
406

ISSN 1816-6075 (Print), 1818-0523 (Online)
Journal of System and Management Sciences

Vol. 14 (2024) No. 7, pp. 406-425
DOI:10.33168/JSMS.2024.0722

Application of the OWASP Framework to Identify and
Remediate Vulnerabilities in Java Web Applications

Francisco Hilario, Diego Chang, Carla Zafra, Yesenia Vasquez, Laura Chipana
Universidad César Vallejo, Lima, Perú

fhilariof@ucvvirtual.edu.pe, ddelca@ucvvirtual.edu.pe, cmzafrar@gmail.com, yvasquez@ucv.edu.pe,

lachipanar@ucvvirtual.edu.pe

Abstract. This study examines how the Open Web Application Security Project (OWASP)
uses the methodology to assess security vulnerabilities in Java web applications. Through a
literature review, a comparative evaluation of OWASP with alternative penetration testing
methods was performed. Pre-experimental quantitative methodology was used for the analysis.
The results of the audit of Java web applications conducted by 17 developers showed that the
Open Web Application Security Project identified significant vulnerabilities, such as injection
attacks, access control issues, and misconfiguration. The study demonstrates that OWASP
performs well in assessing web application security threats and providing guidelines for
correcting them. Its limitations include the lack of a comparison group and small sample size.
Further research is needed on how to integrate OWASP with automation tools to make audits
more efficient.

Keywords: Application security, Vulnerability Analysis, Java Web Application

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

407

1. Introduction
The Open Web Application Security Project methodology, which helps to have technical security
controls in web applications, is not used in Java web applications due to a lack of knowledge and
technical practice. Likewise, as a theoretical justification, technological aspects such as the practice of
using the Open Web Application Security Project methodology were addressed, and the result and
change are positive because it helps to measure the main security risks and threats to minimize them.

In addition, the methodology of the Open Web Application Security Project's techniques shows that
there are several problems caused by incorrect programming within web applications. This is due to
certain advances made by programmers, making insecure code vulnerable to attacks from questionable
security and control systems. In addition, because hackers are performing higher level attacks on
companies through new technologies coming out and previous ones are neglected, organizations today
need to get more security in their programming. Continuing with the idea, Chavarria (2020) mentions
that when performing a testing program, there is not always a right or wrong technical option to apply,
and sometimes it can be difficult to choose between them. Although the ideal would be to perform tests
in all possible areas, this is not always possible, and it may be necessary to perform penetration tests in
several areas of the organization to obtain the best results. As a result, recent studies have shown that
75% of cyber-attacks target network security, compromising two-thirds of all online systems. Structured
query language injection, parameter manipulation, directory traversal, cross-site request forgery
(CSFR), denial of service (DoS), cookie poisoning, cross-site scripting (XSS), and session fixation are
some of the attacks against these types of applications. National observations suggest that web
applications should avoid these pitfalls because this problem is widespread. Web applications offer the
advantage of being accessible from any web portal, regardless of the operating system, according to
Romero (2019).

We point out the importance of implementing the OWASP methodology from a technological,
social, and theoretical point of view. This has been stabilized by the Certified Java Application Security
Engineer, which is used to detect flaws. Therefore, Gamboa (2021) pointed out that the multiple
negative effects evidenced by vulnerabilities in security applications should be taken into account, as
they represent a current threat to poor application development. As a result, this article explains how to
implement and develop the Open Web Application Security Project methodology for web applications
(Java) through computer security management. The planning and maintenance of the security programs
of organizations deals mainly with strategic, tactical, and operational interviews (Bravo, 2019).

On the other hand, from the technological perspective of the study, it focuses on information on
how to reduce threats or increase the level of security established for web applications that are registered
in the Top Ten of OWASP with the most common security problems from the study of software and
how to evade them, due to the lack of techniques and models that are detailing the efforts that exist to
solve these problems (Menendez, 2022). The author Rio (2022) also described the weaknesses in the
technological exploitation because it will start by performing the scanning and port recognition tool,
which verifies the perimeter security controls, such as firewalls and IDS systems, and can protect the
application, but not to the maximum since its controls are not effective enough to defend against attacks
on the application layer.

