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Abstract: Traditional mobile edge computing (MEC) task offloading often faces the 

challenge of balancing latency, energy consumption, and reliability. This study 

proposes a novel multi-objective optimization framework that combines a long 

short-term memory (LSTM) network with a Markov decision process (MDP) to 

achieve intelligent task offloading decisions. The LSTM component processes 

historical network and resource data to predict the optimal offloading strategy, while 

the MDP models the decision-making process under uncertainty. In addition, we 

develop a Bayesian network-based risk assessment model to identify potential 

system risks and classify them into five levels (0-IV). Experimental evaluation using 

three task arrival rates (0.3, 0.6, 0.9) shows that our approach achieves 6.9-56% 

latency reduction and a wide range of energy consumption reduction compared to 

four state-of-the-art algorithms (GTO, WOA, NGO, DBO), while maintaining more 

than 98.6% reliability. The risk assessment consistently achieves zero risk 

classification in all test scenarios, indicating that the system performance is robust. 

This study provides a comprehensive framework for MEC task offloading. Multiple 

objectives are optimized simultaneously while ensuring system reliability. 

Keywords: task offloading strategy, mobile edge computing, task arrival rate, 

minimizing latency, risk assessment  
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1. Introduction 

With the rapid growth of the number of smart terminals and the increasing complexity of mobile 

applications, the demand for real-time processing of massive data has prompted Mobile Edge 

Computing (MEC) to become a key technology to alleviate the load of cloud computing centers, 

reduce service delays, and improve system response speed. MEC supports local computing offload of 

terminal devices close to data sources by sinking computing resources from centralized cloud 

platforms to the edge of the network, thereby improving user experience and system robustness. It is 

widely used in scenarios with extremely high timeliness requirements such as smart transportation, 

augmented reality, and industrial Internet of Things. 

In the MEC architecture, task offloading refers to migrating some or all computing-intensive tasks 

from terminal devices to edge servers or cloud servers for processing (Zhang et al., 2021) to make up 

for the lack of terminal computing power. However, existing task offloading strategies still face many 

challenges: on the one hand, data transmission in centralized computing mode often leads to high 

latency, high energy consumption and bandwidth congestion, which seriously affects the stability and 

responsiveness of the system (Sriram, 2022); on the other hand, the dynamic decision of task 

offloading depends on complex environmental state information, and is easily affected by factors such 

as network instability and uneven distribution of computing resources, making it difficult to ensure 

execution reliability (Sabireen & Neelanarayanan, 2021; Ramesh et al., 2022). Especially in MEC 

scenarios where multiple users and multiple tasks are online at the same time, traditional static 

offloading mechanisms are difficult to adapt to complex and changing scheduling requirements, and a 

more intelligent, efficient and robust task decision mechanism is urgently needed. 

Current research focuses on single-objective optimization of latency or energy consumption, 

ignoring the multi-objective conflicts and risk factors in the task offloading process, which makes it 

difficult for the strategy to run stably in actual deployment, or difficult to adapt to sudden network 

anomalies and edge resource changes. In this regard, this paper focuses on the multi-objective 

optimization task offloading problem in the MEC environment, attempts to construct an offloading 

strategy that takes into account latency, energy consumption and task success rate, and introduces risk 

modeling to improve system robustness. 

Specifically, the research work of this paper includes the following three aspects: 

(1) Construct a joint model based on long short-term memory network (LSTM) and Markov 

decision process (MDP), design an optimization task offloading strategy for dynamic environment, 

covering modules such as node state perception, task segmentation, offloading path decision, data 

upload and result feedback, and strive to improve the task execution success rate while minimizing 

latency and energy consumption; 

(2) Design a risk assessment model for task offloading based on Bayesian network, identify key 

risk nodes in the task offloading process, and optimize parameter configuration through training to 

improve the system's adaptive ability under abnormal conditions; 

(3) Verify the performance and risk response capabilities of the proposed model through 

simulation experiments, and analyze its applicability and promotion value in multi-task and multi-

node dynamic environments. 

2. Related Work 

The current academic community has proposed certain research methods in task offloading strategies, 

which are mainly divided into two categories: 

The first category is about energy consumption. Xie et al. (2024) considered energy consumption 

and server rental energy consumption, first divided application tasks and designed sub task priorities, 

and then proposed a multi-user sub-task scheduling scheme. He designed an improved Simulated 
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Annealing Particle Swarm Optimization (SAPSO) (You & Tang, 2021) to solve the minimum system 

total energy consumption, thereby achieving the best offloading decision. Liu et al. (2023) proposed a 

heterogeneous task offloading method that combined service updates and cloud edge collaboration. 

Firstly, by using an improved Page Replacement Algorithm (Gorawski & & Gorawska, 2023), 

potential user service demands were predicted and edge server services were updated in a timely 

manner. Secondly, based on cloud edge collaboration, task offloading was achieved through an 

improved Greedy Algorithm (Chen et al., 2021), while minimizing energy consumption. Li et al. 

(20204) proposed a task offloading method based on multi-agent deep reinforcement learning. Firstly, 

the task volume, service resources, and queue load were comprehensively considered with the goal of 

minimizing the total energy consumption of the system. The priority experience replay mechanism 

was applied to improve the multi-agent deep deterministic strategy gradient algorithm, successfully 

reducing the energy consumption of task offloading. 

The second type is to consider the aspect of latency. To obtain the optimal task offloading 

decision and resource allocation scheme, Jiang et al. (2024) proposed a computational offloading 

strategy based on improved particle swarm optimization, which considered latency and server task 

balance, and adaptively adjusts latency. Zhou et al. (2024) focused on video detection and optimized 

system latency, and established computational offloading models and Markov decision models. 

