for analysing how 
economic conditions impact reserve sizes. 

Data source: a) IMF: International Financial Statistics (IFS) – reserve assets, exchange rates, 
released on May 15, 2024. DOI:10.5089/9798402424527. 

b) World Bank: World Development Indicators (WDI) – GDP, trade balance, CPI, 2024-06-01 CSV 
dump. 

c) SAFE (State Administration of Foreign Exchange): China International Balance of Payments 
Report 2000-2023, Excel series “bop_2000_2023.xlsx”. 

d) Bloomberg: BLOOMBERG PROFESSIONAL® service, tickers CNY CURNCY, USDCNH 
CURNCY, 2000-01-03 to 2023-12-29 daily close. 

e) WIND: Wind Economic Database (WED), tables “w_consensus” and “w_fx_trade”, snapshot as 
of May 20, 2024. 

Official reports issued by various governments are also an indispensable source of data (Lu et al., 
2014). The China National Administration of Foreign Exchange (CNAF) is responsible for the 
publication of the 'China International Balance of Payments Report', which provides detailed records of 
China's international reserves, their structure, and foreign exchange market interventions. This report 
offers first-hand insights into China's reserve situation. Government statistical yearbooks contain a 
plethora of macroeconomic and industry data, enabling a multifaceted analysis of the relationship 
between reserves and the economy. 

With regard to financial market data, professional financial data providers such as Bloomberg and 
Reuters supply real-time data, including exchange rates, stock indices, bond yields, and more. This data 
is crucial for analysing the impact of market volatility on reserves (Zhang et al., 2014; Du et al., 2014). 
Domestic financial data platforms, such as Wind Information, also provide a substantial amount of data 
on China's financial markets, encompassing sectors including stocks, bonds, foreign exchange, and 
commodities. This fulfils the research requirements for domestic market fluctuations. 

The time span of the dataset utilised in this study extends from 2000 to 2023, encompassing 
numerous significant crises that have exerted substantial influence on the global economy and financial 
markets. The dataset under consideration encompasses the global financial crisis of 2008, the pandemic 
of 2020 caused by the novel severe acute respiratory syndrome (SARS-CoV-2) virus, and the 
geopolitical conflicts of 2022. These crises represent a range of economic and financial shocks, 
including financial market turbulence, public health emergencies, and geopolitical tensions, which have 
all had a significant impact on international reserves and their management. The incorporation of these 
crises within the dataset is intended to facilitate the capture of the dynamic changes in reserve 
management strategies and their effectiveness under various crisis scenarios. This, in turn, is expected 
to enhance the model's generalizability and practical applicability. 

The selected period is representative of crisis dynamics as it encompasses a wide range of economic 
and financial conditions, from periods of economic prosperity to deep recessions and crises. This 
enables the model to acquire knowledge from a variety of scenarios and to make more accurate 
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predictions regarding optimal reserve levels under differing conditions. The incorporation of multiple 
crises serves to mitigate the model's bias towards a particular type of crisis and ensures its adaptability 
to a range of future uncertainties. 

The collected data must undergo rigorous cleaning and preprocessing to ensure its quality and 
usability. During the process of data cleansing, the presence of duplicate records is identified through 
the comparison of unique identifiers or key attributes. This ensures that identical records are eliminated, 
thus preventing them from having an impact on the analysis results. The selection of appropriate 
methods for handling missing values is based on the characteristics and distribution of the data (Gupta 
et al., 2014). In instances where the proportion of missing values is minimal, records containing such 
values can be deleted. In instances where the proportion of missing values is significant, interpolation 
methods such as mean, median, or model-based prediction can be employed to address the missing 
values. To illustrate this point, consider the case of continuous data, such as GDP. In instances where 
missing values are present, these can be addressed through the utilisation of the mean or median as a 
substitute. In the context of time series data, linear interpolation or predictions based on time series 
models can be utilised to impute missing values (Chen & Liu, 2013). 

In order to ascertain the suitability of the imputation methods, a validation subset was created by 
randomly selecting 20% of the data. The performance of mean interpolation and time-series prediction 
methods was then compared on this subset. The findings indicated that time-series prediction exhibited 
a mean absolute error (MAE) of 0.85, which is notably lower than the MAE of 1.23 observed in mean 
interpolation. This finding suggests that time-series prediction is a more suitable approach for imputing 
missing values in time series data, as it is better able to capture the temporal dynamics and trends 
inherent in such data. 

The management of outliers constitutes a pivotal component within the broader framework of data 
cleansing. The creation of visual charts, such as box and whisker plots and scatter plots, in combination 
with statistical indicators like mean and standard deviation, facilitates the identification of outliers. 
Depending on the circumstances, outliers can be addressed through the replacement of these values with 
reasonable boundary values or through the adjustment of the values using statistical models. In the event 
of anomalies being detected in the fluctuations of exchange rate data, historical data or market 
fundamentals can be compared to determine if they are indeed outliers. This process enables the 
implementation of appropriate measures. 

The following quantitative metrics for data quality were initially observed: the dataset contained 
5.2% missing values. Following the process of imputation, the proportion of missing values was 
reduced to 0.8%. With regard to outliers, a total of 127 outliers were identified and eliminated, 
accounting for 0.6% of the total dataset. These steps have been shown to significantly improve the 
quality and reliability of the data, thereby ensuring that subsequent analysis and modelling are based on 
accurate and consistent information. 

During data preprocessing, data standardization is primarily used to eliminate the differences in 
scale among various variables, ensuring that the data are comparable. Commonly used methods include 
Z-score standardization and Min-Max standardization (Abdullahi et al., 2014). Z-score standardization 
transforms the data into a standard normal distribution with a mean of 0 and a standard deviation of 1, 
using the following formula: 

σ
µ−

=
XZ

                              （1）
 

The original  data is  the mean  and the standard deviation. Although capital flows and 
exchange rate fluctuations exhibit a right-skewed distribution during crisis periods (Jarque-Bera p < 
0.01), a comparison of the three standardisation methods—Z-score, Min-Max, and Yeo-Johnson—
shows that the error difference between Z-score (RMSE = 3.21) and Yeo-Johnson (3.19) is less than 
0.5%, and no parameter tuning is required. Therefore, the Z-score is retained; After 5% Winsorisation, 

X µ σ
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the RMSE change is less than 1%, indicating its robustness to tail anomalies. 
Min-Max normalization maps the data to the [0,1] interval, and the calculation formula is: 

minmax

min

XX
XXY
−
−

=
                         （2）

 

The and are the minimum and maximum values of the data, respectively. In order to 
analyze the influence of different economic indicators on the reserve scale, GDP, inflation rate and other 
indicators are standardized to facilitate the comparison of their influence on the reserve scale. 

The process of feature selection entails the identification of the most pertinent features from the raw 
data in order to facilitate the achievement of research objectives. This process serves to reduce data 
dimensionality and noise, thereby enhancing model performance and efficiency. It is evident that a 
range of methodologies may be employed for the purpose of feature selection, with correlation 
coefficients and chi-square tests being notable examples. The selection of feature variables is predicated 
on the calculation of correlation coefficients between various economic indicators and reserve levels, 
with those exhibiting higher correlation coefficients being selected. For instance, indicators such as the 
GDP growth rate, the trade balance, and the scale of capital flow, which exhibit a strong correlation 
with reserve levels, are selected as key feature variables. 

The process of data discretization entails the conversion of continuous data into discrete data, with 
the objective of aligning more closely with the specifications of specific models or to enhance the 
precision with which the characteristics of the data are represented. The selection of appropriate 
discretisation methods is contingent upon the distribution of the data, the business requirements, and 
the modelling objectives. Examples of discretisation methods include equal-width discretisation, equal-
frequency discretisation, and clustering-based discretisation. In analysing the impact of market 
fluctuations on reserves, it is possible to discretise continuous data, such as exchange rate volatility and 
stock index volatility, by dividing these data into different fluctuation intervals. This facilitates analysis 
of how reserves change under different levels of volatility. 

To address the strong autocorrelation in time series data, this study employs the following methods: 
(1) The ADF test is used to confirm the stationarity of all macroeconomic variables, and first-order 

differencing is applied to non-stationary series; 
(2) Determine the optimal lag order using ACF/PACF plots, and construct a feature set including 

1–3 lag terms to capture dynamic dependencies; 
(3) Cross-validation employs the time series rolling window method (rolling window width = 36 

months, step size = 12 months), ensuring that the training set strictly precedes the test set to avoid future 
data leakage. 

2.3 Integration of learning and buffer inventory model design 
Ensemble learning is a powerful machine learning technique that combines several base learners to 
enhance overall predictive performance (Lu et al., 2013). In the study of China's optimal reserve during 
crises, ensemble learning effectively leverages the complementary strengths of multiple models, 
reducing the bias and variance of individual models, thereby improving the accuracy and stability of 
predictions for reserve quantities and structures. Random Forest employs the technique of bootstrap 
sampling to create multiple training sets, with each base learner (i.e. a decision tree) being trained 
independently (Shen, 2013). In the context of a dataset comprising n samples, a sample is selected with 
replacement each time, with this process being repeated n times, with each sample having a probability 
of being selected that is equal to 1/k. The final results are obtained through the application of either a 
voting method for classification problems or an averaging method for regression problems. In the 
context of regression problems, the prediction formula is as follows: 

minX maxX
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Here, k represents the number of decision trees, and the prediction value from the i-th tree is denoted 
as . 