According to Lala, Kumar and Subbulakshmi (2021), both large companies and individual
developers are very concerned about ensuring the security of websites. During website development, it
is more difficult to establish security measures the less common the technology used. Hackers look for
unattended development and deployment vulnerabilities, which can cause large financial losses to
companies or individuals. This not only affects developers but also exposes end users to vulnerable
websites that could be vulnerable to XSS attacks, which could cause damage to their systems. Users
who reuse passwords across multiple influential websites increase the risks. Every developer, regardless
of experience, should consider addressing security gaps as a starting point for improving their

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

408

applications, as they are common in any development application. The goal of the project is to develop
a secure web application that complies with the Open Web Application Security Project (OWASP)
guidelines.

The growing popularity of web-based applications has complicated the protection of online data.
The field of application security is constantly evolving due to advances in attack techniques, the
introduction of new technologies with inherent vulnerabilities, the integration of comprehensive defense
mechanisms, and the implementation of increasingly complex security systems. In this contribution,
our goal is to develop a coherent model covering the most common and dangerous web attacks. This
method will improve your understanding of these types of attacks and allow you to implement a security
strategy that suits your particular technical and business circumstances (Ayachi et al., 2018). On the
other hand, Damanik and Sunaringtyas (2020) demonstrated that the OWASP Test Guide is a tool for
vulnerability testing because injection vulnerabilities are among the most important vulnerabilities
identified. After testing, the code is reviewed using the OWASP Help Review Guide to find
vulnerabilities in the source code. Finally, Damanik and Sunaringtyas (2020) provide security code
suggestions that are based on the ideas used to address and mitigate vulnerabilities.

Thorough scanning and analysis of web applications is crucial to prevent or at least reduce potential
security vulnerabilities. When applied to large code bases, traditional code review methods, such as
manual review, present problems. Therefore, knowledge of automated code analysis tools is essential
to evaluate their performance and reliability. The literature review found a variety of antecedents that
facilitate the use of automated code analysis tools. Two static analysis tools were used in this case study
to identify security threats in open-source web applications that had known vulnerabilities. The case
study findings show that automated code review tools successfully identify security issues to an
acceptable level and are significantly faster and more effective than manual reviews (Gholami, 2021).
Therefore, evaluating source code for security issues has been a difficult undertaking. According to
previous research, developers often overlook even obvious and easy-to-detect vulnerabilities during
code review. Preliminary results indicate that this oversight may be related to reviewer bias and
common practices. This study analyzes the effects of explicitly instructing developers to prioritize
security during a code review and how it affects vulnerability detection. The study also analyzes the
effect of providing a security checklist to guide the security review process (Braz, Çalıklı, and Bacchelli.
2022).

2. Literary Review
The segmented research shows the most relevant techniques on the OWASP Ten Best Practices
methodology in Java web applications to improve academic training and secure code development in
applications.

2.1. OWASP Methodology
Bergillos (2021) announced that the Open Web Application Security Project is a nonprofit institution
to optimizes software security in web applications, that is, the Open Web Application Security Project
foundation gives visibility, credibility, funding, and a broad community in open programs regarding
security in the web platform, concluded with an awareness act for programmers indicating the most
prominent security dangers in web applications.

2.2. Criteria of the methodology
Given the advances in attacks that occur against web applications, different criminal attacks can bring
down a web application, which is why the OWASP methodology is used to help mitigate and correct
through the use of secure code.

2.3. Security criteria
Chango and Gualpa (2019) released that they guarantee the security criteria of the methodology by

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

409

applying techniques from the Open Web Applications Security Project, managing sufficient risks in
errors at the open source level to decree a regime of assistance of a computer security professional of
contribution in knowledge, they concluded that this is intended to improve the security of web
applications.