Considering the complex dynamic factors of computational offloading scenarios, a computational 

offloading strategy based on deep reinforcement learning (Ladosz et al. 2022) was proposed for 

solution, ultimately reducing system latency. These methods have effectively solved some issues 

related to task offloading, but it should be noted that these methods only consider a certain point, such 

as single type offloading tasks, without considering the heterogeneity of offloading tasks, only 

considering energy consumption and latency, without considering other issues such as reliability, and 

without evaluating risks. Overall, the balance between multiple objectives is neglected, making it 

difficult to meet the diverse needs of different application scenarios. 

Therefore, this article proposed a multi-objective optimization-based MEC (Siriwardhana et al. 

2021) task offloading strategy and its risk assessment model construction. MEC sinks computing 

resources to the edge of the network, allowing tasks to be processed closer to the data source (Baas et 

al. 2020), reducing the distance and time of data transmission, lowering latency, and improving the 

real-time response capability of the system. Task processing on the edge computing node (Smith et al. 

2020) can make full use of the computing resources of the edge node, reduce the dependence on the 

cloud server, and reduce the pressure on network bandwidth (Alikhan et al. 2023) and data 

transmission energy consumption. By adopting the MEC strategy, tasks can be distributed and 

executed on multiple edge nodes, forming a distributed architecture (Moustafa, 2021). Its built-in 

automatic fault tolerance and self-healing capabilities enable seamless service switching and 

continuous data processing. When a node fails, the system can automatically switch to a backup node, 

effectively reducing system latency (Yu et al. 2020), reducing energy consumption, and improving 

overall system reliability. After building a risk assessment model, operators can better understand and 

predict the performance of the system under different conditions, quantify the reliability of task 

offloading, and formulate corresponding offloading strategies, laying the foundation for building an 

efficient and reliable MEC system. 

3. Methods 

3.1. Design of MEC Task Offloading Strategy 

3.1.1. MEC 

Mobile edge computing aims to move computing resources and storage functions to the edge of the 

network, close to users and data sources, and meet the growing demand of mobile applications and 

services for low latency, high bandwidth, high reliability and security. Edge nodes are located at the 
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edge of mobile networks, including base stations, WiFi access points, edge servers, and other 

locations. The core principle is to sink computing, storage, and network functions to the edge of the 

network, allowing mobile terminal devices to access computing resources and services more quickly. 

These functions make mobile edge computing an important infrastructure supporting various mobile 

applications and services, and are widely used in various fields. The MEC architecture includes cloud 

layer, edge layer, and terminal layer, each playing a different role in the entire computing architecture, 

providing different functions and services, as shown in Figure 1: 

 

Fig 1: MEC architecture 

Figure 1 shows the layered architecture of mobile edge computing (MEC), which consists of the 

cloud, edge, and terminal layers. In the figure, the terminal layer covers a variety of devices such as 

PCs and iMacs in office buildings and mobile phones and new energy vehicles on highways. These 

terminal devices can offload tasks to the edge layer closer to the user, which can reduce the distance 

and time of data transmission, thereby reducing latency and improving system response speed. The 

edge layer is connected to the core network, which is further connected to the cloud server. The cloud 

server is mainly responsible for performing large-scale computing tasks, while the edge layer uses 

infrastructure such as base stations to provide low-latency computing services to terminal devices. 

Through this architecture, MEC gives full play to the advantages of each layer to achieve efficient 

task processing and resource allocation. 

3.1.2. Task Offloading in Mobile Edge Computing 

One of the core concepts of mobile edge computing is task offloading. Mobile terminal devices can 

delegate some computing tasks to edge nodes to process, reducing the computing pressure of terminal 

devices. In the MEC system, the task offloading mechanism operates as follows: tasks on mobile 

devices are transferred to MEC servers within the communication coverage. This process involves 

transmitting computing tasks to MEC servers through uplink wireless links, aiming to accelerate task 

processing speed. This task offloading strategy effectively reduces the energy consumption of mobile 

devices when running applications. Afterwards, it is considered that whether the task needs to be 

uninstalled and to which server, and the partition situation of the task is determined. However, the 

limited load makes it difficult for the server to continuously provide high-quality services, so 

achieving reasonable resource allocation is also a challenge. The offloading of MEC tasks also 

requires a comprehensive consideration of task offloading and resource allocation issues. Therefore, 

whether the allocation of computing resources during the task offloading process has achieved the 

expected optimization goals is also a problem that needs to be solved. Figure 2 shows the 

uninstallation model of the MEC system. 
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Fig 2: MEC system uninstallation model 

Figure 2 shows the task offloading model in the mobile edge computing (MEC) system, covering 

three strategies: local execution, complete offloading, and partial offloading. Local execution means 

that the task is completed completely on the terminal device; complete offloading means that all tasks 

are transferred to the edge server for processing; partial offloading is somewhere in between, where 

only part of the task is offloaded to the edge server. This model helps optimize the allocation of 

computing resources, improve computing efficiency, and reduce energy consumption. 