In predicting the reserve scale, random forest can take into account many economic indicators and 
market factors, such as GDP growth rate, trade balance, exchange rate fluctuation, etc., and make more 
accurate prediction results by learning and decision of many decision trees. 

GradientBoostingDecisionTree (GBDT) is a widely used ensemble learning algorithm. It trains base 
learners through an iterative process, where each new model focuses on correcting the errors made by 
the previous one, thereby gradually improving the overall predictive performance of the model (Chen 
et al., 2012). When analyzing reserve structures, GBDT can continuously improve its prediction of the 
proportions of different reserve assets (such as foreign exchange reserves and gold reserves) by 
leveraging historical data and market changes, thus enhancing its guidance for optimizing reserve 
structures. Through iterative training of the base learners, the model in the current round is: 

( ) ( ) ( )xhxfxf mmmm α+=+1                     (4) 

The learning rate is the m-th base learner. 
To justify the selection of random forests and GBDT, their performance was compared with other 

ensemble methods such as XGBoost and LightGBM using metrics like RMSE and MAE on a validation 
set. The results are presented in Table 1. 

Table 1: Performance comparison of ensemble algorithms 

Algorithm RMSE MAE 

Random Forest 3.21 2.45 

GBDT 3.05 2.30 

XGBoost 3.15 2.38 

LightGBM 3.10 2.35 

As demonstrated in Table 1, GBDT attained the lowest RMSE of 3.05 and MAE of 2.30, closely 
followed by LightGBM and XGBoost. The Random Forest algorithm demonstrated marginally superior 
error metrics, yet its performance remained commendable. The findings of this study suggest that both 
GBDT and Random Forest are well-suited for tasks involving reserve prediction. 

Moreover, these algorithms are particularly well-suited to the task of reserve prediction, a field in 
which their ability to handle multicollinearity and capture nonlinearity is particularly advantageous. 
Reserve prediction is predicated on the utilisation of multiple economic indicators, which may exhibit 
a high degree of correlation, such as the GDP growth rate and the trade balance. It has been 
demonstrated that Random Forest and GBDT are capable of effectively managing multicollinearity by 
employing ensemble methods that serve to reduce the impact of individual, correlated features. 
Furthermore, they have the capacity to capture complex nonlinear relationships between economic 
indicators and reserve levels, a capability that is imperative for accurate prediction during crises when 
relationships may become highly nonlinear and dynamic. Conversely, traditional linear models or less 
sophisticated ensemble methods may not demonstrate equivalent performance in such conditions. 

The buffer inventory model is a refinement of the fixed quantity model, incorporating buffer and 
safety stocks to address fluctuations and uncertainties in demand. The primary mechanism by which 
this objective is realised is through the strategic setting of appropriate buffer inventory levels, a measure 
aimed at achieving a balance between the costs incurred by excess inventory and the risks associated 

iŷ

1+m

mα mh
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with stockouts. In periods of economic turbulence, characterised by volatile financial conditions and 
unpredictable market trends, the buffer inventory model has been shown to offer a more robust response, 
ensuring the adequacy of national reserves to meet economic demands despite the presence of multiple 
risks (Wang et al., 2012; Li et al., 2012). The buffer inventory model is a theoretical framework that 
utilises historical crisis events and fluctuations in reserve demand over various periods to determine the 
optimal safety stock levels for times of economic crisis. This model provides a means to prepare for 
potential economic shocks and market volatility. The buffer inventory model is a system that has been 
developed to address uncertainty by setting safety stocks. The calculation formula for safety stocks is 
as follows: 

LzSS ××= σ                        (5) 
Among them, SS is the Z safety stock, which σ is the standard deviation L coefficient corresponding 

to the service level, is the demand standard deviation, and is the lead time. 
Safety Stock SS is determined based on the ‘reserve adequacy ratio’ published by SAFE, with a 

service level of 95% (z=1.645). Increasing this to 97.5% only increases the recommended reserve value 
by 3.6%, costs remain controllable; estimation of σ: during normal periods, the conditional standard 
deviation is extracted using a rolling GARCH(1,1) joint model based on the 36 months prior to the 
crisis. During crisis periods, 1,000 synthetic crises are mixed with 46 real crises and updated via BMA, 
resulting in a 42% increase in σ compared to normal periods, Robustness tests show that a 25% 
perturbation in σ results in only an 8% change in the safety stock, which remains within the policy 
tolerance range. 

2.4 Integrated Model Pipeline 
Step 1 – Ensemble Forecast 

Let Y�RF,t+1  and Y�GBDT,t+1  denote the one-period-ahead reserve-demand forecasts produced by 
Random Forest and GBDT, respectively. The fused forecast is 

Y� t+1=wY�RF,t+1+(1-w)Y�GBDT,t+1                     (6) 
with w chosen by grid search to minimise out-of-sample MSE. 
Step 2 – Demand Uncertainty 
The ensemble supplies not only the point forecast but also the 90 % prediction interval width σ�t+1 

(computed from the empirical distribution of out-of-bag residuals). This σ�t+1 is taken as the demand 
uncertainty input into the buffer model. 

Step 3 – Buffer-Inventory Optimisation 
Using the classic buffer-inventory safety-stock expression, the optimal safety stock SS* is 

SS*=zασ�t+1√L                              (7) 

where zα = 1.645 for a 95 % service level and L is the reserve-replenishment lead time (set to 4 
weeks for FX reserves and 8 weeks for gold/strategic materials). 

Step 4 – Final Reserve Rule 
The recommended total reserve level at t+1 is therefore 

Rt+1
* =Y� t+1+SS*                       (8) 

The integration of the buffer inventory model with the ensemble learning algorithm has been 
demonstrated to be a highly effective method of developing a more suitable model for optimal reserve 
analysis during crises in China. Initially, the ensemble learning algorithm is employed to analyse and 
predict reserve-related data, thereby providing preliminary forecasts of reserve size and structure (Shi 
et al, 2012). Subsequently, the random forest algorithm is employed to predict future demand for 
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reserves by utilising historical reserve data, economic indicators, and market volatility data. These 
predictions are then fed into the buffer inventory model, which, in conjunction with risk assessment and 
uncertainty analysis during crises, helps determine the optimal reserve level and buffer inventory 
quantity based on the predicted reserve demand. In light of the potential fluctuations in demand and 
uncertainties that characterise crises, the buffer inventory model is employed to calculate an appropriate 
buffer inventory level. This ensures the timely supply of reserve demand, while concomitantly reducing 
inventory costs and risks (Huang, 2011). 

2.5 Theoretical Framework: Formal Integration of Machine Learning and Buffer-Stock 
Theory 
2.5.1 Theoretical Motivation for Machine Learning in Reserve Management 

Rt=β0+β1Xt+ϵt                               (9) 

Where Xt is a macroeconomic variable, ϵt~N�0,σ2�. 
Random Forest (RF) and Gradient Boosting Decision Trees (GBDT) jointly overcome these 

limitations: RF attenuates variance through bootstrap aggregation, while its Gini-impurity drop exposes 
non-linear split points inaccessible to linear models GBDT constructs an additive expansion whose 
negative-gradient step shrinks the Kullback–Leibler divergence between the predicted and the true 
reserve-demand distribution . 
2.5.2 Sovereign-Specific Adaptation of the Buffer-Stock Model 

The canonical buffer-stock formula (Equation 5) is designed for corporate inventory. We adapt it 
to sovereign reserves by redefining: 

Holding cost h: incorporates opportunity cost (rf) plus currency-depreciation risk premium (σe): 

h=rf+λσe (λ=risk-aversion parameter)                 (10) 

Shortage cost s: captures sovereign-credit downgrade losses during a foreign-exchange shortfall: 

s=α⋅exp(-ΔReserves/GDP)                     (11) 

where α=0.3,0.2,0.4 for financial, trade, and geopolitical crises, respectively 
With regard to the implementation of models, the Python programming language and machine 

learning libraries such as Scikit-learn and XGBoost are utilised for the construction and training of 
models. The ensemble learning model is trained using the random forest and GBDT algorithms from 
the Scikit-learn library. The model's performance is optimised through the adjustment of parameters 
such as the number of decision trees, maximum depth, and learning rate. The relevant formulas and 
algorithms of the buffer inventory model are to be used in conjunction with the predictions from 
ensemble learning in order to calculate the optimal reserve level and buffer inventory size. In practical 
applications, it is imperative to continuously validate and optimise the integrated model, adjusting 
parameters and structure based on new data and market changes to ensure the model can accurately 
predict China's optimal reserve during crises. 

The model framework diagram is shown in Figure 1. 
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Fig.1: The model framework diagram 
 
Figure 1 is a flowchart illustrating the ‘AI-enhanced Chinese crisis reserve management framework’: 

first, multi-source data from the IMF, SAFE, Bloomberg, and other sources is input, cleaned, and 
standardised to form a unified dataset; then, a random forest and GBDT ensemble model is used to roll-
forward predict the optimal reserve size for the next period and its uncertainty interval; the demand 
fluctuations obtained from the prediction are substituted into the classic safety stock formula to calculate 
the safety stock quantity in real time, ensuring a 95% service level; Finally, the predicted values and 
safety stock are combined to determine the total reserve volume, and the asset structure is dynamically 
adjusted based on economic cycles or crisis scenarios (e.g., increasing the proportion of gold or strategic 
materials). The results are input into an intelligent decision-making system to achieve quarterly rolling 
optimisation and scenario simulation. The entire system undergoes continuous iteration through a 
rolling window of 36 months of training, 12 months of validation, and 12 months of testing, ensuring 
real-time strategy updates. The central bank or foreign exchange administration can directly use this 
system for monthly decision-making. 

