

295

ISSN 2409-2665

Journal of Logistics, Informatics and Service Science

Vol. 12 (2025) No. 4, pp. 295-315

DOI:10.33168/JLISS.2025.0416

Construction of MEC Task Offloading Strategy and Risk

Assessment Model Based on Multi-objective Optimization

Yong Wang1,2*, William P. Rey1*

1School of Information Technology, Mapúa University, Manila, Philippines
2School of Information Engineering, Yulin University, Yulin 719000, Shaanxi, China

wyong@mymail.mapua.edu.ph; wprey@mapua.edu.ph (Co-Corresponding author)

Abstract: Traditional mobile edge computing (MEC) task offloading often faces the

challenge of balancing latency, energy consumption, and reliability. This study

proposes a novel multi-objective optimization framework that combines a long

short-term memory (LSTM) network with a Markov decision process (MDP) to

achieve intelligent task offloading decisions. The LSTM component processes

historical network and resource data to predict the optimal offloading strategy, while

the MDP models the decision-making process under uncertainty. In addition, we

develop a Bayesian network-based risk assessment model to identify potential

system risks and classify them into five levels (0-IV). Experimental evaluation using

three task arrival rates (0.3, 0.6, 0.9) shows that our approach achieves 6.9-56%

latency reduction and a wide range of energy consumption reduction compared to

four state-of-the-art algorithms (GTO, WOA, NGO, DBO), while maintaining more

than 98.6% reliability. The risk assessment consistently achieves zero risk

classification in all test scenarios, indicating that the system performance is robust.

This study provides a comprehensive framework for MEC task offloading. Multiple

objectives are optimized simultaneously while ensuring system reliability.

Keywords: task offloading strategy, mobile edge computing, task arrival rate,

minimizing latency, risk assessment

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

296

1. Introduction

With the rapid growth of the number of smart terminals and the increasing complexity of mobile

applications, the demand for real-time processing of massive data has prompted Mobile Edge

Computing (MEC) to become a key technology to alleviate the load of cloud computing centers,

reduce service delays, and improve system response speed. MEC supports local computing offload of

terminal devices close to data sources by sinking computing resources from centralized cloud

platforms to the edge of the network, thereby improving user experience and system robustness. It is

widely used in scenarios with extremely high timeliness requirements such as smart transportation,

augmented reality, and industrial Internet of Things.

In the MEC architecture, task offloading refers to migrating some or all computing-intensive tasks

from terminal devices to edge servers or cloud servers for processing (Zhang et al., 2021) to make up

for the lack of terminal computing power. However, existing task offloading strategies still face many

challenges: on the one hand, data transmission in centralized computing mode often leads to high

latency, high energy consumption and bandwidth congestion, which seriously affects the stability and

responsiveness of the system (Sriram, 2022); on the other hand, the dynamic decision of task

offloading depends on complex environmental state information, and is easily affected by factors such

as network instability and uneven distribution of computing resources, making it difficult to ensure

execution reliability (Sabireen & Neelanarayanan, 2021; Ramesh et al., 2022). Especially in MEC

scenarios where multiple users and multiple tasks are online at the same time, traditional static

offloading mechanisms are difficult to adapt to complex and changing scheduling requirements, and a

more intelligent, efficient and robust task decision mechanism is urgently needed.

Current research focuses on single-objective optimization of latency or energy consumption,

ignoring the multi-objective conflicts and risk factors in the task offloading process, which makes it

difficult for the strategy to run stably in actual deployment, or difficult to adapt to sudden network

anomalies and edge resource changes. In this regard, this paper focuses on the multi-objective

optimization task offloading problem in the MEC environment, attempts to construct an offloading

strategy that takes into account latency, energy consumption and task success rate, and introduces risk

modeling to improve system robustness.

Specifically, the research work of this paper includes the following three aspects:

(1) Construct a joint model based on long short-term memory network (LSTM) and Markov

decision process (MDP), design an optimization task offloading strategy for dynamic environment,

covering modules such as node state perception, task segmentation, offloading path decision, data

upload and result feedback, and strive to improve the task execution success rate while minimizing

latency and energy consumption;

(2) Design a risk assessment model for task offloading based on Bayesian network, identify key

risk nodes in the task offloading process, and optimize parameter configuration through training to

improve the system's adaptive ability under abnormal conditions;

(3) Verify the performance and risk response capabilities of the proposed model through

simulation experiments, and analyze its applicability and promotion value in multi-task and multi-

node dynamic environments.

2. Related Work

The current academic community has proposed certain research methods in task offloading strategies,

which are mainly divided into two categories:

The first category is about energy consumption. Xie et al. (2024) considered energy consumption

and server rental energy consumption, first divided application tasks and designed sub task priorities,

and then proposed a multi-user sub-task scheduling scheme. He designed an improved Simulated

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

297

Annealing Particle Swarm Optimization (SAPSO) (You & Tang, 2021) to solve the minimum system

total energy consumption, thereby achieving the best offloading decision. Liu et al. (2023) proposed a

heterogeneous task offloading method that combined service updates and cloud edge collaboration.

Firstly, by using an improved Page Replacement Algorithm (Gorawski & & Gorawska, 2023),

potential user service demands were predicted and edge server services were updated in a timely

manner. Secondly, based on cloud edge collaboration, task offloading was achieved through an

improved Greedy Algorithm (Chen et al., 2021), while minimizing energy consumption. Li et al.

(20204) proposed a task offloading method based on multi-agent deep reinforcement learning. Firstly,

the task volume, service resources, and queue load were comprehensively considered with the goal of

minimizing the total energy consumption of the system. The priority experience replay mechanism

was applied to improve the multi-agent deep deterministic strategy gradient algorithm, successfully

reducing the energy consumption of task offloading.

The second type is to consider the aspect of latency. To obtain the optimal task offloading

decision and resource allocation scheme, Jiang et al. (2024) proposed a computational offloading

strategy based on improved particle swarm optimization, which considered latency and server task

balance, and adaptively adjusts latency. Zhou et al. (2024) focused on video detection and optimized

system latency, and established computational offloading models and Markov decision models.

Considering the complex dynamic factors of computational offloading scenarios, a computational

offloading strategy based on deep reinforcement learning (Ladosz et al. 2022) was proposed for

solution, ultimately reducing system latency. These methods have effectively solved some issues

related to task offloading, but it should be noted that these methods only consider a certain point, such

as single type offloading tasks, without considering the heterogeneity of offloading tasks, only

considering energy consumption and latency, without considering other issues such as reliability, and

without evaluating risks. Overall, the balance between multiple objectives is neglected, making it

difficult to meet the diverse needs of different application scenarios.