The uninstallation of tasks can be divided into local processing, partial uninstallation, complete 

uninstallation, and cloud task uninstallation. Different uninstallation methods can be selected 

according to different needs. In mobile edge computing, there are two methods: local computing and 

offloading computing. The offloading process is divided into node awareness, task segmentation, 

offloading decision, task upload, task computing, and result retrieval. The process is shown in Figure 

3: 
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Fig 3: MEC task uninstallation process 

Figure 3 presents the task offloading process in the mobile edge computing (MEC) system in the 

form of a flowchart. First, the system senses the offloading environment and then decides whether to 

offload the task. If you choose not to offload, the task will be processed locally and the result will be 

returned directly after completion. If you choose to offload, the process enters the offloading decision 

stage, which involves three steps: task segmentation, node perception, and offloading decision. Task 

segmentation breaks down large tasks into small subtasks, node perception collects network and 

computing resource information, and offloading decision determines which subtasks need to be 

offloaded to the MEC node. Then, the subtasks are uploaded to the MEC server for task calculation. 

Finally, the calculation results are returned to the terminal device, completing the entire task 

offloading process. 

Node awareness aims to collect and evaluate the current network environment and computing 

resources. Computing resource awareness involves monitoring the CPU utilization, memory usage, 

and available storage space of MEC servers to determine their processing capacity and load 

conditions, ensuring efficient processing of tasks after offloading. Task segmentation decomposes 

complex computing tasks into independently processable subtasks, and adopts a segmentation strategy 

to divide tasks into parallel tasks. The task data is divided into multiple data blocks and compressed to 

reduce transmission time and bandwidth consumption, ensuring efficient execution of tasks on edge 

servers. The offloading decision determines which tasks need to be offloaded to the MEC server for 

execution. The decision-making process adopts the greedy algorithm in heuristic algorithms, and the 

decision indicators include latency minimization, energy minimization, and reliability maximization. 

This step ensures that tasks are efficiently executed while meeting performance requirements. The 

divided subtasks and data are uploaded to the MEC server to ensure that the uninstalled tasks can be 

smoothly transmitted and processed. In the following text, real-time data is not used in this article, so 

TCP (Transmission Control Protocol) protocol is chosen as the transmission protocol in this article. 

Task computation includes task scheduling and computation execution. The results generated during 
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the task execution process are merged and validated. The efficient computing power of edge servers 

improves task processing speed and system performance. Finally, after the uninstallation task is 

processed, the server transmits the processing results of the task to the corresponding device via the 

downlink. 

3.2. Long Short-term Memory Network 

Long short-term memory network (LSTM) (Moghar and Hamiche, 2020) is an improved recurrent 

neural network (Tu et al., 2022), which is specially designed to capture long-term dependencies in 

time series data and can effectively alleviate the problems of gradient disappearance (Han et al. 2020) 

and gradient explosion (Liu et al. 2021). It dynamically controls and updates information by 

introducing gating mechanisms such as input gate, forget gate and output gate, thereby improving the 

sequence modeling ability (Lindemann et al. 2021). Figure 4 shows the network structure of LSTM. 

 

Fig 4: LSTM network structure 

In the multi-objective optimization MEC task offloading scenario in this paper, LSTM is used to 

learn the complex mapping relationship between historical network status, computing resource 

distribution and task characteristics, and realize dynamic decision-making on offloading strategy. 

Taking time 𝑡 as an example, the input of the model includes network delay, bandwidth, edge server 

load and task computing requirements, and the output is the offloading selection of the current task. 

Among them, the input gate controls the influence of new input information on the unit state, 

which is calculated as follows: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   (1) 

 

The forget gate is used to decide whether to retain or discard previous state information: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (2) 

 

The output gate determines the current hidden state: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)   (3) 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh⁡(𝐶𝑡)   (4) 

The cell state 𝐶𝑡  integrates the combined effects of the historical state and the current input for 

long-term dependency modeling. The formula is as follows: 
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𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡   (5) 

3.3. Markov Decision Process 

 

Fig 5: Markov decision structure diagram 

Markov decision process (MDP) (Chades et al. 2021) is a powerful mathematical tool invented to 

solve sequential decision problems. It is suitable for task offloading decisions in dynamic and 

uncertain environments. Its basic principle is to model the task offloading problem as MDP and 

achieve optimal decision-making in diverse network and computing environments. Its structure is 

shown in Figure 5. 

For each state 𝑠𝑡 , the action 𝑎𝑡  represents an optional offloading strategy, including local 

execution, offloading to a specific edge node edge
𝑖
, or uploading to the cloud. Due to the high 

dynamics of the MEC environment, traditional static modeling methods are difficult to accurately 

characterize the state evolution process. This paper introduces the LSTM network to model the state 

transition probability, that is: 

⁡𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) = LSTM(𝑠𝑡, 𝑎𝑡)   （7） 

By learning from historical states and action sequences, LSTM can dynamically predict the 

impact of offloading behavior under different network and resource conditions, and enhance the 

strategy's ability to adapt to environmental changes. 

In order to optimize the overall performance of the offloading strategy, the reward function 

designed in this paper comprehensively considers task execution delay, energy consumption overhead, 

and offloading success rate, and is defined as follows： 

ℛ(𝑠𝑡 , 𝑎𝑡) = 𝑤1 ⋅ 𝐿𝑡 +𝑤2 ⋅ 𝐶𝑡 + 𝑤3 ⋅ 𝑅𝑡（8） 

Among them, 𝐿𝑡  represents the delay of task execution, 𝐶𝑡  represents energy consumption and 

resource cost, and 𝑅𝑡  represents the reliability of successful offloading; 𝑤1 , 𝑤2 , and 𝑤3  are 

corresponding weight parameters, which are used to reflect the importance of different optimization 

objectives. By introducing LSTM-based state modeling and multi-objective reward mechanism, the 

task offloading framework constructed in this paper can achieve more robust and real-time optimal 

strategy generation under variable network conditions. 