Having established the four-step pipeline (Fig. 1), we now validate each step empirically. Section 
3.2 tests the ensemble forecast accuracy (Step 1), Section 3.3 evaluates the sensitivity of buffer-stock 
parameters (Step 3), and Sections 3.7–3.9 jointly assess how the full framework performs under 
historical and synthetic crises. 

3. Results and Analysis 
Key takeaway for policy 

This section shows that a 1 percentage-point increase in GDP growth raises optimal reserves by 
0.56 %. Under the government’s 2024–2025 growth target of 5 %, the model suggests adding roughly 
USD 17 billion to the safety buffer to pre-empt capital-outflow risks. 

3.1 Descriptive statistical analysis of data 
This study conducts a comprehensive descriptive statistical analysis of the data collected on China's 
optimal reserves during crises, aiming to understand the basic status, distribution, and potential 
relationships among the variables, thus laying a solid foundation for subsequent empirical analysis. 
Table 2 presents the descriptive statistics of the key variables, including the scale of international 
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reserves, the proportion of foreign exchange reserves, the proportion of gold reserves, GDP growth rate, 
inflation rate, trade balance, capital flow size, and exchange rate fluctuation range. 

Table 2: Descriptive statistics of main variables 
Variable Observed 

value 
Mean Standard 

deviation 
Least 
value 

Crest 
value 

International reserves (billions of 
United States dollars) 

200 320.56 85.43 150.2 550.8 

Foreign exchange reserves as a 
percentage of (%) 

200 82.45 5.67 70.1 90.5 

Gold reserve ratio (%) 200 10.23 2.15 5 15.8 
GDP growth rate (%) 200 6.85 1.2 3.5 9.8 

rate of inflation （%） 200 2.56 0.85 -0.5 5.5 

Trade balance (in billions of United 
States dollars) 

200 55.6 25.43 -10.2 120.8 

Capital flows (billions of United 
States dollars) 

200 35.4 15.67 -20.1 80.5 

Exchange rate fluctuation (%) 200 3.2 1.5 1 8.5 
As demonstrated in Table 2, the average international reserve size is 320.56 billion US dollars, 

reflecting the level of reserves accumulated by China over a protracted period of economic development. 
The standard deviation is 85.43, indicating that the scale of international reserves is not static and can 
vary over time. The mean proportion of foreign exchange reserves is 82.45%, with a standard deviation 
of 5.67, thus indicating that they represent the most substantial component of international reserves. 
However, it should be noted that these figures are subject to fluctuations over time. The mean proportion 
of gold reserves is 10.23%, with a standard deviation of 2.15. This figure, although smaller than that of 
foreign exchange reserves, still plays a significant supporting role. 

The average GDP growth rate is 6.85%, indicating that China's economy has maintained a relatively 
stable growth trend over a considerable period. However, the standard deviation of 1.20 indicates that 
economic growth rates are subject to variation over time. The average inflation rate is 2.56%, which is 
within a relatively stable range, with a standard deviation of 0.85, reflecting price levels that fluctuate 
within a certain range. The trade balance surplus is an average of 55.6 billion US dollars, indicating that 
China generally maintains a trade surplus in international trade. However, the standard deviation of 
25.43 indicates significant variations in trade balance over different periods. The mean capital flow 
magnitude is 35.4 billion US dollars, with a standard deviation of 15.67. This finding suggests that 
capital flows exhibit considerable variability over time. The mean exchange rate fluctuation is 3.20%, 
with a standard deviation of 1.50. This suggests that the exchange rate fluctuates to some extent due to 
market factors and policy adjustments.. 

In order to more intuitively illustrate the distribution of data, histograms were created for the scale 
of international reserves, GDP growth rate, and exchange rate fluctuation, as shown in Figure 2. The 
histogram of international reserve scale demonstrates a right-skewed distribution, with the majority of 
periods tending to congregate around the mean value. However, certain periods do exhibit 
comparatively elevated levels. The histogram of the GDP growth rate indicates a normal distribution, 
suggesting that economic growth rates are relatively uniform across different periods, fluctuating 
around the mean. The histogram of exchange rate fluctuation demonstrates a concentrated distribution, 
with the majority of data points clustering around the mean. This finding suggests that exchange rates 
remain relatively stable within a certain range, despite occasional periods of significant volatility. 
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Fig.2: HDistribution of Key Variables Compared to Emerging-Market Medians, 2000-2023 

 
The correlation coefficient matrix, which is the result of analysing the correlations among various 

variables, is shown in Table 3. A significant positive correlation has been identified between the scale 
of international reserves and the proportion of foreign exchange reserves, with a correlation coefficient 
of 0.85. This finding suggests that an increase in the proportion of foreign exchange reserves results in 
an increase in the scale of international reserves. It is evident that a positive correlation exists between 
the scale of international reserves and the proportion of gold reserves. However, the correlation 
coefficient is relatively low at 0.35, indicating that fluctuations in the proportion of gold reserves exert 
minimal influence on the scale of international reserves. A significant positive correlation has been 
identified between the scale of international reserves and the GDP growth rate, with a correlation 
coefficient of 0.65. This finding suggests that economic growth promotes the growth of international 
reserves. A significant positive correlation is also evident between the scale of international reserves 
and the trade balance, with a correlation coefficient of 0.70, indicating that a trade surplus promotes the 
growth of international reserves. A negative correlation has been observed between the scale of 
international reserves and the fluctuation range of the exchange rate, with a correlation coefficient of -
0.45. This suggests that as the fluctuation range of the exchange rate increases, the scale of international 
reserves decreases. This phenomenon may be attributed to the impact of exchange rate fluctuations on 
international trade and capital flows, which in turn affect the scale of international reserves. 
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Table 3: Matrix of correlation coefficients between variables 
Variable Size of 

internation
al reserves 

Foreign 
exchange 
reserves 

as a 
percentag
e of GDP 

Gold 
reserv
e ratio 

GD
P 

rate 
of 

rise 

Rate of 
inflatio

n 

Balanc
e of 

foreign 
trade 

Size 
of 

capita
l 

flows 

Exchang
e rate 

margin 

Size of 
internation
al reserves 

1 0.85 0.35 0.65 0.25 0.7 0.55 -0.45 

Foreign 
exchange 

reserves as 
a 

percentage 
of GDP 

0.85 1 0.15 0.55 0.2 0.6 0.45 -0.35 

Gold 
reserve 

ratio 

0.35 0.15 1 0.25 0.1 0.3 0.2 -0.15 

GDP rate 
of rise 

0.65 0.55 0.25 1 0.35 0.5 0.4 -0.25 

Rate of 
inflation 

0.25 0.2 0.1 0.35 1 0.2 0.15 0.1 

Balance of 
foreign 
trade 

0.7 0.6 0.3 0.5 0.2 1 0.65 -0.3 

Size of 
capital 
flows 

0.55 0.45 0.2 0.4 0.15 0.65 1 -0.2 

Exchange 
rate margin 

-0.45 -0.35 -0.15 -
0.25 

0.1 -0.3 -0.2 1 
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Fig.3: Heatmap: Reserve Drivers in Normal vs. Crisis Months 

 
As shown in Figure 3, through descriptive statistical analysis, we gained a clear understanding of 

the basic characteristics of the data and the relationships between variables, laying the groundwork for 
subsequent model building and empirical analysis. In future research, we will leverage these data 
features, integrated learning, and buffer inventory models to further explore the optimal reserve strategy 
for China during crises. 

3.2 Model construction and parameter optimization 
Following the completion of the data descriptive statistics, the employment of time series cross-
validation is indicated by the time-series nature of international reserve data, with the objective of 
determining the optimal model parameters. Time series cross-validation is a method that considers the 
temporal dependencies in the data. It does this by avoiding information leakage that could result from 
random partitioning of training and testing sets. This process provides a more accurate assessment of 
the model's generalisation ability on unseen data. A rolling window cross-validation strategy is 
employed, whereby the dataset is segmented into multiple time windows. Each time window functions 
as a training set and a testing set successively, thus simulating real-world forecasting scenarios. The 
optimal parameters are determined through cross-validation, as illustrated in Table 4. 
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Table 4: Cross-validation to determine the optimal parameters 
Types of models Key parameter Optimal values 

Random forest Number of decision trees, maximum depth, 
minimum number of sample splits 100、8、5 

Gradient 
boosting 

decision tree 

Learning rate, number of decision trees, 
maximum depth 0.1、150、6 

During the parameter optimization process, a systematic search was conducted for the key 
parameters of the Random Forest and Gradient Boosting Decision Tree (GBDT) models. The specific 
parameter search ranges are as follows: 

Random Forest: The number of decision trees (n_estimators) was tested from 50 to 200 with a step 
size of 50; the maximum depth (max_depth) was tested from 5 to 15 with a step size of 5; the minimum 
number of samples required to split an internal node (min_samples_split) was tested from 2 to 10 with 
a step size of 2. 

GBDT: The learning rate (learning_rate) was tested from 0.05 to 0.2 with a step size of 0.05; the 
number of decision trees (n_estimators) was tested from 50 to 200 with a step size of 50; the maximum 
depth (max_depth) was tested from 3 to 10 with a step size of 3. 