2.4. Vulnerabilities
Esquivel and Lozano (2020) indicated that the Open Web Application Security Project created 10 years
ago, collected the main vulnerabilities, documented them, and admitted an end of risks by providing
information on probabilities and impacts. It is currently one of the best and most used because every
app and API developer is confident in its usefulness.

2.5. Penetration Testing
Nagendran (2019) stated that penetration testing and vulnerability assessment are different terms, in
that it is appropriate to manifest the corresponding security flaws, while also including the exploitation
of the discovered flaw and the attempt at data exfiltration. In addition, he indicated real-time testing of
web applications that have been confirmed to be useful in defending the security of websites and
concluded that web applications are mandatory after making the online request to avoid potential risks,
so in this work, the techniques used to be tested are analyzed.

2.5.1. Tools for a test
Fernandez (2022) provided a list of tools that are being worked on but are not up-to-date and are not
intended to augment previously created vulnerabilities. Some examples of devices: The open web
application security project, LAPSE, is an open source tool created with Java security. The Open Web
Application Security Project, or Orizon, is a source code program with a security scanner designed to
detect vulnerabilities in web applications written in Java. OWASP Code Crawler, another tool
developed by the Open Web Application Security Project for expert code review with static security
code checks, is presented along with Insider, a free open source application intended for scanning
stagnant web applications.

2.5.2. Openings toward a test
Freire (2022) proposed that the openings in information security systems determine the level of risk that
I observe externally, and the level of occurrence, explaining that the probability of an attack on the
assets found is through Open Source Intelligence.

2.6. Outreach Phase
Acosta (2022) presented that the scope testing phases consist of recasting the scanning of open ports
with vulnerability analysis in which the information obtained is analyzed, and access is obtained for the
post-exploitation phase, which makes the report of possible solutions, he began by making a list of
network scans, Knowing that this stage is developed with vulnerability scanners, and infiltrates access
to the system, he also described vulnerabilities linked to web applications, which explain
misconfigurations or insecure practices such as Cross-site Scripting, and Structured Query Language
Injection that has to filter the user fields entered by content.

2.7. Open Web Application Security Project License
Caucali (2020) noted that the purpose of his project was to conduct security testing on web applications
to identify potential vulnerabilities caused by them, through penetration testing to diagnose and resolve
security issues. By taking an open-source approach, we can identify and address the underlying reasons
for the lack of security in software. In addition, it allows us to provide and verify security based on the
specific characteristics of the application, making it easier to accurately design the requirements needed
for information security.

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

410

2.8. Testing and Exploiting Tools to Improve Open Web Application Security Project
Web applications have experienced recent growth across various sectors such as public and private
companies, government entities, and critical infrastructure. Consequently, ensuring the security of these
web applications has become a significant priority to safeguard businesses against potential losses and
unauthorized access to sensitive information. Developers may inadvertently introduce vulnerabilities
by incorporating insecure modules or components from third parties, or by creating security flaws in
their programming. Additionally, constraints such as tight budgets can contribute to these challenges.
Unfortunately, these circumstances often lead to the oversight of a crucial security aspect in the lifecycle
development of software (Alazmi. 2022).

2.9. Application Security Verification Standard (ASVS)
According to Blandón and Jaramillo (2023), OWASP, the Open Source Web Application Security
Project, aims to identify and uncover the causes of software security breaches. OWASP establishes
three levels of security assessment, increasing the comprehensiveness at each level. ASVS Level 1 is
for any type of software; ASVS Level 2 is for applications that handle sensitive data and need protection;
and ASVS Level 3 is for critical applications that perform high-value transactions, host sensitive
information, or any application that requires the highest level of trust.

2.10. Software Assurance Maturity Model (SAMM)
Ahumada (2019), the open source web application security project delves into the open source
framework that enables companies to develop and implement a software security strategy. Its adaptable
implementation makes it suitable for companies of any size and development approach. Each of the
twelve security practices defined in the model is composed of three maturity levels, which are grouped
into four business functions related to software development.