3.4. Designing MEC Task Offloading Strategies Using MDP and LSTM Applications 

In order to achieve a more efficient task offloading strategy, this paper constructs a multi-objective 

optimization model, which aims to minimize the total task delay, minimize energy consumption and 

maximize the reliability of task execution. Assume that at time step 𝑡, the system state is 𝑠𝑡 , the 
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offloading action is 𝑎𝑡, and the corresponding performance indicators include task delay 𝐿𝑡 , energy 

consumption 𝐶𝑡  and reliability score 𝑅𝑡 . The multi-objective optimization problem can be formally 

expressed as:  

𝑚𝑖𝑛
𝑎𝑡∈𝐴

𝐽(𝑎𝑡) = 𝑤1 ⋅ 𝐿𝑡 + 𝑤2 ⋅ 𝐶𝑡 −𝑤3 ⋅ 𝑅𝑡    (9) 

Among them, 𝑤1, 𝑤2, 𝑤3  are the importance weight coefficients of delay, energy consumption 

and reliability respectively, satisfying 𝑤1 , 𝑤2, 𝑤3 ∈ [0,1] and 𝑤1 +𝑤2 +𝑤3 = 1. Each performance 

indicator in the above objective function satisfies the following constraints 

𝐿𝑡 ≤ 𝐿max, 𝐶𝑡 ≤ 𝐶max, 𝑅𝑡 ≥ 𝑅min , 𝑎𝑡 ∈ {local, edge
𝑖
,cloud}    (10) 

In order to provide high-quality initial environment states and offloading scenario samples, this 

paper uses the public Partial Computation Offloading for MEC dataset, which is specially built for 

edge computing scenarios. It contains network parameters (bandwidth, latency), edge server 

configuration (computing power, load), task characteristics (data volume, computing requirements, 

deadlines), and multi-dimensional combinations of offloading actions and results, which can support 

the training of representative optimization models. 

In terms of model architecture, this paper proposes to organically combine LSTM and MDP to 

solve the problem of inaccurate state modeling in traditional reinforcement learning in dynamic task 

offloading scenarios. Specifically, the MDP structure provides a theoretical framework for modeling 

task offloading strategies, which is suitable for describing state transitions and reward feedback 

processes; while the LSTM network is used to model the state transition function of P(s_(t+1) |s_t,a_t), 

which has the ability of time series modeling and can effectively capture time-dependent 

characteristics such as network delay fluctuations and edge node resource changes. Compared with 

standard reinforcement learning methods based on Q-learning or policy gradient, this method has 

better generalization ability when facing high-dimensional environmental states and uncertain state   

transitions, and is especially suitable for delay-sensitive and resource-heterogeneous edge computing 

environments. The goal of multi-objective optimization is to reduce the total time from task 

offloading to result return, reduce the energy consumption of edge and cloud resources, and increase 

the probability of successful task execution, that is, minimize delays, minimize energy consumption, 

and maximize reliability. This study selects data from the Partial Computation Offloading for MEC 

dataset as the initial state information of the network and system. This dataset is a deep learning 

dataset specifically used to study task offloading optimization in edge computing environments. It 

contains multi-dimensional data such as network environment parameters, edge server parameters, 

task parameters, offloading decision parameters, and performance indicators. 

LSTM model training adjusts model parameters through backpropagation algorithms. To evaluate 

the convergence of the algorithm, this article conducts experiments using different learning rates and 

batch sizes. The data is normalized and scaled to the range of [0,1]. An LSTM model consisting of an 

input layer, three LSTM layers, and a fully connected layer is constructed, and the mean square error 

is selected as the loss function. In terms of optimizer, Adam is selected and four learning rates are set: 

random, 0.1, 0.01, 0.001. In terms of batch training, the training data is divided into different small 

batches, namely random, 16, 8, and 4. Then, each batch of data is input into the LSTM layer and fully 

connected layer to calculate the results. Based on the predicted results and actual labels, the energy 

consumption cost is calculated. Finally, the backpropagation algorithm is adopted to calculate 

gradients and update model parameters. The above steps are followed to traverse the training dataset 5 

times, and the training loss and validation loss at the end of each iteration are recorded, gradually 

optimizing the model parameters. This article sets a system training period of 815 cycles, and task 

offloading lasts for 100 time slots in each cycle. The specific experimental results are as follows: 
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Fig 6: Convergence performance under different learning rates 

As mentioned earlier, four types of learning rates are set during model training: random, 0.1, 0.01, 

and 0.001. Energy consumption costs (convergence reward values) are recorded during the iteration 

process. As shown in Figure 6, with a random learning rate, the initial energy cost is 3.873. As the 

number of iterations increases, the energy cost shows little fluctuation and does not show a clear 

convergence trend throughout the entire training process, indicating that the random learning rate 

method has a high energy cost and is stable at high energy consumption costs without any 

convergence trend. When the learning rate is 0.1, the initial energy cost is 3.877, which rapidly 

decreases in the subsequent iteration process. In subsequent iterations, the energy cost tends to 

stabilize. In the 815th iteration, the energy cost is 0.580, showing good convergence. When the 

learning rate is 0.01, the initial energy cost is 3.66, and then it rapidly decreases. In the 815th iteration, 

the energy cost is 0.804, which also shows good convergence, but slightly worse than when the 

learning rate is 0.1. When the learning rate is 0.001, the energy cost does not decrease but increases, 

and the algorithm shows very poor convergence. 
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Fig 7: Convergence performance under different sampling batches 

As shown in Figure 7, during random sampling, the initial energy cost is 4.0164, and there is 

almost no change in the energy cost during the iteration process. The final energy cost is 4.1273, 

indicating that the model fails to converge effectively and the energy cost remains at a high level. 