Therefore, this article proposed a multi-objective optimization-based MEC (Siriwardhana et al.

2021) task offloading strategy and its risk assessment model construction. MEC sinks computing

resources to the edge of the network, allowing tasks to be processed closer to the data source (Baas et

al. 2020), reducing the distance and time of data transmission, lowering latency, and improving the

real-time response capability of the system. Task processing on the edge computing node (Smith et al.

2020) can make full use of the computing resources of the edge node, reduce the dependence on the

cloud server, and reduce the pressure on network bandwidth (Alikhan et al. 2023) and data

transmission energy consumption. By adopting the MEC strategy, tasks can be distributed and

executed on multiple edge nodes, forming a distributed architecture (Moustafa, 2021). Its built-in

automatic fault tolerance and self-healing capabilities enable seamless service switching and

continuous data processing. When a node fails, the system can automatically switch to a backup node,

effectively reducing system latency (Yu et al. 2020), reducing energy consumption, and improving

overall system reliability. After building a risk assessment model, operators can better understand and

predict the performance of the system under different conditions, quantify the reliability of task

offloading, and formulate corresponding offloading strategies, laying the foundation for building an

efficient and reliable MEC system.

3. Methods

3.1. Design of MEC Task Offloading Strategy

3.1.1. MEC

Mobile edge computing aims to move computing resources and storage functions to the edge of the

network, close to users and data sources, and meet the growing demand of mobile applications and

services for low latency, high bandwidth, high reliability and security. Edge nodes are located at the

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

298

edge of mobile networks, including base stations, WiFi access points, edge servers, and other

locations. The core principle is to sink computing, storage, and network functions to the edge of the

network, allowing mobile terminal devices to access computing resources and services more quickly.

These functions make mobile edge computing an important infrastructure supporting various mobile

applications and services, and are widely used in various fields. The MEC architecture includes cloud

layer, edge layer, and terminal layer, each playing a different role in the entire computing architecture,

providing different functions and services, as shown in Figure 1:

Fig 1: MEC architecture

Figure 1 shows the layered architecture of mobile edge computing (MEC), which consists of the

cloud, edge, and terminal layers. In the figure, the terminal layer covers a variety of devices such as

PCs and iMacs in office buildings and mobile phones and new energy vehicles on highways. These

terminal devices can offload tasks to the edge layer closer to the user, which can reduce the distance

and time of data transmission, thereby reducing latency and improving system response speed. The

edge layer is connected to the core network, which is further connected to the cloud server. The cloud

server is mainly responsible for performing large-scale computing tasks, while the edge layer uses

infrastructure such as base stations to provide low-latency computing services to terminal devices.

Through this architecture, MEC gives full play to the advantages of each layer to achieve efficient

task processing and resource allocation.

3.1.2. Task Offloading in Mobile Edge Computing

One of the core concepts of mobile edge computing is task offloading. Mobile terminal devices can

delegate some computing tasks to edge nodes to process, reducing the computing pressure of terminal

devices. In the MEC system, the task offloading mechanism operates as follows: tasks on mobile

devices are transferred to MEC servers within the communication coverage. This process involves

transmitting computing tasks to MEC servers through uplink wireless links, aiming to accelerate task

processing speed. This task offloading strategy effectively reduces the energy consumption of mobile

devices when running applications. Afterwards, it is considered that whether the task needs to be

uninstalled and to which server, and the partition situation of the task is determined. However, the

limited load makes it difficult for the server to continuously provide high-quality services, so

achieving reasonable resource allocation is also a challenge. The offloading of MEC tasks also

requires a comprehensive consideration of task offloading and resource allocation issues. Therefore,

whether the allocation of computing resources during the task offloading process has achieved the

expected optimization goals is also a problem that needs to be solved. Figure 2 shows the

uninstallation model of the MEC system.

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

299

Fig 2: MEC system uninstallation model

Figure 2 shows the task offloading model in the mobile edge computing (MEC) system, covering

three strategies: local execution, complete offloading, and partial offloading. Local execution means

that the task is completed completely on the terminal device; complete offloading means that all tasks

are transferred to the edge server for processing; partial offloading is somewhere in between, where

only part of the task is offloaded to the edge server. This model helps optimize the allocation of

computing resources, improve computing efficiency, and reduce energy consumption.

The uninstallation of tasks can be divided into local processing, partial uninstallation, complete

uninstallation, and cloud task uninstallation. Different uninstallation methods can be selected

according to different needs. In mobile edge computing, there are two methods: local computing and

offloading computing. The offloading process is divided into node awareness, task segmentation,

offloading decision, task upload, task computing, and result retrieval. The process is shown in Figure

3:

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

300

Fig 3: MEC task uninstallation process

Figure 3 presents the task offloading process in the mobile edge computing (MEC) system in the

form of a flowchart. First, the system senses the offloading environment and then decides whether to

offload the task. If you choose not to offload, the task will be processed locally and the result will be

returned directly after completion. If you choose to offload, the process enters the offloading decision

stage, which involves three steps: task segmentation, node perception, and offloading decision. Task

segmentation breaks down large tasks into small subtasks, node perception collects network and

computing resource information, and offloading decision determines which subtasks need to be

offloaded to the MEC node. Then, the subtasks are uploaded to the MEC server for task calculation.

Finally, the calculation results are returned to the terminal device, completing the entire task

offloading process.

Node awareness aims to collect and evaluate the current network environment and computing

resources. Computing resource awareness involves monitoring the CPU utilization, memory usage,

and available storage space of MEC servers to determine their processing capacity and load

conditions, ensuring efficient processing of tasks after offloading. Task segmentation decomposes

complex computing tasks into independently processable subtasks, and adopts a segmentation strategy

to divide tasks into parallel tasks. The task data is divided into multiple data blocks and compressed to

reduce transmission time and bandwidth consumption, ensuring efficient execution of tasks on edge

servers. The offloading decision determines which tasks need to be offloaded to the MEC server for

execution. The decision-making process adopts the greedy algorithm in heuristic algorithms, and the

decision indicators include latency minimization, energy minimization, and reliability maximization.

This step ensures that tasks are efficiently executed while meeting performance requirements. The

divided subtasks and data are uploaded to the MEC server to ensure that the uninstalled tasks can be

smoothly transmitted and processed. In the following text, real-time data is not used in this article, so

TCP (Transmission Control Protocol) protocol is chosen as the transmission protocol in this article.