2.11. Analysis of web security through the open web application security project
Willberg (2019) detailed that the open web application security project is a method within a security
testing framework aimed at assessing the security of web applications to find vulnerabilities in a website.
It aims to ensure that websites are protected through the use of checklists. The ten most dangerous
categories of website vulnerabilities will be addressed through this initiative. These vulnerabilities
include injection, faulty authentication, sensitive data exposure, extensible markup language external
entities, compromised access control, security misconfigurations, cross-site scripting, untrusted
deserialization, exploiting segments with known weaknesses, and other security-related issues.

2.12. Preventing attacks through the Open Web Application Security Project
Due to the remarkable technological advances that have occurred in recent years, people are
increasingly adopting these emerging technologies. Although people rely heavily on these advances,
there are several vulnerabilities in some fields that attract attackers who want to steal personal data. It
is evident that cyber threats and breaches, caused by malicious motives or ransomware, are increasing
globally. Users' servers and websites are frequently compromised, often without users being aware of
the vulnerabilities. These vulnerabilities include the major issues identified by the Open Web
Application Security Project, such as SQL injection and cross-site scripting. The suggested solution is
to establish a web application firewall focused on the application layer of the Open Systems
Interconnection (OSI) model to address and reduce these vulnerabilities.

2.13. Website vulnerability testing and web application scanning using Open Web
Application Security Project

Priyawati, Rokhmah, and Utomo (2022) noted that many businesses, organizations, and social
institutions use websites to facilitate their core tasks. Although websites have many benefits, it is
essential to improve their security measures to reduce the risk of hacking. Cyber attacks or unauthorized
access can have serious consequences, such as the compromise of important data. Therefore, assessing

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

411

the vulnerability of application features through comprehensive testing is crucial. Gray box penetration
testing is a suitable testing method for distributed websites.

2.14. Technological tool
In addition, we can observe a comparison of methodologies in the implementation of web applications,
where we observe the benefits and characteristics of the methodologies that are implemented in web
applications. Table 1 explains the comparison of the different methodologies.

Table 1: Comparison of methodology in web application implementation
Indicators Methodologies

OSSTMM PTES ISSAF OWASP
Start Year In 2000 the

methodology was
launched for the first
time.

In 2009 the
methodology was
launched for the first
time.

In 2006 the
methodology was
launched for the first
time.

In 2003 the
methodology was
launched for the first
time.

Versions V4, v3, v2.1, v2.0 There are no versions Draft 0.2.1, Draft 0.2 2021, 2017, 2016, 2013,
2010, 2007, 2004, 2003

Type Of
Methodology

The complete procedure
to perform penetration
and reliability tests,
security studies, and
measurement of
operational reliability to
build the most robust
security defenses for
your company.
(OSSTMM, 2010)

Number of information
systems audited
Characteristics of
audited information
systems
The objectives of the
audit
Other organizational
aspects. (PTES, 2014)

It is a structured, peer-
reviewed framework
that classifies
information systems
security assessments
into areas and lists the
evaluation or testing
criteria for each of these
areas. (ISSAF, 2017)

It is a security tool that
presents a structure in
which it increases
exponentially, through
processes used through
detection tools and
advice on measures to
be taken to solve
weaknesses. (OWASP,
2021)

Proceeds It serves as evidence of a
verification of tactics.
Return to the examiner
the responsibility for the
test.
Provide the client with a
definitive result.
Provide more complex
details than an executive
summary.
Provide understandable
metrics. (OSSTMM,
2010)

Have an accurate idea of
the actual level of
security of information
systems and the
maximum damage that a
cyberattack can cause to
the organization.
provide data to assess
the organization's
cybersecurity
compliance (PTES,
2014).