Performance Metric: In each cross-validation iteration, the mean squared error (MSE) on the 
validation set was used as the performance metric. The optimal parameter combination was selected by 
minimizing the MSE. Based on the cross-validation results, the optimal parameters shown in Table 3 
were determined. 

Taking the scale of international reserves, the proportion of foreign exchange reserves 
and the proportion of gold reserves as the explained variables, a multiple regression model is 
constructed: 





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

+++=
++++=
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（12） 

Among them, is the GDP growth rate, is the trade balance , is the exchange rate 
fluctuation range , is the scale of capital flow, is the inflation rate, is the regression coefficient, is 
the error term. 

3.3 Quantitative analysis of the influence of key variables 
The influence coefficients and significance of core variables on reserve size and structure are estimated 
by the model, as shown in Table 5. 
  

1y 2y 3y

1x 2x 3x 4x 5x
β ε
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Table 5: Summary of regression results of key variables 
Explained 
variable 

Explanatory 
variable 

Regression 
coefficient T-statistics P-price 

Size of 
international 

reserves 
GDP rate of rise 0.56 12.34 <0.01 

（One billion 

dollars） 
Balance of 

foreign trade 0.45 9.87 <0.01 

 Exchange rate 
margin -0.32 -7.65 <0.01 

Foreign exchange 
reserves as a 
percentage of 
GDP（%） 

GDP rate of rise 0.35 8.21 <0.01 

 Exchange rate 
margin -0.28 -6.32 <0.01 

Gold reserve ratio Rate of inflation 0.25 5.46 <0.01 
The regression results presented in Table 4 indicate the influence of key economic variables on the 

size and structure of China's international reserves. The analysis demonstrates that the GDP growth rate 
exerts a substantial positive influence on the magnitude of international reserves, as evidenced by a 
regression coefficient of 0.56 and a t-statistic of 12.34, which is statistically significant at the 1% level. 
This finding indicates a positive correlation between economic growth and reserve accumulation, 
suggesting that an increase in GDP growth rate is associated with an increase in the scale of international 
reserves. In a similar vein, the trade balance exerts a substantial positive influence on the magnitude of 
international reserves, as evidenced by a regression coefficient of 0.45 and a t-statistic of 9.87. This 
indicates that a trade surplus contributes to the augmentation of international reserves. Conversely, 
exchange rate volatility exerts a substantial negative influence on the magnitude of international 
reserves, as evidenced by a regression coefficient of -0.32 and a t-statistic of -7.65. This suggests a 
positive correlation between exchange rate volatility and the contraction of international reserves. This 
phenomenon may be attributed to the adverse repercussions of exchange rate volatility on international 
trade and capital flows, which in turn exerts an influence on the accumulation of reserves. The 
regression coefficient of 0.35 and t-statistic of 8.21 indicate that the proportion of foreign exchange 
reserves has a significant positive effect on GDP growth rate. Conversely, the regression coefficient of 
-0.28 and t-statistic of -6.32 demonstrate that exchange rate volatility exerts a significant negative effect 
on GDP growth rate. This finding suggests a positive correlation between economic growth and the 
proportion of foreign exchange reserves, with exchange rate volatility exerting a negative influence on 
this relationship. 

Finally, for the proportion of gold reserves, the inflation rate has a significant positive impact, with 
a regression coefficient of 0.25 and a t-statistic of 5.46, suggesting that higher inflation rates are 
associated with an increase in the proportion of gold reserves. This is consistent with the role of gold as 
a hedge against inflation. Overall, the regression results highlight the significant influence of economic 
indicators on the size and structure of China's international reserves, providing valuable insights for 
reserve management during crises. 

Economic meaning of the 0.56 GDP coefficient: Using 2023 GDP (≈ USD 18 trn), a 1 ppt rise in 
growth implies an extra USD 10–11 bn of reserves (= 0.56 % × GDP × reserve-to-GDP ratio). This 
range aligns closely with Jeanne & Rancière (2011) estimates for emerging markets (0.5–0.7), 
confirming China still follows the precautionary-savings paradigm. 

Transmission mechanism behind the –0.32 exchange-rate-volatility coefficient: When CNY/USD 
annualised volatility rises from 3 % to 6 % (our crisis threshold), reserve demand falls by ≈ 1.0 % of 
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GDP. Mechanisms: (i) importers front-load FX purchases, triggering outflows; (ii) the PBOC burns 
reserves to smooth the CNY. Policy implication: once volatility exceeds 5 %, pre-emptively raise gold 
and strategic-material shares from 15 % to 35 % to offset FX revaluation losses. 

To ensure the robustness of the regression results, we first conducted a multicollinearity test using 
the Variance Inflation Factor (VIF) for the explanatory variables in the model. The VIF values for the 
variables are presented in Table 6. A VIF value greater than 5 indicates potential multicollinearity issues. 

Table 6: VIF Test Results for Explanatory Variables 

Variable VIF 

GDP growth rate 4.32 

Trade balance 3.85 

Exchange rate fluctuation 2.15 

Capital flow scale 3.21 

Inflation rate 1.95 

As shown in Table 6, the VIF values of all explanatory variables are below 5, indicating that there 
is no significant multicollinearity problem in the model. This suggests that the regression coefficients 
and their significance levels are reliable. 

3.4 Robustness test and model advantage comparison 
In the variable substitution test, the GDP growth rate is replaced by the GDP index of correlation, which 
is calculated as the correlation coefficient between the GDP growth rate and the international reserve 
size over the sample period. This index captures the strength and direction of the linear relationship 
between GDP growth and reserve accumulation, providing a valid substitute for the original GDP 
growth rate variable. Similarly, the trade balance is replaced by the trade balance indicators, which are 
constructed as the ratio of the trade balance to the international reserve size. This ratio reflects the 
relative importance of trade balance in determining reserve levels and serves as a valid alternative to 
the original trade balance variable. The regression results are shown in Table 7.  

Table 7: Robustness test results after variable replacement 

Explained 
variable 

Explanator
y variable 

Original 
model 

coefficient
s 

Replace 
the 

coefficien
t 

Coefficien
t change 

rate 

T-statistic 
(after 

substitution
) 

P-value 
(after 

substitution
) 

Size of 
internationa
l reserves 

GDP index 
of 

correlation 
0.56 0.52 -7.10% 11.56 <0.01 

（ One 
billion 

dollars ） 

Trade 
balance 

indicators 
0.45 0.43 -4.40% 9.21 <0.01 

Foreign 
exchange 

reserves as 
a 

percentage 
of GDP 

GDP index 
of 

correlation 
0.35 0.33 -5.70% 7.89 <0.01 

The robustness test results after variable replacement demonstrate the stability and reliability of the 
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model's findings. Upon replacing the GDP growth rate with the GDP index of correlation, a slight 
decrease in the regression coefficient for the size of international reserves was observed, from 0.56 to 
0.52, representing a change of -7.10%. However, the coefficient remained statistically significant, with 
a t-statistic of 11.56 and a p-value of <0.01. In a similar vein, the coefficient for the trade balance 
indicators underwent a slight decrease, from 0.45 to 0.43, representing a -4.40% change. The t-statistic 
was determined to be 9.21, with a p-value of <0.01, thereby underscoring the sustained significance of 
the indicators. With regard to the proportion of foreign exchange reserves as a percentage of GDP, the 
coefficient for the GDP index of correlation decreased from 0.35 to 0.33, representing a -5.70% change. 
This change was found to be statistically significant at the 1% level, as indicated by a t-statistic of 7.89 
and a p-value of <0.01. The findings suggest that the model's conclusions are resilient to variable 
substitution, as the direction and significance of the relationships between the variables remain 
consistent despite minor alterations in coefficient magnitudes. This robustness suggests that the model's 
findings are reliable and not dependent on the specific choice of variables, thereby reinforcing the 
validity of the study's conclusions regarding the factors influencing China's international reserves 
during crises. 

Table 8: Comparative analysis with traditional models 

Types of 
models 

Nonlinea
r fitting 
capabilit

y 

Variable 
interactio
n effect 

Adaptabilit
y to crisis 
scenarios 

Mean 
square 
error of 

predictio
n 

MA
E  

R2 Diebold
–

Mariano 
t-stat 

Annualise
d saving 

(USD bn) 

Linear 
regressio
n model 

weak not have difference 12.34 
 

2.85 
 

0.6
5 

— — 

Random 
forest 
model 

strong have centre 5.78 
 

1.92 
 

0.8
2 

–2.77 1.4 

Integrate
d 

learning 
+ buffer 

inventory 

very 
strong have stubborn 3.21 1.45 0.9

1 

–4.98 3.2 

The comparative analysis presented in Table 8 demonstrates the superior performance of the 
integrated learning and buffer inventory model in comparison to traditional models in predicting China's 
optimal reserves during crises. The linear regression model, which is characterised by its inability to 
accommodate nonlinear fitting and variable interaction effects, exhibits suboptimal adaptability to crisis 
scenarios and consequently generates the highest mean square error of prediction at 12.34. In contrast, 
the random forest model, with its strong nonlinear fitting capability and ability to capture variable 
interactions, demonstrates moderate adaptability to crisis scenarios and a significantly lower mean 
square error of 5.78. However, the integrated learning and buffer inventory model, which combines the 
strengths of ensemble learning with the buffer inventory model, exhibits very strong nonlinear fitting 
capability, incorporates variable interaction effects, and demonstrates strong adaptability to crisis 
scenarios. The model at hand has been demonstrated to achieve the lowest mean square error of 
prediction at 3.21, thus indicating its superior accuracy and reliability in forecasting reserve levels 
during crises. These results emphasise the efficacy of the integrated approach in addressing the 
complexities and uncertainties inherent in reserve management during crisis periods, thereby providing 
a more robust and accurate framework for policy decision-making. 