Task computation includes task scheduling and computation execution. The results generated during

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

301

the task execution process are merged and validated. The efficient computing power of edge servers

improves task processing speed and system performance. Finally, after the uninstallation task is

processed, the server transmits the processing results of the task to the corresponding device via the

downlink.

3.2. Long Short-term Memory Network

Long short-term memory network (LSTM) (Moghar and Hamiche, 2020) is an improved recurrent

neural network (Tu et al., 2022), which is specially designed to capture long-term dependencies in

time series data and can effectively alleviate the problems of gradient disappearance (Han et al. 2020)

and gradient explosion (Liu et al. 2021). It dynamically controls and updates information by

introducing gating mechanisms such as input gate, forget gate and output gate, thereby improving the

sequence modeling ability (Lindemann et al. 2021). Figure 4 shows the network structure of LSTM.

Fig 4: LSTM network structure

In the multi-objective optimization MEC task offloading scenario in this paper, LSTM is used to

learn the complex mapping relationship between historical network status, computing resource

distribution and task characteristics, and realize dynamic decision-making on offloading strategy.

Taking time 𝑡 as an example, the input of the model includes network delay, bandwidth, edge server

load and task computing requirements, and the output is the offloading selection of the current task.

Among them, the input gate controls the influence of new input information on the unit state,

which is calculated as follows:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1)

The forget gate is used to decide whether to retain or discard previous state information:

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2)

The output gate determines the current hidden state:

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3)

ℎ𝑡 = 𝑜𝑡 ⋅ tanh⁡(𝐶𝑡) (4)

The cell state 𝐶𝑡 integrates the combined effects of the historical state and the current input for

long-term dependency modeling. The formula is as follows:

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

302

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡 (5)

3.3. Markov Decision Process

Fig 5: Markov decision structure diagram

Markov decision process (MDP) (Chades et al. 2021) is a powerful mathematical tool invented to

solve sequential decision problems. It is suitable for task offloading decisions in dynamic and

uncertain environments. Its basic principle is to model the task offloading problem as MDP and

achieve optimal decision-making in diverse network and computing environments. Its structure is

shown in Figure 5.

For each state 𝑠𝑡 , the action 𝑎𝑡 represents an optional offloading strategy, including local

execution, offloading to a specific edge node edge
𝑖
, or uploading to the cloud. Due to the high

dynamics of the MEC environment, traditional static modeling methods are difficult to accurately

characterize the state evolution process. This paper introduces the LSTM network to model the state

transition probability, that is:

⁡𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) = LSTM(𝑠𝑡, 𝑎𝑡) （7）

By learning from historical states and action sequences, LSTM can dynamically predict the

impact of offloading behavior under different network and resource conditions, and enhance the

strategy's ability to adapt to environmental changes.

In order to optimize the overall performance of the offloading strategy, the reward function

designed in this paper comprehensively considers task execution delay, energy consumption overhead,

and offloading success rate, and is defined as follows：

ℛ(𝑠𝑡 , 𝑎𝑡) = 𝑤1 ⋅ 𝐿𝑡 +𝑤2 ⋅ 𝐶𝑡 + 𝑤3 ⋅ 𝑅𝑡（8）

Among them, 𝐿𝑡 represents the delay of task execution, 𝐶𝑡 represents energy consumption and

resource cost, and 𝑅𝑡 represents the reliability of successful offloading; 𝑤1 , 𝑤2 , and 𝑤3 are

corresponding weight parameters, which are used to reflect the importance of different optimization

objectives. By introducing LSTM-based state modeling and multi-objective reward mechanism, the

task offloading framework constructed in this paper can achieve more robust and real-time optimal

strategy generation under variable network conditions.

3.4. Designing MEC Task Offloading Strategies Using MDP and LSTM Applications

In order to achieve a more efficient task offloading strategy, this paper constructs a multi-objective

optimization model, which aims to minimize the total task delay, minimize energy consumption and

maximize the reliability of task execution. Assume that at time step 𝑡, the system state is 𝑠𝑡 , the

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

303

offloading action is 𝑎𝑡, and the corresponding performance indicators include task delay 𝐿𝑡 , energy

consumption 𝐶𝑡 and reliability score 𝑅𝑡 . The multi-objective optimization problem can be formally

expressed as:

𝑚𝑖𝑛
𝑎𝑡∈𝐴

𝐽(𝑎𝑡) = 𝑤1 ⋅ 𝐿𝑡 + 𝑤2 ⋅ 𝐶𝑡 −𝑤3 ⋅ 𝑅𝑡 (9)

Among them, 𝑤1, 𝑤2, 𝑤3 are the importance weight coefficients of delay, energy consumption

and reliability respectively, satisfying 𝑤1 , 𝑤2, 𝑤3 ∈ [0,1] and 𝑤1 +𝑤2 +𝑤3 = 1. Each performance

indicator in the above objective function satisfies the following constraints

𝐿𝑡 ≤ 𝐿max, 𝐶𝑡 ≤ 𝐶max, 𝑅𝑡 ≥ 𝑅min , 𝑎𝑡 ∈ {local, edge
𝑖
,cloud} (10)

In order to provide high-quality initial environment states and offloading scenario samples, this

paper uses the public Partial Computation Offloading for MEC dataset, which is specially built for

edge computing scenarios. It contains network parameters (bandwidth, latency), edge server

configuration (computing power, load), task characteristics (data volume, computing requirements,

deadlines), and multi-dimensional combinations of offloading actions and results, which can support

the training of representative optimization models.

In terms of model architecture, this paper proposes to organically combine LSTM and MDP to

solve the problem of inaccurate state modeling in traditional reinforcement learning in dynamic task

offloading scenarios. Specifically, the MDP structure provides a theoretical framework for modeling

task offloading strategies, which is suitable for describing state transitions and reward feedback

processes; while the LSTM network is used to model the state transition function of P(s_(t+1) |s_t,a_t),

which has the ability of time series modeling and can effectively capture time-dependent

characteristics such as network delay fluctuations and edge node resource changes. Compared with

standard reinforcement learning methods based on Q-learning or policy gradient, this method has

better generalization ability when facing high-dimensional environmental states and uncertain state

transitions, and is especially suitable for delay-sensitive and resource-heterogeneous edge computing

environments. The goal of multi-objective optimization is to reduce the total time from task

offloading to result return, reduce the energy consumption of edge and cloud resources, and increase

the probability of successful task execution, that is, minimize delays, minimize energy consumption,

and maximize reliability. This study selects data from the Partial Computation Offloading for MEC

dataset as the initial state information of the network and system. This dataset is a deep learning

dataset specifically used to study task offloading optimization in edge computing environments. It

contains multi-dimensional data such as network environment parameters, edge server parameters,

task parameters, offloading decision parameters, and performance indicators.