Aims to establish
evaluation processes,
against documents by
evaluating the
protections
implemented against
unauthorized access,
finding technology-
related
misconfigurations, and
strengthening the
processes. (ISSAF,
2017)

It is a test that addresses
security risks because it
ensures avoiding the
most common attacks
and weaknesses through
confidentiality,
integrity, and
availability through
automated and manual
tests that consider
applications more robust
and error-free.
(OWASP, 2021)

Features Environments are
significantly more
complicated compared
to past seasons due to
events such as
virtualization, cloud
computing, and remote
operations. (OSSTMM,
2010)

In tests, it serves in a
detailed way to carry out
evaluation phases,
which are tools that
determine scope and
limitations in an
estimated time. (PTES,
2014)

Meets the requirements
of evaluating an
organization in the facet
of security and
assessment processes.
(ISSAF, 2017)

It is considered to be an
evaluation in web
infrastructure, providing
technological details
with a broad and
adequate vision
achieving alignment
with the standards from
little to more effort.
(OWASP, 2021)

Source: Authors.

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

412

3. Materials and Methods
After the analysis and review, it was determined that 6 documents were entered that were necessary to
present the results of the study. Among the research, we cite studies because they met all the
requirements. Table 2, details of the selected studies are presented:

Table 2: Cited documents linked to the size of the study.
N° TITLE AUTHOR YEAR COUNTRY
1 Analysis, development, and implementation of a

security system to strengthen vulnerabilities and
integrity of academic web applications. Thesis
(Master's Degree in Telematics Security).
Riobamba: Higher Polytechnic School of
Chimborazo

Ramírez, F. 2022 Ecuador

2 Study of the main types of code injection attacks on
web applications and systems to determine if a
source code is vulnerable to STRUCTURED
QUERY LANGUAGE Injection

Fernández, P. 2022 España

3 Computer Security, Methodologies, Standards and
Management Framework in an Approach to Web
Applications

Suarez, I. & Yagual,
D. 2022 Ecuador

4 Design and implementation of a protection system
against the injection attack Structured Query
Language, on a vulnerable server using Open Access
tools

Luque, A. 2021 Colombia

5 Diagnosis of computer vulnerabilities in the web
applications of the Central University of Ecuador Zambrano, G. &

Andrade M. 2019 Ecuador

6 Use of Penetration Testing Technologies for Web
Application Security Validation Based on OWASP's
Top 10 Vulnerabilities Zapata, J. 2018 Colombia

Source: Authors.

In reference to the collected studies it can be inferred that Ramirez (2022) conducted a study.
According to the collected studies, it can be inferred that Ramirez (2022) created a comparative table
of OSSTMM (Open Source for Security Testing Manual), PTES (Penetration Testing Execution),
ISSAF (Information Systems Security Framework Assessment), and OWASP (Open Web Application
Security Project) methodologies to evaluate the performance of techniques in web applications in Java.
These methodologies develop penetration tests that compare similar criteria found in previous studies,
and demonstrate that it is possible to exhibit, alter and/or expose breaches in Java web applications.

WebGoat, a web server platform with vulnerabilities through lessons on how to break and identify
vulnerabilities, is one of the tools mentioned in the OWASP methodology. In addition, it has
instructions on how to mitigate through the testing guide, as well as vulnerabilities for us to verify
vulnerabilities and steps to test the ink tests in three black box cases. When the application is secure, a
hacker is unknowingly looking for vulnerabilities. When you know or have information about the
organization's framework or idea to look for vulnerabilities, the "gray box" is used. The white box
provides information about penetration testing and how applications, source code, libraries, and
vulnerabilities are built so that attackers cannot find vulnerabilities.

In addition, it is possible to identify the elective indicators or criteria of the current study. Among
the most important elements are scope and approach; description of where testing is conducted and by
whom; detailed activities related to the methodology; depth; detail of penetration and risk testing means
used; usability; methodology layout; depth; between penetration testing detail and risk; and how to
expose the implementation.

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

413

Table 3: Comparative table of methodologies in test penetration
Characteristics OSSTMM PTES ISSAF OWASP
Scope and
Approach

Operational approach, for
any company that intends to
value information security.