We assess the improvement in MSE using a Diebold–Mariano test with a Newey-West (lag = 12) 
correction for time-series dependence. The null of equal expected loss is rejected at the 1 % level (t = –
4.98, p < 0.01), confirming that the integrated model significantly outperforms the linear benchmark. 
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To convey economic significance, we convert MSE into annualised expected shortfall cost using 
the mapping described in Section 3.5. The 74 % reduction in MSE (from 12.34 to 3.21) translates into 
an average annual saving of USD 3.2 billion in crisis-state shortfall costs (95 % CI: [2.7, 3.7] billion). 
A back-of-the-envelope calculation shows that this saving, capitalised at the 10-year Chinese 
Government bond yield (≈ 2.7 %), is equivalent to ≈ 0.06 % of GDP—a material buffer against external 
shocks. 

Comparison with state-of-the-art alternatives 
We benchmark our integrated model against two recent classes of methods: 
(i) Deep-learning sequence models – We re-implement the LSTM-based reserve predictor of Gupta 

on our 2000–2023 sample. The LSTM achieves an RMSE of 4.15, outperforming the linear model 
(12.34) but still 22 % higher than our integrated model (3.21). 

(ii) Dynamic programming with portfolio optimisation – Following Jeanne & Rancière, we solve a 
stochastic control problem that chooses FX, gold and strategic-material weights to minimise expected 
shortage cost plus holding cost. The DP policy delivers an RMSE of 3.87, yet requires full knowledge 
of the shock distribution, an assumption our ensemble approach relaxes. 

Take-away: Among methods that do not require parametric distributional assumptions, our AI-
buffer hybrid yields the lowest RMSE and the narrowest 90 % prediction interval (± USD 8.1 billion vs 
± 11.6 billion for LSTM), indicating superior crisis preparedness without extra informational 
requirements. 

3.5 Model fusion mechanism and decision value 
Buffer inventory cost optimization function 

The fusion model needs to minimize the total reserve cost, including holding cost and shortage cost: 
( ) ( )SECSSRcC Sh ×++×=min                （13） 

Among ch them, R is the unit holding cost rate, CS is the base reserve scale E(S), R is the unit 
shortage cost, and R is the expected shortage quantity. In the crisis period, the optimal SS is determined 
by solving this function. The weighted fusion formula of integrated learning is used 

The weighted prediction value of random forest (RF) and GBDT is calculated as follows: 
GBDTywRFywyensemble

ˆˆˆ
21 ×+×=             （14） 

The weight w1,w2 is optimized by grid search to meet: 
121 =+ ww                         （14） 

The weights w1 and w2 for the weighted fusion of the Random Forest (RF) and Gradient Boosting 
Decision Tree (GBDT) models are optimized using a grid search algorithm. The search range for both 
weights is set from 0 to 1 with a step size of 0.05, ensuring a comprehensive exploration of possible 
weight combinations. The grid search process evaluates each combination of weights based on the 
prediction error on the validation set, aiming to minimize the mean squared error (MSE) of the fused 
predictions. 

To avoid overfitting caused by direct optimisation on the training set, a three-layer sample isolation 
strategy is used to determine the weights w: first, a time series rolling window is constructed using data 
from 2000 to 2018 (36 months for training, 12 months for validation, and 12 months for testing), and 
the weights w are searched for only on the validation set through Bayesian optimisation (TPE, step size 
0.01). with the objective of minimising validation MSE. Additionally, a regularisation constraint λw² 
(λ=0.01) and Δw≤0.05 is incorporated into the loss function, and 5-fold time series cross-validation is 
performed. If the validation MSE does not decrease for three consecutive folds, early stopping is applied. 
The final average weight w=0.62±0.03 is obtained. The results from the independent test set from 2019 
to 2023 show an integrated RMSE of 3.21, with an error difference of less than 2% compared to the 
validation set, indicating no signs of overfitting. 
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To validate the effectiveness of the optimal weights, the fused prediction results were compared 
with the separate prediction results of the RF and GBDT models on an independent test set. Performance 
metrics included mean square error (MSE), mean absolute error (MAE), and coefficient of 
determination (R2 ). The experimental results are shown in Table 9. 

Table 9: Performance Comparison of Fused Model and Individual Models on Test Set 

Model MSE  MAE R2 

Random Forest (RF) 5.78 1.92 0.82 

GBDT 5.21 1.78 0.85 

Fused Model 3.21 1.45 0.91 

The results in Table 9 show that the fused model, with the optimal weights, achieves the lowest 
MSE and MAE and the highest R2 value, indicating superior prediction accuracy and robustness 
compared to the individual RF and GBDT models. This validates the effectiveness of the weight 
optimization process and the benefits of model fusion in enhancing prediction performance. 

3.6 Robustness test and reliability argument of results 
In order to ensure the reliability and stability of empirical results, this study uses a variety of methods 
to conduct comprehensive robustness tests, and ensures that the research conclusions do not change due 
to model parameters, sample selection and other issues. The results are shown in Table 10. 

Table 10: Robustness Synthesis 
Dimension Specification Int. 

Reserves 
Coeff. 

FX-
share 
Coeff. 

Gold-
share 
Coeff. 

Significance RMSE 
Δ 

(A) Parameter 
perturbation 

      

Random Forest n=80, 
depth=6, 

min_split=3 

0.54 
(0.04) 

0.33 
(0.03) 

0.23 
(0.02) 

p<0.01 +1.8 % 

Random Forest n=120, 
depth=10, 

min_split=7 

0.58 
(0.05) 

0.37 
(0.04) 

0.27 
(0.03) 

p<0.01 −1.5 % 

GBDT lr=0.05, 
n=100, 
depth=4 

0.53 
(0.04) 

0.32 
(0.03) 

0.22 
(0.02) 

p<0.01 +2.1 % 

GBDT lr=0.15, 
n=200, 
depth=8 

0.57 
(0.05) 

0.36 
(0.04) 

0.26 
(0.03) 

p<0.01 −2.3 % 

(B) Sample 
perturbation 

      

Random 80 % 
subsample (10-fold 

avg.) 

— 0.55 
(0.04) 

0.34 
(0.03) 

0.24 
(0.02) 

p<0.01 ±1.2 % 

Exclude extremes ( >3σ) — 0.56 
(0.04) 

0.35 
(0.03) 

0.25 (0.02) p<0.01 

The consolidated results in Table 10 and Figure 4 demonstrate that, whether we systematically 
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perturb key model parameters or vary the sample through random subsampling and outlier removal, the 
core explanatory variables remain robust in sign, significance, and magnitude: GDP growth and the 
trade balance are persistently and significantly positive for reserve size, exchange-rate volatility remains 
significantly negative, and the gold-share continues to be positively driven by the inflation rate. 

Coefficient fluctuations induced by parameter changes are confined within ±7 %, and RMSE 
variations never exceed 3 %. Subsample and outlier-adjusted RMSE movements are even smaller 
(within ±1.5 %). These patterns indicate that the model structure is insensitive to technical settings and 
data perturbations, providing a credible statistical foundation for subsequent policy simulations. 

 
Fig.4: Model parameter robustness test 

3.7 Dynamic Adjustment of Reserve Strategies under Different Economic Cycles 
In the context of this study, strategic material refer to critical resources essential for maintaining national 
economic security and stability during crises. These materials include: 

Energy resources: Such as crude oil and natural gas, which are vital for industrial production and 
transportation. 

Rare earth elements: These are crucial for advanced manufacturing and high-tech industries. 
Strategic metals: Such as copper, aluminum, and steel, which are essential for infrastructure and 

defense. 
Agricultural products: Including grains and seeds, which are crucial for food security. 
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Table 11: Experimental Results of Dynamic Adjustment of Reserve Strategies under Different 
Economic Cycles 

Econo
mic 

Cycle 
Stage 

GDP 
Gro
wth 
Rate 
(%) 

Trad
e 

Bala
nce 

(Billi
on 

USD
) 

Exchan
ge Rate 
Fluctua

tion 
(%) 

Inflat
ion 

Rate 
(%) 

Capi
tal 

Flow 
Scal

e 
(Billi

on 
USD

) 

Foreig
n 

Excha
nge 

Reser
ve 

Ratio 
(%) 

Gold 
Rese
rve 

Ratio 
(%) 

Other 
Strate

gic 
Mater

ial 
Reser

ve 
Ratio 
(%) 

Total 
Rese
rve 

Cost 
(Billi

on 
USD

) 

Econo
mic 

Prospe
rity 

8.5 120 2.5 2.0 60 85 10 5 10 

Econo
mic 

Recess
ion 

3.0 -20 4.0 1.5 -30 75 15 10 8 

Crisis 
Period 

1.0 -50 6.0 3.0 -80 60 25 15 15 

As illustrated in Table 11, the AI model adapts reserves according to the cycle: in periods of 
prosperity (as indicated by an increase in GDP of 8.In the event of a 5% trade surplus, the FX share is 
increased to 85%, with only 10% allocated to gold and 5% to strategic materials, at a cost of 10 billion 
USD. Conversely, during a recession (with a GDP increase of 3% and a deficit reduction of 20 billion 
USD), the FX share is reduced to 75%, with gold rising to 15% and strategic materials to 10%, reducing 
costs to 8 billion USD. In a state of economic emergency, characterised by a 1% increase in GDP, a 50 
billion USD deficit, and a 6% exchange rate volatility, the value of gold increases to 25%, that of 
strategic materials to 15%, and the value of the foreign exchange rate to 60%. This results in a 15 billion 
USD increase in costs, but also a significant improvement in resilience. 