LSTM model training adjusts model parameters through backpropagation algorithms. To evaluate

the convergence of the algorithm, this article conducts experiments using different learning rates and

batch sizes. The data is normalized and scaled to the range of [0,1]. An LSTM model consisting of an

input layer, three LSTM layers, and a fully connected layer is constructed, and the mean square error

is selected as the loss function. In terms of optimizer, Adam is selected and four learning rates are set:

random, 0.1, 0.01, 0.001. In terms of batch training, the training data is divided into different small

batches, namely random, 16, 8, and 4. Then, each batch of data is input into the LSTM layer and fully

connected layer to calculate the results. Based on the predicted results and actual labels, the energy

consumption cost is calculated. Finally, the backpropagation algorithm is adopted to calculate

gradients and update model parameters. The above steps are followed to traverse the training dataset 5

times, and the training loss and validation loss at the end of each iteration are recorded, gradually

optimizing the model parameters. This article sets a system training period of 815 cycles, and task

offloading lasts for 100 time slots in each cycle. The specific experimental results are as follows:

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

304

Fig 6: Convergence performance under different learning rates

As mentioned earlier, four types of learning rates are set during model training: random, 0.1, 0.01,

and 0.001. Energy consumption costs (convergence reward values) are recorded during the iteration

process. As shown in Figure 6, with a random learning rate, the initial energy cost is 3.873. As the

number of iterations increases, the energy cost shows little fluctuation and does not show a clear

convergence trend throughout the entire training process, indicating that the random learning rate

method has a high energy cost and is stable at high energy consumption costs without any

convergence trend. When the learning rate is 0.1, the initial energy cost is 3.877, which rapidly

decreases in the subsequent iteration process. In subsequent iterations, the energy cost tends to

stabilize. In the 815th iteration, the energy cost is 0.580, showing good convergence. When the

learning rate is 0.01, the initial energy cost is 3.66, and then it rapidly decreases. In the 815th iteration,

the energy cost is 0.804, which also shows good convergence, but slightly worse than when the

learning rate is 0.1. When the learning rate is 0.001, the energy cost does not decrease but increases,

and the algorithm shows very poor convergence.

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

305

Fig 7: Convergence performance under different sampling batches

As shown in Figure 7, during random sampling, the initial energy cost is 4.0164, and there is

almost no change in the energy cost during the iteration process. The final energy cost is 4.1273,

indicating that the model fails to converge effectively and the energy cost remains at a high level.

When the sampling batches are 16, 8, and 4, the algorithm shows good convergence, gradually

starting to converge after 500 iterations. When the batch value is 16, the final energy consumption

cost is 1.232; when the batch value is 8, the final energy consumption cost is 1.178; when the batch

value is 4, the final energy cost is 1.023. When observing the sampling batches of 16, 8, and 4, it is

found that the smaller the sampling batch, the faster the convergence speed of the model, and the

lower the final energy consumption cost. However, if the sampling batch is too small, it also increases

training time and computational resource consumption. Therefore, in balancing the convergence effect

and computational cost, this article tends to adopt a sampling batch size of 8.

3.5. Construction of Risk Assessment Model

The main risk factors that need to be evaluated in the risk assessment model of this article are

latency, energy consumption fluctuations, reliability (task success rate), and security risks. Compared

with the task offloading strategy, there is an additional security risk. Relevant evaluation indicators

are defined as the time fluctuation from task submission to result return, energy consumption

fluctuations generated during task calculation and transmission, fluctuation in task success execution

rate, and security evaluation of data during transmission and calculation. In terms of dataset, the

Partial Computation Offloading for MEC mentioned earlier is still used, but there are slight

differences in the type of data. The data sources in this section include historical task execution data

in the MEC environment, network performance data, device status data, and security event records.

After data cleaning, outlier handling, and data standardization, four types of risk related features are

extracted from these data: mean and standard deviation of latency, trend of energy consumption, task

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

306

failure rate, and frequency of safety events. These features are used as inputs for the risk assessment

model. When training the model, accuracy (ACC), precision (P), recall (R), and F1 score (F1) are set

as the four indicators for model evaluation, and the maximum number of iterations is set to 300. Table

1 shows a brief process of training the model:

Table 1. Training of risk assessment model

Number of iterations ACC P R F1

10 0.5173 0.5204 0.5261 0.5182

35 0.5421 0.5468 0.5522 0.5436

60 0.5694 0.5721 0.5782 0.5708

85 0.6043 0.6075 0.6139 0.6061

110 0.6507 0.6522 0.6588 0.6520

135 0.6972 0.7004 0.7065 0.6999

160 0.7344 0.7379 0.7431 0.7368

185 0.7841 0.7873 0.7937 0.7865

210 0.8483 0.8505 0.8561 0.8493

235 0.9145 0.9162 0.9400 0.9100

260 0.9234 0.9181 0.9391 0.9112

285 0.9153 0.924 0.9357 0.9173

300 0.9169 0.9254 0.9334 0.9137

From Table 1, it can be seen that the initial values of all evaluation indicators are between 0.5100

and 0.5300, and their values gradually increase with the increase of iteration times. Specifically, the

accuracy (ACC), precision (P), recall (R), and F1 score (F1Score) all reach above 0.6500 after 110

iterations. This indicates that the model effectively learns the features in the training data, and

improves overall classification accuracy, recognition ability for positive samples, and detection ability

for positive samples, and balances accuracy and recall in the early training stage. The algorithm

begins to converge on these four indicators at the 235th iteration, and the values of all four indicators

exceed 0.9100, indicating that the algorithm has good convergence. The values of the indicators after

the algorithm begins to converge do not fluctuate more than 0.100 compared to the values at the 235th

iteration, indicating that the model is robust. Overall, the indicators of the model rapidly increase in

the early iterations, steadily increase in the mid-term iterations, and converge to a relatively high level

in the later iterations.

Next, this study has made more rigorous improvements and refinements to the risk level

classification of the risk assessment model. Based on the analysis of a large amount of experimental

data and the in-depth insights of experts in the field, clear and operational risk level classification

standards are set for each risk factor, as follows:

For delay risk, we determine the risk level by calculating the time fluctuation from task

submission to result return, that is, the standard deviation of delay 𝜎, combined with the mean value

of delay 𝜇. If 𝜇 + 𝜎 ≤ 𝑇1 (T1 is the delay threshold set according to the actual application scenario),

it is determined as a level 0 risk; if T1<⁡𝜇 + 𝜎≤𝑇2(T2 is the delay threshold 2), it is determined as a

level I risk; and so on, until 𝜇 + 𝜎 >T4 is determined as a level IV risk.