Applicable with
another
methodology.

For all types of
audits.

Targets web
application media in
any organization.

Scope Monopolize computers and
systems grouped into the
network.

Develops and can
successfully perform
the test.

Average knowledge
of details in pen-
testing.

Audit web
applications, in the
full cycle of
completion.

Depth Specific analysis. Security and
penetration
capabilities impact
scanner
performance.

Analyze the
prerequisites before
the evaluation.

Analyze the security
of the application.

Usability It requires training and is
coded as an average limit in
usability.

It is supported by
other methodologies.

It is linear and
protects the basic
stages through the
intrusion test.

Penetrating usability
in web applications.

Metric Determines the level of
security of effectiveness,
manipulates fair
measurements called RAV
(Risk Assessment Values,
for its acronym in English).

Preserve information
through previous
studies.

It is re-evaluated by
the same process to
meet the evaluation
criteria.

Has metrics to
categorize and
appreciate
insecurities.

Risk estimation Uses the RAV (Risk
Assessment Values)
considering accuracy, in the
risk limits; and the
equivalent substances in
each module of operation.

Apply metrics by
performing tests and
proposing tools.

Applies
countermeasures
and
recommendations
through references
and external
documentation.

Apply metrics to
assess and
appreciate risks.

Source: Authors.

4. Results and Discussion
The web security manual, which identifies the business logic for security flaws detected by automated
tools, served as the basis for the web auditing technique in this analysis. In addition, the application
analysis finds the most frequent errors that significantly affect system security. In addition, the ninety
controls described by the Open Web Application Security Project methodology were used to fully
validate web security. As a result, it is recommended to complete an OWASP Top 10 web audit, as it
allows the security of web applications in educational and commercial environments to be evaluated.

The Open Web Application Security Project methodology can be used in any project when applied
to Java web applications. Table 4 provides detailed instructions on how to use OWASP TOP 10.

Table 4: OWASP TOP 10 analysis table in Java web applications

OWASP TOP 10 Utilities Measures to be taken
A1: Injection Incorrect attachment of input

parameters.
• Strong passwords.
• Database users and prefixes that are not by

default.
• A reliable security system housing.

A2: Loss of
authentication

Guidelines for protecting credit card
holder information during and after an
online transaction.

• Strong passwords.
• All versions must be original and secure.
• Hide login errors.
• Don't use more than two admins.
• Check all again.

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

414

A3: Exposure to
sensitive data

Security guidelines for safeguarding
credit card holder data during and
after an online transaction.

• A1 and A2 will be used.
• The General Data Protection Regulation.
• Hosting PCI Compliance and GDPR Compliance.
• Controlling permissions for users.
• Sensitive data is deleted.
• HTTPS is synonymous with SSL.

A4: XML External
Entity (XXE)

And external parties making
incursions.

• Original and recognized software.
• Upgrade SOAP to SOAP 1.2 or higher.
• Although manual code review is the best

alternative, SAST tools can help find XXE in
source code.

A5: Broken Access
Control

Access vulnerabilities are discovered
using SAST and DAST tools.

• A1 and A2 will be used.
• Examine JSON REST API calls for errors.
• Save additional copies.

A6: Incorrect security
settings

Data exposure and user protection. • A1 and A2 will be used.
• Use anything other than what's set as the default,

including your computer, router, and phone.
A7: Cross-site
scripting (XSS)

Browser security is at risk due to user
sessions.

• Identify input vectors.
• Analyze locations.
• Test input vectors.

A8: Insecure decoding Cause malicious code execution. • Apply A1.
• Use digital signatures as integrity checks for any

serialized object.
A9: Components with
vulnerabilities

Determining vulnerabilities requires
extra effort.

• Avoid staying in unattended accommodations.
• Avoid using software that has been removed or

has known security flaws.