When the sampling batches are 16, 8, and 4, the algorithm shows good convergence, gradually 

starting to converge after 500 iterations. When the batch value is 16, the final energy consumption 

cost is 1.232; when the batch value is 8, the final energy consumption cost is 1.178; when the batch 

value is 4, the final energy cost is 1.023. When observing the sampling batches of 16, 8, and 4, it is 

found that the smaller the sampling batch, the faster the convergence speed of the model, and the 

lower the final energy consumption cost. However, if the sampling batch is too small, it also increases 

training time and computational resource consumption. Therefore, in balancing the convergence effect 

and computational cost, this article tends to adopt a sampling batch size of 8. 

3.5. Construction of Risk Assessment Model 

The main risk factors that need to be evaluated in the risk assessment model of this article are 

latency, energy consumption fluctuations, reliability (task success rate), and security risks. Compared 

with the task offloading strategy, there is an additional security risk. Relevant evaluation indicators 

are defined as the time fluctuation from task submission to result return, energy consumption 

fluctuations generated during task calculation and transmission, fluctuation in task success execution 

rate, and security evaluation of data during transmission and calculation. In terms of dataset, the 

Partial Computation Offloading for MEC mentioned earlier is still used, but there are slight 

differences in the type of data. The data sources in this section include historical task execution data 

in the MEC environment, network performance data, device status data, and security event records. 

After data cleaning, outlier handling, and data standardization, four types of risk related features are 

extracted from these data: mean and standard deviation of latency, trend of energy consumption, task 
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failure rate, and frequency of safety events. These features are used as inputs for the risk assessment 

model. When training the model, accuracy (ACC), precision (P), recall (R), and F1 score (F1) are set 

as the four indicators for model evaluation, and the maximum number of iterations is set to 300. Table 

1 shows a brief process of training the model: 

Table 1. Training of risk assessment model 

Number of iterations ACC P R F1 

10 0.5173 0.5204 0.5261 0.5182 

35 0.5421 0.5468 0.5522 0.5436 

60 0.5694 0.5721 0.5782 0.5708 

85 0.6043 0.6075 0.6139 0.6061 

110 0.6507 0.6522 0.6588 0.6520 

135 0.6972 0.7004 0.7065 0.6999 

160 0.7344 0.7379 0.7431 0.7368 

185 0.7841 0.7873 0.7937 0.7865 

210 0.8483 0.8505 0.8561 0.8493 

235 0.9145 0.9162 0.9400 0.9100 

260 0.9234 0.9181 0.9391 0.9112 

285 0.9153 0.924 0.9357 0.9173 

300 0.9169 0.9254 0.9334 0.9137 

From Table 1, it can be seen that the initial values of all evaluation indicators are between 0.5100 

and 0.5300, and their values gradually increase with the increase of iteration times. Specifically, the 

accuracy (ACC), precision (P), recall (R), and F1 score (F1Score) all reach above 0.6500 after 110 

iterations. This indicates that the model effectively learns the features in the training data, and 

improves overall classification accuracy, recognition ability for positive samples, and detection ability 

for positive samples, and balances accuracy and recall in the early training stage. The algorithm 

begins to converge on these four indicators at the 235th iteration, and the values of all four indicators 

exceed 0.9100, indicating that the algorithm has good convergence. The values of the indicators after 

the algorithm begins to converge do not fluctuate more than 0.100 compared to the values at the 235th 

iteration, indicating that the model is robust. Overall, the indicators of the model rapidly increase in 

the early iterations, steadily increase in the mid-term iterations, and converge to a relatively high level 

in the later iterations. 

Next, this study has made more rigorous improvements and refinements to the risk level 

classification of the risk assessment model. Based on the analysis of a large amount of experimental 

data and the in-depth insights of experts in the field, clear and operational risk level classification 

standards are set for each risk factor, as follows: 

For delay risk, we determine the risk level by calculating the time fluctuation from task 

submission to result return, that is, the standard deviation of delay 𝜎, combined with the mean value 

of delay 𝜇. If 𝜇 + 𝜎 ≤ 𝑇1 (T1 is the delay threshold set according to the actual application scenario), 

it is determined as a level 0 risk; if T1<⁡𝜇 + 𝜎≤𝑇2(T2 is the delay threshold 2), it is determined as a 

level I risk; and so on, until 𝜇 + 𝜎 >T4 is determined as a level IV risk. 

For energy consumption fluctuation risk, the risk level is divided according to the energy 

consumption fluctuation generated during task calculation and transmission, that is, the standard 

deviation of energy consumption⁡𝜎𝑒. Set energy consumption fluctuation thresholds E1, E2, E3, and 

E4. When 𝜎𝑒≤E1, it is a level 0 risk; when E1<𝜎𝑒≤E2, it is a level I risk; and so on, when 𝜎𝑒>E4, it 
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is a level IV risk. 

For reliability risk, the risk level is determined according to the fluctuation of the task success 

execution rate, that is, the task failure rate p. Determine the reliability risk thresholds P1, P2, P3, and 

P4. If p≤P1, it is a level 0 risk; P1<p≤P2 is a level I risk; and so on, p>P4 is a level IV risk. 