For energy consumption fluctuation risk, the risk level is divided according to the energy

consumption fluctuation generated during task calculation and transmission, that is, the standard

deviation of energy consumption⁡𝜎𝑒. Set energy consumption fluctuation thresholds E1, E2, E3, and

E4. When 𝜎𝑒≤E1, it is a level 0 risk; when E1<𝜎𝑒≤E2, it is a level I risk; and so on, when 𝜎𝑒>E4, it

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

307

is a level IV risk.

For reliability risk, the risk level is determined according to the fluctuation of the task success

execution rate, that is, the task failure rate p. Determine the reliability risk thresholds P1, P2, P3, and

P4. If p≤P1, it is a level 0 risk; P1<p≤P2 is a level I risk; and so on, p>P4 is a level IV risk.

For safety risk, it is measured in combination with the frequency of safety incidents f. Set safety

risk thresholds F1, F2, F3, and F4. When f≤F1, it is a level 0 risk; when F1<f≤F2, it is a level I risk;

and so on, f>F4 is determined to be a level IV risk.

When determining the final risk level by comprehensively considering various risk factors, a

weighted summation method is adopted to assign corresponding weights w1, w2, w3, w4 (the sum of

the weights is 1) to each risk factor, and the comprehensive risk value Rv is calculated according to

the following formula:

𝑅𝑣 = 𝑤1 × 𝑅𝑑𝑒𝑙𝑎𝑦 + 𝑤2 × 𝑅𝑒𝑛𝑒𝑟𝑔𝑦 +𝑤3 × 𝑅𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 +𝑤4 × 𝑅𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 (11)

Among them, 𝑅𝑑𝑒𝑙𝑎𝑦, 𝑅𝑒𝑛𝑒𝑟𝑔𝑦 , 𝑅𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, and 𝑅𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 represent the level values corresponding

to delay, energy consumption fluctuation, reliability, and security risk respectively (integer values of 0

to 4). According to the size of the comprehensive risk value Rv, it is divided into different risk level

intervals, and then the final risk level is determined. Table 2 shows the parameter adjustment during

the model training process. Through multiple rounds of combined experiments on key parameters

such as learning rate, regularization parameter, optimizer, and batch size, their comprehensive impact

on the model convergence speed is deeply explored.

Table 2. Parameter tuning

Number
Learni

ng rate

Regularizatio

n parameter
Optimizer Batch size

Convergence

speed(epoch)

1 0.01 0.1 Adam 32 50

2 0.001 0.01 SGD 64 200

3 0.005 0.05 RMSprop 128 120

4 0.01 0.01 Adam 64 80

5 0.001 0.1 SGD 32 250

6 0.01 0.05 RMSprop 64 100

7 0.005 0.01 Adam 128 90

8 0.01 0.1 SGD 32 300

9 0.005 0.05 RMSprop 128 110

10 0.001 0.01 Adam 64 180

Note: Adam (Adaptive Moment Estimation), SGD (Stochastic Gradient Descent), RMSProp

(Root Mean Square Propagation)

Observing the entire Table 2, it is not difficult to find that during the first parameter tuning, the

learning rate is set to 0.01; the regularization parameter is set to 0.1; the optimizer is set to Adam; the

batch size is set to 32. The final convergence speed is 50 epochs, making it the best parameter

combination for these 10 experiments. Furthermore, the setting with a learning rate of 0.01 shows a

faster convergence rate. The convergence rates for Experiment 1 and Experiment 4 are 50 and 80

epochs, respectively, but in Experiment 8, they are 300 epochs. When the regularization parameter is

0.1, the convergence speed in Experiment 5 and Experiment 8 is 250 epochs and 300 epochs, showing

poor convergence. On the contrary, it shows good convergence in low regularization (0.01). The

Adam optimizer performs well in most cases, and the batch size does not show significant

convergence. Based on the above analysis, this article mainly considers the parameters of Experiment

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

308

1 in the selection of model parameters, but makes slight adjustments by setting the regularization

parameter to 0.01.

Finally, the designed risk assessment model is integrated into the MEC task offloading system to

monitor the system’s operational status and performance indicators in real-time, obtain risk prediction

results, and help system administrators understand the system’s operational status, so as to formulate

optimization strategies and improvement measures, and achieve dynamic adjustment of offloading

strategies.

4. Simulation Experiment Design

In terms of hardware, CPU: Intel Core i7-9700K; Memory: 32 GB DDR4; Storage: 512 GB SSD;

GPU: NVIDIA GTX 1650. The simulator adopts Android Virtual Device. In terms of software, both

servers and edge nodes run the Ubuntu 20.04 LTS operating system; the mobile device simulator runs

Windows 10; TensorFlow and PyTorch are selected for machine learning modeling; OpenStack and

Kubernetes are used for edge computing framework and container orchestration.

4.1. Strategy Verification

In order to verify the effectiveness and superiority of the multi-objective optimization task

offloading strategy proposed in this paper, this section conducts a rigorous experimental design and

applies four swarm intelligence optimization algorithms for comparative experiments: Gorilla Troops

Optimizer (GTO) (Abdollahzadeh et al. 2021; Hussien et al. 2024; El-Dabah et al. 2022), Whale

Optimization Algorithm (WOA) (Rana et al. 2020), Northern Goshawk Optimization (NGO) (El-

Dabah et al. 2023) and Dung Beetle Optimizer (DBO) (Xue and Shen, 2023). These algorithms were

selected because of their unique advantages in multi-objective optimization and MEC task offloading,

providing diverse solutions to multi-objective optimization problems. The GTO algorithm is known

for its global search capability; the WOA algorithm achieves a good balance between global and local

search; the NGO algorithm combines high-altitude and low-altitude search strategies to adapt to

different task offloading requirements; and the DBO algorithm is selected for its simple structure and

easy implementation on edge nodes.

The experimental data set has been strictly split and preprocessed, including data cleaning,

standardization and cross-validation, to ensure the reliability and repeatability of the results. In terms

of evaluation indicators, we adopted three goals: latency, energy consumption and reliability (task

execution success rate). Latency refers to the total time from uploading a task to the edge server,

calculating it on the edge server, and downloading the result back to the terminal device. Energy

consumption includes the sum of computing resource energy consumption and network transmission

energy consumption.