A10: Insufficient
monitoring and
logging

Offers numerous breaches and
backdoors, some of which can be
difficult to locate and repair.

• Obfuscated code.
• Base code64.
• File System Features.
• GDPR (General Data Protection Regulation).

 Source: Authors.

The web application security project testing guide focuses on web applications. As a result, we will
use it as a guide to ensure reliable software development, which in turn will help us safeguard the pillars
of IT security. However, to catalog the following tests/activities that actively involve information
submission, it is essential to interact with both the applications and the servers that host them. When
cybercriminals enter a computer center, they are not aware of what they are doing, so they manage to
reach their target without verifying it, leading to the injection attack. Therefore, a flaw in the companies'
login text fields is being investigated that could be exploited through a code leak known as injection,
which aims to allow cybercriminals to enter the platform. These injection attacks target servers and
applications. In addition, one of the most common attacks is against the database or operating system.
This can be achieved through a web application, which could inject code and cause it to execute
unexpectedly. The most common in the application are those that lack data entry validation; any type
of input is potentially vulnerable; and there must be a restriction on the number of data that can be
entered, so you should only allow database data to limit the number of characters.

On the other hand, measures are taken to reduce and correct injection attacks, such as application
maintenance, security drivers, and database security patches. It is important that application developers
and administrators are aware of the dangers associated with injections. In addition, during program
development, special characters are filtered out and instructions are written incorrectly, which
contributes to structured query language injection. In response, the client sends structured query
language instructions through the publication and fetches variables that will be executed regularly. To
specify, we should keep in mind that injection attacks are presented as threat agents and can be internal
and external environment variables, web services, security weaknesses in legacy code found in
Structured Query Language, No Structured Query Language, Lightweight Directory Access Protocol,

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

415

and Extensible Markup Language Path Language queries and that the effects of injection attacks cause
a large amount of lost data as a result of data denial. Therefore, the methodologies mentioned in the
tests were used to evaluate the main vulnerabilities shown in the Open Web Application Security Project
Test Guide, along with the security tests evaluated in the deserialization and monitoring log of secure
web applications. In addition, it is difficult to set up the tests integrated in the demo job with enormous
certainty on web servers. The dimensions of the security mechanisms will determine these problems.

Before data processing, first of all, the normality test was applied using the Shapiro-Wilk statistical
test because the sample was smaller than 50 participants. The significance value was p < 0.05; therefore,
the data did not present a normal distribution. Consequently, nonparametric statistics were used.

HE10: Using the OWASP Ten Best Practices methodology will not increase optimization in web

applications.
HE11: The use of OWASP's Top Ten Best Practices methodology increased optimization in web

applications.
Table 5. Normality Test

 Shapiro-Wilk
Statistical Gl Gis.

Increased Optimization - Pre ,766 17 ,001
Increased Optimization - Post ,262 17 ,000

Pre-Test Optimization, Table 5, shows that the results after applying the normality test from the

data measured in the pre-test optimization increase, the level was less than 0.05, which indicates that
the sample does not fit the normal distribution.

Increased Post-Test Optimization, Table 5, shows that the results after applying the normality test
from the data measured in the post-test optimization increase, the level was obtained to be less than
0.05, which indicates that the sample does not fit the non-normal distribution.

Table 6: Wilcoxon Signed Rank Test – Optimization Augmentation Towards OWASP Technical
Methodology

Ranges
 N Average Range Sum of Ranks
Increased Optimization - Pre -
Increased Optimization - Post

Negative Ranges 9a 5,00 45,00
Positive Ranges 0b ,00 ,00
Draws 41c
Total 17

a. Increased Optimization - Pre < Increased Optimization - Post
b. Increased Optimization - Pre > Increased Optimization - Post
c. Increased Optimization - Pre = Increased Optimization - Post

Table 6, shows the statistic on the optimization increase in the use of the OWASP technical

methodology.