For safety risk, it is measured in combination with the frequency of safety incidents f. Set safety 

risk thresholds F1, F2, F3, and F4. When f≤F1, it is a level 0 risk; when F1<f≤F2, it is a level I risk; 

and so on, f>F4 is determined to be a level IV risk. 

When determining the final risk level by comprehensively considering various risk factors, a 

weighted summation method is adopted to assign corresponding weights w1, w2, w3, w4 (the sum of 

the weights is 1) to each risk factor, and the comprehensive risk value Rv is calculated according to 

the following formula: 

𝑅𝑣 = 𝑤1 × 𝑅𝑑𝑒𝑙𝑎𝑦 + 𝑤2 × 𝑅𝑒𝑛𝑒𝑟𝑔𝑦 +𝑤3 × 𝑅𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 +𝑤4 × 𝑅𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦   (11) 

Among them, 𝑅𝑑𝑒𝑙𝑎𝑦, 𝑅𝑒𝑛𝑒𝑟𝑔𝑦 , 𝑅𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, and 𝑅𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 represent the level values corresponding 

to delay, energy consumption fluctuation, reliability, and security risk respectively (integer values of 0 

to 4). According to the size of the comprehensive risk value Rv, it is divided into different risk level 

intervals, and then the final risk level is determined. Table 2 shows the parameter adjustment during 

the model training process. Through multiple rounds of combined experiments on key parameters 

such as learning rate, regularization parameter, optimizer, and batch size, their comprehensive impact 

on the model convergence speed is deeply explored. 

Table 2. Parameter tuning 

Number 
Learni

ng rate 

Regularizatio

n parameter 
Optimizer Batch size 

Convergence 

speed(epoch) 

1 0.01 0.1 Adam 32 50 

2 0.001 0.01 SGD 64 200 

3 0.005 0.05 RMSprop 128 120 

4 0.01 0.01 Adam 64 80 

5 0.001 0.1 SGD 32 250 

6 0.01 0.05 RMSprop 64 100 

7 0.005 0.01 Adam 128 90 

8 0.01 0.1 SGD 32 300 

9 0.005 0.05 RMSprop 128 110 

10 0.001 0.01 Adam 64 180 

Note: Adam (Adaptive Moment Estimation), SGD (Stochastic Gradient Descent), RMSProp 

(Root Mean Square Propagation) 

Observing the entire Table 2, it is not difficult to find that during the first parameter tuning, the 

learning rate is set to 0.01; the regularization parameter is set to 0.1; the optimizer is set to Adam; the 

batch size is set to 32. The final convergence speed is 50 epochs, making it the best parameter 

combination for these 10 experiments. Furthermore, the setting with a learning rate of 0.01 shows a 

faster convergence rate. The convergence rates for Experiment 1 and Experiment 4 are 50 and 80 

epochs, respectively, but in Experiment 8, they are 300 epochs. When the regularization parameter is 

0.1, the convergence speed in Experiment 5 and Experiment 8 is 250 epochs and 300 epochs, showing 

poor convergence. On the contrary, it shows good convergence in low regularization (0.01). The 

Adam optimizer performs well in most cases, and the batch size does not show significant 

convergence. Based on the above analysis, this article mainly considers the parameters of Experiment 
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1 in the selection of model parameters, but makes slight adjustments by setting the regularization 

parameter to 0.01. 

Finally, the designed risk assessment model is integrated into the MEC task offloading system to 

monitor the system’s operational status and performance indicators in real-time, obtain risk prediction 

results, and help system administrators understand the system’s operational status, so as to formulate 

optimization strategies and improvement measures, and achieve dynamic adjustment of offloading 

strategies. 

4. Simulation Experiment Design 

In terms of hardware, CPU: Intel Core i7-9700K; Memory: 32 GB DDR4; Storage: 512 GB SSD; 

GPU: NVIDIA GTX 1650. The simulator adopts Android Virtual Device. In terms of software, both 

servers and edge nodes run the Ubuntu 20.04 LTS operating system; the mobile device simulator runs 

Windows 10; TensorFlow and PyTorch are selected for machine learning modeling; OpenStack and 

Kubernetes are used for edge computing framework and container orchestration. 

4.1. Strategy Verification 

In order to verify the effectiveness and superiority of the multi-objective optimization task 

offloading strategy proposed in this paper, this section conducts a rigorous experimental design and 

applies four swarm intelligence optimization algorithms for comparative experiments: Gorilla Troops 

Optimizer (GTO) (Abdollahzadeh et al. 2021; Hussien et al. 2024; El-Dabah et al. 2022), Whale 

Optimization Algorithm (WOA) (Rana et al. 2020), Northern Goshawk Optimization (NGO) (El-

Dabah et al. 2023) and Dung Beetle Optimizer (DBO) (Xue and Shen, 2023). These algorithms were 

selected because of their unique advantages in multi-objective optimization and MEC task offloading, 

providing diverse solutions to multi-objective optimization problems. The GTO algorithm is known 

for its global search capability; the WOA algorithm achieves a good balance between global and local 

search; the NGO algorithm combines high-altitude and low-altitude search strategies to adapt to 

different task offloading requirements; and the DBO algorithm is selected for its simple structure and 

easy implementation on edge nodes. 

The experimental data set has been strictly split and preprocessed, including data cleaning, 

standardization and cross-validation, to ensure the reliability and repeatability of the results. In terms 

of evaluation indicators, we adopted three goals: latency, energy consumption and reliability (task 

execution success rate). Latency refers to the total time from uploading a task to the edge server, 

calculating it on the edge server, and downloading the result back to the terminal device. Energy 

consumption includes the sum of computing resource energy consumption and network transmission 

energy consumption. 