3.8 Experimental Results of Robustness Test of Reserve Strategies under Different 
Crisis Scenarios 

Table 12: Experimental Results of Robustness Test of Reserve Strategies under Different Crisis 
Scenarios 

Crisis 
Scenari

o 

Excha
nge 
Rate 

Fluctu
ation 
(%) 

Trad
e 

Bala
nce 

(Billi
on 

USD
) 

Capi
tal 
Flo
w 

Scal
e 

(Bill
ion 

USD
) 

Forei
gn 

Excha
nge 

Reser
ve 

Ratio 
(%) 

Gold 
Rese
rve 
Rati

o 
(%) 

Other 
Strat
egic 
Mate
rial 

Reser
ve 

Ratio 
(%) 

Reser
ve 

Adeq
uacy 
Ratio 
(%) 

Reser
ve 

Liqui
dity 

Ratio 
(%) 

Rese
rve 

Cost
-

Bene
fit 

Rati
o 

Financi
al 

Crisis 

7.0 -30 -100 55 30 15 120 85 1.2 
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Trade 
Crisis 

5.0 -80 -50 65 20 15 110 80 1.1 

Geopoli
tical 

Crisis 

6.0 -20 -120 50 35 15 130 90 1.3 

Table 12 provides a synopsis of the robustness tests for three crisis archetypes. In the context of a 
financial crisis characterised by 7% exchange rate volatility and a 100 billion USD outflow, the model 
reduces the allocation of foreign exchange reserves to 55%, while concurrently increasing the allocation 
to gold to 30% and strategic materials to 15%. This results in an adequacy ratio of 120%, a liquidity 
ratio of 85%, and a cost-benefit ratio of 1.2. In the context of a trade crisis, characterised by a balance 
of -80 billion USD, the foreign exchange rate is established at 65%, gold at 20%, and strategic materials 
at 15%. This results in a total adequacy yield of 110%, a liquidity ratio of 80%, and a cost-benefit ratio 
of 1.1. In the context of a geopolitical crisis, characterised by a 120 billion USD outflow and 6% FX 
volatility, the following outcomes are observed: a 35% increase in the price of gold, a 15% increase in 
the price of strategic materials, and a decline in the value of the foreign exchange rate to 50%. This 
results in an overall adequacy level of 130%, a liquidity level of 90%, and a cost-benefit ratio of 1.3. 
Across all scenarios, the AI-buffer framework generates crisis-ready reserve strategies for China. 

We based our crisis scenarios (financial, trade, geopolitical) on actual data, and the results of our 
experiments are shown in Table 13. 

Table 13: Robustness Test Results of Reserve Strategies under Different Crisis Scenarios 

Crisis 
Scenari

o 

Excha
nge 
Rate 

Fluctu
ation 
(%) 

Trad
e 

Bala
nce 

(Billi
on 

USD
) 

Capi
tal 
Flo
w 

Scal
e 

(Bill
ion 

USD
) 

Forei
gn 

Excha
nge 

Reser
ve 

Ratio 
(%) 

Gold 
Rese
rve 
Rati

o 
(%) 

Other 
Strat
egic 
Mate
rial 

Reser
ve 

Ratio 
(%) 

Reser
ve 

Adeq
uacy 
Ratio 
(%) 

Reser
ve 

Liqui
dity 

Ratio 
(%) 

Rese
rve 

Cost
-

Bene
fit 

Rati
o 

Financi
al 

Crisis 

7.0 -30 -100 55 30 15 120 85 1.2 

Trade 
Crisis 

5.0 -80 -50 65 20 15 110 80 1.1 

Geopoli
tical 

Crisis 

6.0 -20 -120 50 35 15 130 90 1.3 

As shown in Table 13, in the financial crisis scenario, exchange rate volatility is set at 7%, 
referencing the fluctuation range of the RMB-USD exchange rate during the 2008 financial crisis. At 
that time, the average daily fluctuation range of the RMB-USD exchange rate was approximately 0.35%, 
and during the peak of the crisis, the fluctuation range could exceed 1%. Therefore, setting the exchange 
rate volatility at 7% takes into account factors such as market panic and intensified capital flows during 
the crisis, which led to a significant increase in exchange rate volatility. The trade balance is set at -$30 
billion, reflecting the situation during the 2008 financial crisis where exports declined, imports 
relatively increased, and the trade surplus decreased or even turned into a deficit. The scale of capital 
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flows is set at -$100 billion, reflecting the characteristic of large-scale capital outflows during the crisis. 
Policy value of improved accuracy 
Using the synthetic-crisis scenarios of Table 15, we simulate the realised cost of reserve shortfalls 

under each model’s recommended reserve path. When the actual shock equals the 2022 Ukraine-type 
capital-flight episode (-120 bn USD), the integrated model’s ex-post shortage cost is USD 4.7 billion 
lower than that incurred by the linear model and USD 1.4 billion lower than the LSTM benchmark. In 
Monte-Carlo terms, the expected annual fiscal saving equals 0.03 % of GDP, while the Type-II error 
rate (insufficient reserves when a crisis hits) falls from 13 % (linear) to 5 % (integrated). These gains 
are economically meaningful for a reserve portfolio exceeding USD 3 trillion. 

3.9 Extreme Event Extrapolation Validation 
1). Out-of-Time (OOT) Extrapolation Test 

To rigorously assess out-of-sample performance under unprecedented shocks, we adopt a rolling-
origin evaluation: the model is trained on monthly data from January 2000 through December 2018 
(228 observations) and then tested on the subsequent period from January 2019 to December 2023, 
which encompasses both the COVID-19 pandemic and the February 2022 Russia-Ukraine conflict. 
Forecast accuracy is gauged with a dynamic-weighted MAE that assigns exponentially decreasing 
importance to older errors (decay factor λ = 0.95), thereby giving the most recent crisis episodes the 
greatest influence on the metric. The experimental results are shown in Table 14. 

Table 14: Out-of-time (OOT) extrapolation test results 
Model Standard 

MAE 
Dynamic-weighted 

MAE 
Peak monthly error (2019-

23) 

Linear regression 2.85 3.21 12.7 % 

Random forest 1.92 2.34 8.9 % 

Our ensemble 
model 

1.45 1.67 5.2 % 

The ensemble model cuts dynamic-weighted MAE by 48 % relative to the benchmark, 
demonstrating superior out-of-sample stability during unprecedented events. 
2) Synthetic-Crisis Scenario Validation 

Synthetic-crisis validation: we produce 1 000 Monte-Carlo draws that fuse the 30 % exchange-rate 
shock observed during the 1997 Asian crisis with the ‑120 bn USD capital-flight episode of 2022; on 
these scenarios we test (i) Conditional Value-at-Risk coverage (CVaR 95 %)—whether the model’s 
reserve recommendations shield against 95 % of extreme shortfalls—and (ii) policy effectiveness—the 
reduction in expected shortfall cost achieved by dynamically shifting the portfolio toward gold and 
strategic-material shares. The experimental results are shown in Table 15. 

Table 15: Synthetic-Crisis Scenario Validation results 
Crisis archetype scenarios Ensemble CVaR 

coverage 
Gold share shift 

(pre-crisis → 
crisis) 

Expected 
shortfall 
reduction 

Financial meltdown 
(2008-type) 

400 93.5 % 10 % → 28 % $3.1 bn 

Geopolitical shock 
(2022-type) 

300 91.2 % 10 % → 35 % $4.7 bn 

Extreme trade 
sanctions 

300 89.8 % 10 % → 25 % $2.9 bn 
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Coverage remains above 90 % across all synthetic crises, and dynamic reallocation to gold/strategic 
materials lowers expected shortfall costs by an average of $3.6 bn. 
3) Global Sensitivity Analysis ( 

Sensitivity analysis varies three parameters simultaneously—GBDT learning-rate (0.05–0.2), max-
depth (3–10), and gold-allocation weight (0.1–0.4)—and quantifies their impact with first-order (S1) 
and total-effect (ST) Sobol indices. The experimental results are shown in Table 16. 

Table 16: Synthetic-Crisis Scenario Validation results 
Parameter First-order S1 Total-effect ST Significant (S1>0.1) 

max_depth 0.41 0.52 High 

learning_rate 0.08 0.11 Low 

Gold-weight coefficient 0.23 0.29 Medium 
max_depth must be capped at ≤ 6, and the gold weight exhibits non-linear interactions (ST − S1 = 

0.06), warranting careful calibration in policy simulations. 

4. Discussion 
The study's findings underscore the critical importance of integrating AI-driven ensemble learning with 
the buffer inventory model to optimise China's reserve management during crises. The empirical 
evidence indicates that economic growth and trade surpluses have a substantial impact on reserve levels, 
with exchange rate fluctuations having a tendency to reduce these levels. This finding is consistent with 
the extant literature, which underscores the intricate interplay between economic indicators and reserve 
accumulation. The study also underlines the pivotal function of gold reserves in preserving structural 
stability during periods of inflation. This finding aligns with the prevailing perspective that gold serves 
as a safeguard against inflation and the devaluation of currencies. The model's capacity to adapt reserve 
strategies in real time, in response to fluctuating economic cycles and potential crisis scenarios, further 
underscores its practical efficacy. For instance, during periods of economic prosperity, the model 
advocates an augmentation of the proportion of foreign exchange reserves in order to satisfy the 
demands of trade and capital flows. Conversely, during crises, it proposes a transition towards gold and 
other strategic material reserves with a view to enhancing stability and risk resistance. 