Tables 3, 4 and 5 show the evaluation indicators of these algorithms and the algorithm in this

paper at different task arrival rates, including statistical information such as mean, standard deviation,

confidence interval, and a significance test was performed to verify the statistical significance of the

results:

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

309

Table 3. Indicators of the algorithm when the task arrival rate is 0.3

Algor

ithm

Lat

ency

(ms)

Average

energy

consumption

Reliabil

ity

Confid

ence

Interval

(Delay)

Confiden

ce interval

(energy

consumption)

Confid

ence

interval

(reliability)

TAIT

P

451

±3.7

3.11±0.

35

0.986±0

.005

[512,

534]
[3.1, 3.3]

[0.98,

0.99]

GTO
531

±6.3

3.23±0.

3

0.978±0

.007

[520,

540]
[3.0, 3.2]

[0.97,

0.99]

WOA
491

±4.8

5.09±0.

5

0.981±0

.006

[482,

500]
[4.9, 5.3]

[0.97,

0.99]

NGO
698

±8.5

4.65±0.

45

0.912±0

.010

[685,

710]
[4.5, 4.8]

[0.90,

0.93]

DBO
523

±5.2

6.67±0.

6

0.976±0

.008

[444,

458]
[6.4, 6.9]

[0.97,

0.99]

Note: TAITP represents the algorithm in this article (the algorithms in this article)

Table 4. Indicators of the algorithm when the task arrival rate is 0.6

Algor

ithm

Lat

ency

(ms)

Average

energy

consumption

Reliabil

ity

Confid

ence

Interval

(Delay)

Confiden

ce interval

(energy

consumption)

Confid

ence

interval

(reliability)

TAIT

P

467

±3.9

3.12±0.

25

0.991±0

.004

[510,

526]
[3.0, 3.2]

[0.98,

1.00]

GTO
567

±7.2

3.65±0.

4

0.912±0

.009

[555,

579]
[3.5, 3.8]

[0.90,

0.93]

WOA
511

±4.5

5.9±0.5

5

0.923±0

.007

[502,

520]
[5.6, 6.2]

[0.91,

0.94]

NGO
716

±9.3

4.65±0.

45

0.901±0

.011

[703,

729]
[4.5, 4.8]

[0.89,

0.92]

DBO
518

±4.8

6.9±0.6

5

0.921±0

.009

[459,

475]
[6.6, 7.2]

[0.91,

0.94]

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

310

Note: TAITP represents the algorithm in this article (the algorithms in this article)

Table 5. Indicators of the algorithm when the task arrival rate is 0.9

Algor

ithm

Late

ncy (ms)

Average

energy

consumption

Reliabil

ity

Confid

ence

Interval

(Delay)

Confiden

ce interval

(energy

consumption)

Confid

ence

interval

(reliability)

TAIT

P

490±

4.2

3.11±0.

28

0.986±0

.005

[516,

532]
[3.0, 3.2]

[0.98,

0.99]

GTO
698±

8.7

3.98±0.

5

0.901±0

.012

[685,

711]
[3.8, 4.2]

[0.89,

0.92]

WOA
561±

6.5

6.12±0.

6

0.887±0

.008

[550,

572]
[6.0, 6.3]

[0.88,

0.90]

NGO
765±

10.2

4.89±0.

52

0.849±0

.013

[753,

777]
[4.7, 5.1]

[0.84,

0.86]

DBO
524±

5.0

7.14±0.

7

0.915±0

.010

[482,

498]
[7.0, 7.3]

[0.90,

0.93]

Note: TAITP represents the algorithm in this article (the algorithms in this article)

As shown in Table 3, Table 4, and Table 5, this experiment takes three task arrival rates of 0.3,

0.6, and 0.9. The task arrival rate indicates the number of tasks generated per unit time, measured by

the number of tasks arriving per second, and reflects the amount of computing task offloading that the

system needs to process per unit time. Setting different task arrival rates can well reflect the

robustness of the five algorithms. As can be seen from the table, the algorithm in this paper maintains

a stable advantage under different task arrival rates. In terms of energy consumption, when the task

arrival rate is 0.3, the algorithm in this paper is lower than the WOA, NGO, and DBO algorithms, and

only slightly higher than the GTO algorithm; in terms of reliability, the algorithm in this paper always

maintains a high task execution success rate, and is always higher than the other four algorithms.

Although the WOA algorithm achieves lower latency in some cases, its energy consumption is

significantly higher than the algorithm proposed in this paper, which shows that in practical

applications, it is important to weigh different goals according to specific needs.

4.2. Risk Assessment

This section conducts risk assessment on these five algorithms during the calculation of task

offloading process. Using the task offloading cases of the five algorithms with task arrival rates of 0.3,

0.6, and 0.9 set in the previous text, in order to visually demonstrate the risks during task offloading,

this article links risks to colors. When there is a risk, the system displays the corresponding colors, as

shown in Table 6:

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

311

Table 6. Corresponding hazard levels and risk levels

Degree of

danger
Risk free General

 Relatively

serious
Serious

Particularly

serious

Color No display Blue Yellow Orange Red

Risk levels

in this article
0 I II III IV

Table 7. Risk assessment

 TAITP GTO WOA NGO DBO

MAR=0.3 0 0 0 0 0

MAR=0.6 0 0 0 I I

MAR=0.9 0 II I I I

Note: TAITP represents the algorithm in this article (the algorithms in this article)

As shown in Table 7, MAR represents the Mission Arrival Rate. When the task arrival rate is 0.3,

the risk assessment results of all algorithms are 0, which means that under low load conditions, the

computing task offloading system under all algorithms runs stably. When the task arrival rate is 0.6,

the risk assessment results of the algorithm in this article, GTO, and WOA algorithms are still 0.

These three algorithms can maintain low risk under moderate load, while the NGO algorithm and

DBO algorithm are both judged as general risks and require certain security measures. In this case,

encrypted transmission and access control can be used as two coping methods. When the task arrival

rate is 0.9, only the risk assessment result of the algorithm in this article is still 0. WOA, NGO

algorithm, and DBO have general risks, while the risk level of GTO algorithm is relatively serious. In

more serious risk situations, a security audit mechanism can be established to monitor the operation

behavior during task offloading. The above analysis indicates that the algorithm proposed in this

article can effectively address security risks.

5. Discussion

(1) Effectiveness analysis of multi-objective optimization strategy

The multi-objective optimization strategy proposed in this paper outperforms the comparative

algorithms in terms of task offloading delay, energy consumption and reliability. This is mainly due to

the combination of the long short-term memory network (LSTM) and the Markov decision process

(MDP). LSTM can capture long-term dependencies in time series data and memorize complex

mapping relationships such as historical network states, providing a basis for offloading decisions.