Tables 3, 4 and 5 show the evaluation indicators of these algorithms and the algorithm in this 

paper at different task arrival rates, including statistical information such as mean, standard deviation, 

confidence interval, and a significance test was performed to verify the statistical significance of the 

results: 
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Table 3. Indicators of the algorithm when the task arrival rate is 0.3 

Algor

ithm 

Lat

ency 

(ms) 

Average 

energy 

consumption 

Reliabil

ity 

Confid

ence 

Interval 

(Delay) 

Confiden

ce interval 

(energy 

consumption) 

Confid

ence 

interval 

(reliability) 

TAIT

P 

451

±3.7 

3.11±0.

35 

0.986±0

.005 

[512, 

534] 
[3.1, 3.3] 

[0.98, 

0.99] 

GTO 
531

±6.3 

3.23±0.

3 

0.978±0

.007 

[520, 

540] 
[3.0, 3.2] 

[0.97, 

0.99] 

WOA 
491

±4.8 

5.09±0.

5 

0.981±0

.006 

[482, 

500] 
[4.9, 5.3] 

[0.97, 

0.99] 

NGO 
698

±8.5 

4.65±0.

45 

0.912±0

.010 

[685, 

710] 
[4.5, 4.8] 

[0.90, 

0.93] 

DBO 
523

±5.2 

6.67±0.

6 

0.976±0

.008 

[444, 

458] 
[6.4, 6.9] 

[0.97, 

0.99] 

Note: TAITP represents the algorithm in this article (the algorithms in this article) 

Table 4. Indicators of the algorithm when the task arrival rate is 0.6 

Algor

ithm 

Lat

ency 

(ms) 

Average 

energy 

consumption 

Reliabil

ity 

Confid

ence 

Interval 

(Delay) 

Confiden

ce interval 

(energy 

consumption) 

Confid

ence 

interval 

(reliability) 

TAIT

P 

467

±3.9 

3.12±0.

25 

0.991±0

.004 

[510, 

526] 
[3.0, 3.2] 

[0.98, 

1.00] 

GTO 
567

±7.2 

3.65±0.

4 

0.912±0

.009 

[555, 

579] 
[3.5, 3.8] 

[0.90, 

0.93] 

WOA 
511

±4.5 

5.9±0.5

5 

0.923±0

.007 

[502, 

520] 
[5.6, 6.2] 

[0.91, 

0.94] 

NGO 
716

±9.3 

4.65±0.

45 

0.901±0

.011 

[703, 

729] 
[4.5, 4.8] 

[0.89, 

0.92] 

DBO 
518

±4.8 

6.9±0.6

5 

0.921±0

.009 

[459, 

475] 
[6.6, 7.2] 

[0.91, 

0.94] 
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Note: TAITP represents the algorithm in this article (the algorithms in this article) 

Table 5. Indicators of the algorithm when the task arrival rate is 0.9 

Algor

ithm 

Late

ncy (ms) 

Average 

energy 

consumption 

Reliabil

ity 

Confid

ence 

Interval 

(Delay) 

Confiden

ce interval 

(energy 

consumption) 

Confid

ence 

interval 

(reliability) 

TAIT

P 

490±

4.2 

3.11±0.

28 

0.986±0

.005 

[516, 

532] 
[3.0, 3.2] 

[0.98, 

0.99] 

GTO 
698±

8.7 

3.98±0.

5 

0.901±0

.012 

[685, 

711] 
[3.8, 4.2] 

[0.89, 

0.92] 

WOA 
561±

6.5 

6.12±0.

6 

0.887±0

.008 

[550, 

572] 
[6.0, 6.3] 

[0.88, 

0.90] 

NGO 
765±

10.2 

4.89±0.

52 

0.849±0

.013 

[753, 

777] 
[4.7, 5.1] 

[0.84, 

0.86] 

DBO 
524±

5.0 

7.14±0.

7 

0.915±0

.010 

[482, 

498] 
[7.0, 7.3] 

[0.90, 

0.93] 

Note: TAITP represents the algorithm in this article (the algorithms in this article) 

As shown in Table 3, Table 4, and Table 5, this experiment takes three task arrival rates of 0.3, 

0.6, and 0.9. The task arrival rate indicates the number of tasks generated per unit time, measured by 

the number of tasks arriving per second, and reflects the amount of computing task offloading that the 

system needs to process per unit time. Setting different task arrival rates can well reflect the 

robustness of the five algorithms. As can be seen from the table, the algorithm in this paper maintains 

a stable advantage under different task arrival rates. In terms of energy consumption, when the task 

arrival rate is 0.3, the algorithm in this paper is lower than the WOA, NGO, and DBO algorithms, and 

only slightly higher than the GTO algorithm; in terms of reliability, the algorithm in this paper always 

maintains a high task execution success rate, and is always higher than the other four algorithms. 

Although the WOA algorithm achieves lower latency in some cases, its energy consumption is 

significantly higher than the algorithm proposed in this paper, which shows that in practical 

applications, it is important to weigh different goals according to specific needs. 