While the present study is calibrated to China’s institutional and macro-financial context, the AI-
buffer model can be readily adapted to other major emerging markets. Table 17 summarizes the 

minimal contextual adjustments required for India, Brazil, and ASEAN economies. 
Table 17: Minimal parameter recalibration for selected EMs 

Country/Region Key recalibration item Data source 
adjustment 

Illustrative buffer tweak 

India Replace China SAFE’s FX 
data with RBI weekly 
series; GDP-growth 

“prosperity” threshold set 
to ≥6 %. 

RBI Handbook & 
IMF IFS 

Increase safety-stock lead-
time to 8 weeks to cover 
heightened capital-flow 

volatility. 

Brazil Incorporate oil-price shock 
(Brent) as additional 

regressor; use BCB’s FX 
intervention dates. 

Bloomberg + BCB Re-parameterize cost ratio 
Rs/Rh to reflect 

commodity-export shock 
frequency. 

ASEAN (e.g., 
TH, ID) 

Add AMRO/CMIM swap-
line commitments as 

liquidity buffer. 

ASEAN+3 
Macroeconomic 
Research Office 

Reduce target foreign-
exchange ratio by 5 % 
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Country/Region Key recalibration item Data source 
adjustment 

Illustrative buffer tweak 

when regional swap-line 
utilization >30 %. 

As shown in Table 17, these examples demonstrate that the framework can be applied to other 
regions by simply using country-specific data sources and adjusting two or three parameters. 

However, it is important to acknowledge the limitations of AI-driven models in this context. One 
potential risk is overfitting, especially in ensemble learning models. Overfitting occurs when a model 
learns the training data too well, including its noise and outliers, which can lead to poor performance 
on unseen data. In the context of reserve management, this could signify that the model demonstrates 
efficacy in historical crises but are unable to accurately predict optimal reserve levels during novel and 
unforeseen crises, such as pandemics. In order to mitigate this risk, the study employed cross-validation 
and regularization techniques during model training. Furthermore, the model's performance was 
evaluated on a validation set that encompassed data from recent crises, including the ongoing pandemic 
of the Coronavirus disease (Covid-19), to ascertain its generalisability. The findings demonstrated that 
the model exhibited a satisfactory degree of accuracy, suggesting that it possesses a degree of 
adaptability to novel crisis scenarios. 

Another limitation is data scarcity for rare crises, such as geopolitical conflicts. These events are 
infrequent and often have unique characteristics that may not be well-represented in historical data. This 
can limit the model's ability to learn and predict optimal reserve strategies for such crises. To address 
this issue, the study proposes the use of synthetic data augmentation techniques. By generating synthetic 
data that simulate the conditions of rare crises, the model can be trained on a more diverse and 
comprehensive dataset. This approach can help improve the model's robustness and adaptability to a 
wider range of crisis scenarios. Furthermore, ongoing data collection and model updates are essential 
to ensure that the model remains relevant and effective as new crises emerge and more data becomes 
available. The robustness tests conducted in the study provide strong evidence of the model's reliability 
and stability. The results remain consistent even after adjusting model parameters and sample selections, 
indicating that the findings are not dependent on specific variable choices or data subsets. This 
robustness is crucial for policy-making, as it ensures that the recommendations derived from the model 
are valid under various conditions. 

To overcome the scarcity of historical episodes for geopolitical shocks, pandemics, or other rare 
crises, we employ a conditional GAN that enriches the sample with physically plausible crisis 
trajectories. An IMF-IFS month (2000–2023) is flagged as a crisis if net capital flows are below –US$ 8 
bn (≈ 5th percentile), annualised exchange-rate volatility exceeds 6 %, or the Geopolitical Risk Index 
surpasses 150 , yielding 46 “real” crisis labels. A residual LSTM-GAN takes a 4-D macro vector (GDP 
growth, trade balance, capital-flow shock, volatility) plus 2-D Gaussian noise and outputs a 12-month 
synthetic path; its loss combines Wasserstein distance and Maximum Mean Discrepancy to replicate 
both marginal and temporal dependence structures. The discriminator adds a three-way crisis-type 
classifier (financial / trade / geopolitical) to enforce cross-scenario heterogeneity. 

We blend 1 000 synthetic crises with the 46 historical crises in a 1 : 1 Monte-Carlo mix to create an 
“augmented training set”. Table 18 compares model performance before and after augmentation. 

Table 18: Comparison of the performance of synthetic data models 
Data source RMSE (crisis window) 95 % CVaR coverage Type-II error 

Historical only 4.12 78 % 15 % 

Historical + SCDG 3.21 93 % 5 % 
The augmented data materially improve the capture of extreme shocks without introducing 
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measurable bias. 
Compared to traditional single models, the integrated learning and buffer inventory model excels 

in capturing nonlinear relationships and handling uncertainties. The linear regression model, for 
example, lacks the capability to account for complex interactions between variables and performs 
poorly in crisis scenarios. In contrast, the random forest model, with its strong nonlinear fitting 
capability, shows moderate adaptability but still falls short of the integrated model's performance. The 
integrated model's superior accuracy and reliability in forecasting reserve levels during crises make it a 
valuable tool for policy decision-making. The study's policy recommendations are grounded in the 
empirical findings and aim to enhance China's reserve management framework. Establishing an AI-
driven dynamic prediction system can provide timely and accurate forecasts of reserve needs, enabling 
proactive adjustments to reserve strategies. Promoting asset diversification, particularly increasing the 
proportion of gold and strategic material reserves, can reduce dependence on foreign exchange reserves 
and enhance the resilience of the reserve portfolio. Building an intelligent decision-making system can 
facilitate data-driven policy choices, while enhancing international cooperation can provide additional 
layers of security and stability. 

Given the weaponisation of the dollar system (with Russia's $300 billion reserves frozen in 2022), 
which has exposed 60% of China's dollar assets to tail risks, and the fact that traditional IMF/AMRO 
swaps conflict with China's macroprudential policy orientation due to their structural reform clauses, 
this paper proposes a dual-track cooperation framework of ‘RMB-resource swaps + mCBDC bridge’: 
The first track leverages the RMB's 23% anchor share in energy settlements to establish ‘RMB-Crude 
Oil/Minerals’ T+0 swaps with Russia, Saudi Arabia, Brazil, and others. The swap limit is set at 30% of 
bilateral resource trade volume, with the model's trigger conditions being capital outflows exceeding 
$8 billion and CNY implied volatility exceeding 5%; The second track builds on the BIS Innovation 
Hub's ‘Dunbar Project,’ storing 5% of gold reserves (approximately 600 tonnes) on a distributed ledger 
managed by central bank nodes in Singapore, Switzerland, and the United Arab Emirates. Sanctions 
against any single node would not affect overall availability, and smart contracts enable 24/7 instant 
collateral release. Crisis response plans indicate that under financial sanctions, 100 billion USD 
equivalent in gold collateral financing can be completed within 48 hours, with a custody fee of 0.15% 
per annum, which is 50–70 basis points lower than the USD liquidity premium. When regional liquidity 
is scarce, the 300 billion USD RMB-oil swap facility can be activated on a T+0 basis, with costs 
equivalent to the 1.8% premium on oil futures. In the event of global settlement disruptions, CIPS plus 
digital renminbi can bypass SWIFT, with system redundancy costs of 240 million yuan per year. At the 
governance level, China seeks to secure over 25% voting rights in the mCBDC bridge (currently 19%, 
with plans to increase to 27% through additional gold custody) to ensure that freezing resolutions 
require a two-thirds majority. Meanwhile, swap counterparties are only disclosed via encrypted hashes, 
balancing cooperative trust with sovereign security. 

In conclusion, the study contributes to the existing literature by providing a comprehensive 
framework for optimal reserve management during crises. The integration of AI-driven ensemble 
learning with the buffer inventory model offers a robust and accurate approach to addressing the 
complexities and uncertainties inherent in reserve management. The findings and recommendations 
provide valuable insights for policymakers seeking to enhance the scientific rigor and risk resistance of 
China's reserve management. 

5. Conclusion 
This study analyzes China's optimal reserve strategy in times of crisis by constructing an AI-driven 
integrated learning and buffer inventory model. The empirical results show that economic growth and 
trade surplus have a significant positive impact on the reserve level, while exchange rate fluctuations 
have a negative impact, and that gold reserves play a key role in maintaining the stability of the reserve 
structure in times of inflation, and that the model exhibits good robustness in terms of parameter and 
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sample variations. The model shows good robustness under parameter and sample changes, and has 
obvious advantages over the traditional single model in capturing non-linear relationships and dealing 
with uncertainty. Based on this, it is proposed that an AI-driven dynamic forecasting system should be 
set up and supplemented with a buffer inventory model to optimize the size of the reserves, promote the 
diversification of the gold and strategic material reserves in order to reduce the dependence on foreign 
exchange, build an intelligent decision-making system and strengthen international cooperation so as 
to form the ” Forecasting-adjusting-coordinating” modern reserve management framework, providing 
scientific policy tools for future crisis response. 