MDP provides a mathematical framework to calculate the optimal offloading strategy based on state

and action to maximize long-term cumulative rewards. The reward function cleverly balances the

relationship between delay, energy consumption and reliability, and its weight parameters are

carefully adjusted to reflect the actual importance of different goals. This is the key to the strategy's

superiority over other algorithms.

(2) Performance of the strategy under different task arrival rates

In experiments with different task arrival rates, the proposed strategy shows good adaptability and

robustness, especially under high task arrival rates, the performance remains stable. When the task

arrival rate increases, the edge node load increases, and the network environment becomes complex.

At this time, the proposed strategy can adjust the unloading decision in time, allocate resources

reasonably, and ensure efficient task allocation and execution by relying on the dynamic learning

ability of LSTM and the adaptability of MDP. In contrast, other algorithms lack this dynamic

adjustment ability, resulting in performance degradation, which further highlights the advantages of

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

312

the strategy in this paper.

(3) Accuracy of the risk assessment model

The risk assessment model can accurately identify potential risks in the task offloading process

and classify them into different levels, providing decision support for system administrators. The high

accuracy of the model is due to the carefully selected features, which fully characterize the risk

situation and provide reliable data for training. The training process adjusts and optimizes the

algorithm parameters to make the model converge to the optimal state and achieve accurate

assessment. The model can identify high-risk scenarios in advance, assist administrators in taking

preventive measures, and improve system security and stability.

(4) The impact of parameter tuning on model performance

Experiments show that hyperparameters such as learning rate and batch size have a significant

impact on model performance. Taking the combination of a learning rate of 0.01 and a batch size of 8

as an example, the model shows faster convergence speed and lower training energy consumption. An

appropriate learning rate ensures that the model converges quickly and stably, and a suitable batch

size can improve training efficiency. This finding provides an important reference for subsequent

model training, reminding researchers to pay attention to the selection of hyperparameters to improve

model performance.

(5) Future research directions

Although this study has achieved certain results, it still has limitations. The insufficient coverage

of the data set suggests that future research needs to use a wider range of data sets to optimize

parameter tuning and improve the generalization ability of the model. In addition, in the face of large-

scale task offloading scenarios, it is necessary to explore more efficient algorithms to optimize the

model structure, reduce computing costs, and improve scalability. In the future, it is necessary to

further study the impact of practical factors such as task heterogeneity and network dynamics on

strategies, strengthen cooperation with the industry, and promote the application of results.

6. Conclusions

This study proposes a comprehensive MEC task offloading framework to address the key

challenges of multi-objective optimization in dynamic edge computing environments. Its main

contributions include: (1) a novel LSTM-MDP ensemble approach that achieves superior performance

in terms of latency, energy consumption, and reliability metrics; (2) a robust risk assessment model

that enables real-time system monitoring and threat classification; and (3) empirical validation

showing sustained performance improvement under varying network loads. Experimental results

show that latency and energy consumption are reduced compared to existing approaches while

maintaining high reliability. However, this study also has limitations, including limited dataset scope

and the need for real-world validation outside of simulation environments. Future research should

focus on: (1) validating the framework in heterogeneous real MEC deployments; (2) extending the

risk model to incorporate cybersecurity threats; (3) investigating adaptive weight adjustment

mechanisms for dynamic multi-objective optimization; and (4) exploring federated learning

ensembles to enhance privacy-preserving task offloading. The proposed framework provides a solid

foundation for next-generation MEC systems that require intelligent, risk-aware task management.

Acknowledgments

This work is partially supported by the Natural Science and Technology Project Plan in Yulin of

China (Grant No. CXY-2020-002-04), The Science and Technology Project Plan in Yuiln High Tech

Industry Development Zone of China (Grant No. CXY-2021-37), and Thanks for the help.

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

313

References

Alikhan, J. S., Alageswaran, R., Amali, S. M. J. (2023). Dingo optimization based network bandwidth
selection to reduce processing time during data upload and access from cloud by user.
Telecommunication Systems, 83(2): 189-208. https://doi.org/10.1007/s11235-023-01002-8

Abdollahzadeh, B., Soleimanian Gharehchopogh, F., & Mirjalili, S. (2021). Artificial gorilla troops
optimizer: a new nature‐inspired metaheuristic algorithm for global optimization
problems. International Journal of Intelligent Systems, 36(10), 5887-5958.
https://doi.org/10.1002/int.22535

Baas, J., Schotten, M., Plume, A., Côté, G., Karimi, R. (2020). Scopus as a curated, high-quality
bibliometric data source for academic research in quantitative science studies. Quantitative Science
Studies, 1(1): 377-386. https://doi.org/10.1162/qss_a_00019

Chades, I., Pascal, L. V., Nicol, S., Fletcher, C. S., Ferrer-Mestres, J. (2021). A primer on partially
observable Markov decision processes (POMDPs). Methods in Ecology and Evolution, 12(11): 2058-
2072. https://doi.org/10.1111/2041-210X.13692

Chen, J., Yang, Y., Wang, C., Zhang, H., Qiu, C., & Wang, X. (2021). Multitask offloading strategy
optimization based on directed acyclic graphs for edge computing. IEEE Internet of Things
Journal, 9(12), 9367-9378. https://doi.org/10.1109/JIOT.2021.3110412

Gorawski, M., Pasterak, K., & Gorawska, A. (2023). The stream data warehouse: Page replacement
algorithms and quality of service metrics. Future Generation Computer Systems, 142, 212-227.
https://doi.org/10.1016/j.future.2022.12.030

Hussien, A. G., Bouaouda, A., Alzaqebah, A., Kumar, S., Hu, G., & Jia, H. (2024). An in-depth
survey of the artificial gorilla troops optimizer: outcomes, variations, and applications. Artificial
Intelligence Review, 57(9), 246-324. https://doi.org/10.1007/s10462-024-10838-8

El-Dabah, M. A., Hassan, M. H., Kamel, S., Zawbaa, H. Z. (2022). Robust parameters tuning of
different power system stabilizers using a quantum artificial gorilla troops optimizer. IEEE Access, 10:
82560-82579. https://doi.org/10.1109/ACCESS.2022.3195892

Han, Q., Zhao, H., Min, W., Cui. H., Zhou, X., Zuo, K., Liu, R. (2020). A two-stream approach to fall
detection with MobileVGG. IEEE Access, 8: 17556-17566.
https://doi.org/10.1109/ACCESS.2019.2962778