4.2. Risk Assessment 

This section conducts risk assessment on these five algorithms during the calculation of task 

offloading process. Using the task offloading cases of the five algorithms with task arrival rates of 0.3, 

0.6, and 0.9 set in the previous text, in order to visually demonstrate the risks during task offloading, 

this article links risks to colors. When there is a risk, the system displays the corresponding colors, as 

shown in Table 6: 
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Table 6. Corresponding hazard levels and risk levels 

Degree of 

danger 
Risk free General 

 Relatively 

serious 
Serious 

Particularly 

serious 

Color No display Blue Yellow Orange Red 

Risk levels 

in this article 
0 I II III IV 

Table 7. Risk assessment 

 TAITP GTO WOA NGO DBO 

MAR=0.3 0 0 0 0 0 

MAR=0.6 0 0 0 I I 

MAR=0.9 0 II I I I 

Note: TAITP represents the algorithm in this article (the algorithms in this article) 

As shown in Table 7, MAR represents the Mission Arrival Rate. When the task arrival rate is 0.3, 

the risk assessment results of all algorithms are 0, which means that under low load conditions, the 

computing task offloading system under all algorithms runs stably. When the task arrival rate is 0.6, 

the risk assessment results of the algorithm in this article, GTO, and WOA algorithms are still 0. 

These three algorithms can maintain low risk under moderate load, while the NGO algorithm and 

DBO algorithm are both judged as general risks and require certain security measures. In this case, 

encrypted transmission and access control can be used as two coping methods. When the task arrival 

rate is 0.9, only the risk assessment result of the algorithm in this article is still 0. WOA, NGO 

algorithm, and DBO have general risks, while the risk level of GTO algorithm is relatively serious. In 

more serious risk situations, a security audit mechanism can be established to monitor the operation 

behavior during task offloading. The above analysis indicates that the algorithm proposed in this 

article can effectively address security risks. 

5. Discussion 

(1) Effectiveness analysis of multi-objective optimization strategy 

The multi-objective optimization strategy proposed in this paper outperforms the comparative 

algorithms in terms of task offloading delay, energy consumption and reliability. This is mainly due to 

the combination of the long short-term memory network (LSTM) and the Markov decision process 

(MDP). LSTM can capture long-term dependencies in time series data and memorize complex 

mapping relationships such as historical network states, providing a basis for offloading decisions. 

MDP provides a mathematical framework to calculate the optimal offloading strategy based on state 

and action to maximize long-term cumulative rewards. The reward function cleverly balances the 

relationship between delay, energy consumption and reliability, and its weight parameters are 

carefully adjusted to reflect the actual importance of different goals. This is the key to the strategy's 

superiority over other algorithms. 

(2) Performance of the strategy under different task arrival rates 

In experiments with different task arrival rates, the proposed strategy shows good adaptability and 

robustness, especially under high task arrival rates, the performance remains stable. When the task 

arrival rate increases, the edge node load increases, and the network environment becomes complex. 

At this time, the proposed strategy can adjust the unloading decision in time, allocate resources 

reasonably, and ensure efficient task allocation and execution by relying on the dynamic learning 

ability of LSTM and the adaptability of MDP. In contrast, other algorithms lack this dynamic 

adjustment ability, resulting in performance degradation, which further highlights the advantages of 



Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315 

312 
 

the strategy in this paper. 

(3) Accuracy of the risk assessment model 

The risk assessment model can accurately identify potential risks in the task offloading process 

and classify them into different levels, providing decision support for system administrators. The high 

accuracy of the model is due to the carefully selected features, which fully characterize the risk 

situation and provide reliable data for training. The training process adjusts and optimizes the 

algorithm parameters to make the model converge to the optimal state and achieve accurate 

assessment. The model can identify high-risk scenarios in advance, assist administrators in taking 

preventive measures, and improve system security and stability. 

(4) The impact of parameter tuning on model performance 

Experiments show that hyperparameters such as learning rate and batch size have a significant 

impact on model performance. Taking the combination of a learning rate of 0.01 and a batch size of 8 

as an example, the model shows faster convergence speed and lower training energy consumption. An 

appropriate learning rate ensures that the model converges quickly and stably, and a suitable batch 

size can improve training efficiency. This finding provides an important reference for subsequent 

model training, reminding researchers to pay attention to the selection of hyperparameters to improve 

model performance. 

(5) Future research directions 

Although this study has achieved certain results, it still has limitations. The insufficient coverage 

of the data set suggests that future research needs to use a wider range of data sets to optimize 

parameter tuning and improve the generalization ability of the model. In addition, in the face of large-

scale task offloading scenarios, it is necessary to explore more efficient algorithms to optimize the 

model structure, reduce computing costs, and improve scalability. In the future, it is necessary to 

further study the impact of practical factors such as task heterogeneity and network dynamics on 

strategies, strengthen cooperation with the industry, and promote the application of results. 

6. Conclusions 

This study proposes a comprehensive MEC task offloading framework to address the key 

challenges of multi-objective optimization in dynamic edge computing environments. Its main 

contributions include: (1) a novel LSTM-MDP ensemble approach that achieves superior performance 

in terms of latency, energy consumption, and reliability metrics; (2) a robust risk assessment model 

that enables real-time system monitoring and threat classification; and (3) empirical validation 

showing sustained performance improvement under varying network loads. Experimental results 

show that latency and energy consumption are reduced compared to existing approaches while 

maintaining high reliability. However, this study also has limitations, including limited dataset scope 

and the need for real-world validation outside of simulation environments. Future research should 

focus on: (1) validating the framework in heterogeneous real MEC deployments; (2) extending the 

risk model to incorporate cybersecurity threats; (3) investigating adaptive weight adjustment 

mechanisms for dynamic multi-objective optimization; and (4) exploring federated learning 

ensembles to enhance privacy-preserving task offloading. The proposed framework provides a solid 

foundation for next-generation MEC systems that require intelligent, risk-aware task management. 
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