To enhance the specificity and operational feasibility of the policy recommendations, the following 
detailed measures are proposed: 

Step one: From Q4 2025 to Q4 2027, gradually increase the gold allocation from the current 10% 
to 15–18% (approximately USD 54 billion to USD 65 billion) over eight quarters. The upper limit is 
set based on 11% of the global official annual gold purchase volume of 1,100 tonnes, ensuring that the 
impact on gold prices remains below 2%; Strategic materials (crude oil, rare earths, copper, and grain) 
will be increased from 5% to 12% (approximately USD 43 billion), directly utilising the State Reserve 
Bureau's existing 13 million tonnes of refined oil and 1.2 million tonnes of non-ferrous metal storage 
capacity, with only an additional RMB 1.2 billion required for warehouse infrastructure. Transaction 
pace: Quarterly phased position-building (25–30 tonnes of gold per quarter, 15–25 million tonnes of oil 
equivalent per quarter), supplemented by COMEX and Shanghai Gold Exchange futures hedging and 
Delta-Gamma dynamic strategies, with a 5 billion USD liquidity buffer reserved per quarter, and 
automatic suspension of spot purchases when the 30-day gold price volatility exceeds 8%.  

Step two: From Q3 2025 to Q2 2026, co-build a ‘reserve cloud brain’ with CFETS, integrating tick-
level market data, now-casting GDP, and GPR indices on the CIPS data lake, with monthly rolling 
model retraining. If the dynamic weighted MAE exceeds 2.5% or the Type-II error rate exceeds 7%, 
retraining will be completed within 48 hours; Simultaneously establish a three-tier firewall comprising 
data anonymisation, sandbox testing, and blue-green deployment. The system will undergo a joint audit 
by the IMF CDOT and the Tsinghua University Financial Research Institute every six months.  

Step three: Expand the regional swap network from 2026 to 2028, adding 60 billion USD in bilateral 
currency swaps with ASEAN, India, and Brazil on top of the existing 240 billion USD under the AMRO 
CMIM. The trigger conditions are capital outflows exceeding 8 billion USD and exchange rate 
fluctuations exceeding 5%. The one-time adjustment cost is approximately 3 billion USD (gold 
premium + storage + insurance + infrastructure), which will be offset by reducing shortfall costs by 3.6 
billion USD annually, resulting in a net increase of 2.8 billion USD after deducting opportunity costs, 
with a payback period of 7–9 months; Additionally, to mitigate risks such as concentrated buying 
premiums, storage bottlenecks, and international sanctions, measures such as phased inventory buildup 
+ futures hedging, joint construction of underground storage facilities, and Swiss-Singapore custody 
agreements will be implemented. 
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Appendix A 
Data-Source URLs and Access Details  

 

Appendix B 
B.1 Proof of Non-linear Elasticity 
Assume the marginal impact of exchange-rate volatility on reserves is 

∂𝑅𝑅
∂𝜎𝜎𝑒𝑒

= 𝛽𝛽2 + 𝛾𝛾𝟏𝟏{𝜎𝜎𝑒𝑒 > 𝜏𝜏}, 

with crisis threshold τ=3%. GBDT’s split gain on σe rises >20 % when σe>τ, confirming the non-
linearity. 
B.2 Lagrangian Solution of the Optimization Problem 
Form the Lagrangian 

ℒ(𝑅𝑅, 𝜆𝜆) = ℎ�𝑅𝑅 − 𝑅𝑅�� + 𝑠𝑠� (𝜉𝜉 − 𝑅𝑅)
∞

𝑅𝑅�+𝑆𝑆𝑆𝑆∗
𝑓𝑓(𝜉𝜉)𝑑𝑑𝑑𝑑 + 𝜆𝜆�𝑅𝑅 − 𝑅𝑅� − 𝑆𝑆𝑆𝑆∗�. 

First-order condition yields the closed-form update 

Variable 
category 

Dataset / 
Series name 

Provider Direct URL 
(accessed 2025-08-

13) 

Update 
frequency 

International 
reserves (total, 

incl. gold) 

International 
Financial 
Statistics 

(IFS) – line 
1.DZF 

International 
Monetary 

Fund (IMF) 

https://www.imf.org/
en/Data 

Monthly 

GDP growth, 
CPI, trade 
balance 

World 
Development 

Indicators 

World Bank https://databank.worl
dbank.org/source/wo

rld-development-
indicators 

Annual / 
quarterly 

China-specific 
BOP & FX 

reserves 

China 
International 
Balance of 
Payments 

Report 

State 
Administratio
n of Foreign 

Exchange 
(SAFE) 

http://www.safe.gov.
cn/en/Statistics/Balan

ceofPayments/ 

Quarterly 

CNY/USD 
daily 

exchange rate 

USDCNH 
Curncy 

Bloomberg 
Terminal 

bloomberg://USDCN
H CURNCY 

Daily 

Alternative 
CNY fix & 
spot rates 

Wind 
Economic 
Database 
(WED) 

Wind 
Information 

https://www.wind.co
m.cn/En/edb/ 

Daily 

Commodity 
prices (oil, 

metals) 

Commodity 
Price Data 

World Bank 
Pink Sheet 

https://www.worldba
nk.org/en/research/co

mmodity-markets 

Monthly 

Regional 
swap-line 
utilization 

AMRO Data 
Portal 

ASEAN+3 
Macroecono
mic Research 

Office 

https://www.amro-
asia.org/data-portal/ 

Semi-annual 

https://www.imf.org/en/Data
https://www.imf.org/en/Data
https://databank.worldbank.org/source/world-development-indicators
https://databank.worldbank.org/source/world-development-indicators
https://databank.worldbank.org/source/world-development-indicators
https://databank.worldbank.org/source/world-development-indicators
http://www.safe.gov.cn/en/Statistics/BalanceofPayments/
http://www.safe.gov.cn/en/Statistics/BalanceofPayments/
http://www.safe.gov.cn/en/Statistics/BalanceofPayments/
https://www.wind.com.cn/En/edb/
https://www.wind.com.cn/En/edb/
https://www.worldbank.org/en/research/commodity-markets
https://www.worldbank.org/en/research/commodity-markets
https://www.worldbank.org/en/research/commodity-markets
https://www.amro-asia.org/data-portal/
https://www.amro-asia.org/data-portal/
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𝑅𝑅∗ = 𝑅𝑅� + 𝑆𝑆𝑆𝑆∗ +
𝑠𝑠
ℎ
�1− 𝛷𝛷�

𝑅𝑅∗ − 𝑅𝑅�
𝜎𝜎�

��, 

where 𝛷𝛷( ) is the standard-normal CDF. The equation is solved iteratively. 
 
Appendix C 
Precise Definitions of Crisis Periods and Key Variables, with Replication Guide 
C.1 Objective Rules for Identifying Crisis Periods 
To ensure replicability and extension, crisis months are automatically flagged using a three-threshold 
“OR” rule. Any month that meets at least one threshold is coded crisis = 1; if none of the thresholds is 
met for three consecutive months, the crisis is deemed resolved (crisis = 0). 

Indicator Symbol Data Source Threshold 
(trigger) 

Computational Note 

Net capital 
outflow 

CFₜ IMF IFS, line 78bjd CFₜ ≤ –8 
billion USD 

Monthly net flow, USD 
billions 

Exchange-rate 
volatility 

σₑ,ₜ Bloomberg 
USDCNH daily 

close 

σₑ,ₜ ≥ 6 % 30-day Garman-Klass 
volatility, annualized 

Geopolitical risk GPRₜ Caldara & Iacoviello 
GPR Index 

GPRₜ ≥ 150 Original monthly index 
value 

Table C-1 lists every crisis month from January 2000 to December 2023, showing start/end dates, the 
triggering indicator(s), and duration in months. Section C-2 provides the Python script 

crisis_flagger.py (Python 3.9) and Stata do-file crisis_flagger.do (Stata 17); both read the raw CSV 
files and output the crisis dummy. 

C.2 Standardized Definitions of Key Variables 
Variable 

name 
Symbol Exact meaning Formula / source Frequency 

Total 
international 

reserves 

RESₜ IMF IFS line 1.DZF Official total 
reserves, incl. 

FX, gold, SDRs, 
reserve position 

Monthly 

Foreign-
exchange 
reserves 

FXₜ IMF IFS line 1.DZF.F FX component 
only 

Monthly 

FX-reserve 
share 

fx_shareₜ FXₜ / RESₜ Ratio, % Monthly 

Exchange-
rate volatility 

σₑ,ₜ See C.1 √[0.511(H-L)²–
0.019(C-O)(H-

L)]×√252 

Daily→Monthly 

GDP growth gdp_gₜ World Bank WDI 
NY.GDP.MKTP.KD.ZG 

Annual % 
change 

Annual→Monthly 
linear interpolation 

Trade balance TBₜ World Bank WDI 
NE.RSB.GNFS.CD 

Exports – 
imports, USD 

billions 

Monthly 
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Variable 
name 

Symbol Exact meaning Formula / source Frequency 

Capital-flow 
size 

CFₜ See C.1 Directly from 
IMF IFS line 

78bjd 

Monthly 

Inflation πₜ World Bank WDI 
FP.CPI.TOTL.ZG 

CPI YoY % 
change 

Monthly 

Note: All continuous variables are Z-score standardized (mean 0, SD 1) before estimation; the 
scripts include the function standardize_series. 
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