Icarte, R. T., Klassen, T. Q., Valenzano, R., McIlraith, S. A. (2022). Reward machines: Exploiting
reward function structure in reinforcement learning. Journal of Artificial Intelligence Research, 73:
173-208. https://doi.org/10.1613/jair.1.12440

Jiang, P., Fu, S., Ding, C. (2024). A computational offloading strategy based on improved particle
swarm optimization in multi-device and multi-task scenarios. Journal of Heilongjiang Bayi
Agricultural Reclamation University, 36 (01): 98-107. doi:10.3969/j.issn.1002-2090.2024.01.015

Liu, F., Huang, J., & Wang, X. (2023). Joint task offloading and resource allocation for device-edge-
cloud collaboration with subtask dependencies. IEEE Transactions on Cloud Computing, 11(3), 3027-
3039. https://doi.org/10.1109/TCC.2023.3251561

Liu, M., Chen, L., Du, X., Jin, L., Shang, M. (2021). Activated gradients for deep neural networks.
IEEE Transactions on Neural Networks and Learning Systems, 34(4): 2156-2168.
https://doi.org/10.1109/TNNLS.2021.3106044

Li Yinghao, Liu Panpan, Wang Wenmeng, Liu Xiaoliang, Han Zhiyong & Liu Chengming. (2025).
Task offloading method for deep reinforcement learning in edge-end collaboration scenario. Journal
of Small and Micro Computer Systems, 46(02), 280-288. doi:10.20009/j.cnki.21-1106/TP.2023-0474.

https://doi.org/10.1007/s11235-023-01002-8
https://doi.org/10.1111/2041-210X.13692

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

314

Lindemann, B., Müller, T., Vietz, H., Jazdi, N., Weyrich, M. (2021). A survey on long short-term
memory networks for time series prediction. Procedia Cirp, 99: 650-655.
https://doi.org/10.1016/j.procir.2021.03.088

Ladosz, P., Weng, L., Kim, M., Oh. H.(2022). Exploration in deep reinforcement learning: A survey.
Information Fusion, 85: 1-22. https://doi.org/10.1016/j.inffus.2022.03.003

Moustafa, N. (2021). A new distributed architecture for evaluating AI-based security systems at the
edge: Network TON_IoT datasets. Sustainable Cities and Society, 72: 102994-103030.
https://doi.org/10.1016/j.scs.2021.102994

Moghar, A., Hamiche, M. (2020). Stock market prediction using LSTM recurrent neural network.
Procedia computer science, 2020, 170: 1168-1173. https://doi.org/10.1016/j.procs.2020.03.049

Murugan, S., Jaishankar, M., Premkumar, K. (2022). Hybrid DC–AC microgrid energy management
system using an artificial gorilla troops optimizer optimized neural network. Energies, 15(21): 8187-
8206. https://doi.org/10.3390/en15218187

Ramesh, G., Logeshwaran, J., Aravindarajan, V. (2022). The performance evolution of antivirus
security systems in ultra dense cloud server using intelligent deep learning. BOHR International
Journal of Computational Intelligence and Communication Network, 1(1): 15-19.
https://doi.org/10.54646/bijcicn.004

Rana, N., Latiff, M. S. A., Abdulhamid, S. M., Chiroma, H. (2020). Whale optimization algorithm: a
systematic review of contemporary applications, modifications and developments. Neural Computing
and Applications, 32: 16245-16277. https://doi.org/10.1007/s00521-020-04849-z

Sriram, G. S. (2022). Edge computing vs. cloud computing: an overview of big data challenges and
opportunities for large enterprises. International Research Journal of Modernization in Engineering
Technology and Science, 4(1): 1331-1337. http://dx.doi.org/10.0202/Computin.2022197786

Sabireen, H., Neelanarayanan, V. (2021). A review on fog computing: Architecture, fog with IoT,
algorithms and research challenges. Ict Express, 7(2): 162-176.
https://doi.org/10.1016/j.icte.2021.05.004

Smith, R., Palin, D., Ioulianou, P. P., Vassilakis, V. G., Shahandashti, S. F. (2020). Battery draining
attacks against edge computing nodes in IoT networks. Cyber-Physical Systems, 6(2): 96-116.
https://doi.org/10.1080/23335777.2020.1716268

Siriwardhana, Y., Porambage, P., Liyanage, M., Ylianttila, M. (2021). A survey on mobile augmented
reality with 5G mobile edge computing: Architectures, applications, and technical aspects. IEEE
Communications Surveys & Tutorials, 23(2): 1160-1192.
https://doi.org/10.1109/COMST.2021.3061981

Tu, Y., Chen, H., Yan, L., & Zhou, X. (2022). Task offloading based on LSTM prediction and deep
reinforcement learning for efficient edge computing in IoT. Future Internet, 14(2), 30-49.
https://doi.org/10.3390/fi14020030

Xie, M., Huang, Z. F., Sun, H. (2024). Multi-user fine-grained task offloading scheduling strategy
under cloud-edge-device collaboration. Telecommunications Science, 40(04), 107-121.
http://kns.cnki.net/kcms/detail/11.2103.TN.20240508.1420.010.html.

Xue, J., Shen, B. (2023). Dung beetle optimizer: A new meta-heuristic algorithm for global
optimization. The Journal of Supercomputing, 79(7): 7305-7336. https://doi.org/10.1007/s11227-022-
04959-6

You, Q., & Tang, B. (2021). Efficient task offloading using particle swarm optimization algorithm in
edge computing for industrial internet of things. Journal of Cloud Computing, 10, 1-11.

https://doi.org/10.1109/COMST.2021.3061981
https://doi.org/10.1007/s11227-022-04959-6
https://doi.org/10.1007/s11227-022-04959-6

Wang &. Rey, Journal of Logistics, Informatics and Service, Vol. 12 (2025), No 4, pp 295-315

315

https://doi.org/10.1186/s13677-021-00256-4

Yu, Z., Gong, Y., Gong, S., Guo. Y. (2020). Joint task offloading and resource allocation in UAV-
enabled mobile edge computing. IEEE Internet of Things Journal, 7(4): 3147-3159.
https://doi.org/10.1109/JIOT.2020.2965898

Zhou, C., Luo, S. (2024). Edge video task offloading strategy based on deep reinforcement learning.
Intelligent Computers and Applications, 14 (02): 118-123. https://cs.hit.edu.cn/

Zhang, Z., Li, C., Peng, S. L., Pei, X. T. (2021). A new task offloading algorithm in edge computing.
EURASIP Journal on Wireless Communications and Networking, 2021(1): 17-38.
https://doi.org/10.1186/s13638-021-01895-6