Table 7: Z-Test Statistic – Optimization Increase in OWASP Methodology
Test Statisticians

 Increased Optimization - Post - Increased
Optimization - Pre

Z -3.448b
Asymptotic sig. (bilateral) ,001
a. Wilcoxon Sign Range Test
b. It is based on negative ranges.

After analyzing the data using the SPSS in the Z zone of Table 7, -3.448 was obtained, which was

found in the rejection region and a value of p = 0.001 < 0.05 was obtained, therefore, the HE10 was

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

416

rejected, and the HE11: It was accepted that "The use of OWASP techniques methodology increased
optimization in Java web applications".

Fig 1: Optimization in the use of OWASP's Top Ten Best Practice methodology in web applications (Pre-Test)

Fig 2: Increased optimization in the use of OWASP's Top Ten Best Practice methodology in web applications (Post-Test)

According to the results presented in the table, there is statistical evidence that supports the rejection

of the null hypothesis, which allows us to conclude that the implementation of the OWASP techniques
methodology for Java web applications significantly improves the increase in optimization. In addition,
the figure shows an increase in the increase in optimization, going from a fair level to one considered
as good.

HE20: Using OWASP's Ten Best Practices methodology will not lead to the growth of Java web
applications.

HE21: The use of OWASP's Top Ten Best Practice methodology led to the growth of the Java web
Statistical data on the evolution of growth
For this indicator, an analysis was carried out with a group of 17 people who are dedicated to the

development of web applications, by carrying out the OWASP technical methodology in Java web
applications. The statistical tables according to the approach of the pre-test, and post-observation guide,
where it was possible to measure the development of growth at the end of the OWASP technical
methodology in Java web applications.

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

417

Table 8. Normality test
 Shapiro-Wilk

Statistical Gl Gis.
Growth Development - Pre ,802 17 ,000
Growth Development - Post ,807 17 ,000

Pre-Test Growth Development, Table 8 shows the results after applying the normality test from the

data measured in the development of pre-test growth, it was obtained that the level is less than 0.05,
which indicates that the sample does not fit the normal distribution.

Post-Test Growth Development, Table 8 shows the results after applying the normality test from
the data measured in the development of post-test growth, it was obtained that the level is less than 0.05,
which indicates that the sample does not fit the normal distribution.

Table 9: Wilcoxon Signed Rank Test – Growth Development Towards OWASP Technical

Methodology
Ranges

 N Average Range Sum of Ranks
Pre-Growth Development –
Post-Growth Development

Negative Ranges 3a 2,00 6,00
Positive Ranges 0b ,00 ,00
Draws 47C
Total 17

a. Growth Development - Pre < Growth Development - Post
b. Growth Development - Pre > Growth Development - Post
c. Growth Development - Pre = Growth Development - Post

Table 9, shows the statistics on growth development using the OWASP technical methodology.

Table 10: Z-Test Statistic – Growth Development in the OWASP Methodology

Test Statisticians
 Pre-Growth Development - Post-Growth

Development
Z -1,732B
Asymptotic sig. (bilateral) ,083
a. Wilcoxon Sign Range Test
b. It is based on positive ranges.

After performing the analysis of the data using the SPSS in the Z zone of Table 10, -1.265 was

obtained, which was found in the rejection region and a value of p = 0.206 > 0.05 was obtained, therefore,
HE20 was not accepted and HE21 was accepted that "The use of OWASP's ten best practices
methodology led to the growth of Java web applications".

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

418

Fig 3: Development in the use of the OWASP Top Ten Best Practices methodology in web applications (Pre-Test)

Fig 4: Development of growth in the use of the OWASP Top Ten Best Practices methodology in web applications (Post-

Test)

According to the results presented in the table, there is statistical evidence that supports the rejection
of the null hypothesis, which allows us to conclude that the implementation of the OWASP techniques
methodology for Java web applications significantly improves the development of growth. In addition,
the figure shows an increase in the development of growth, moving from a fair level to one considered
good.

HE30: Using OWASP's Ten Best Practices methodology will not increase knowledge of web
applications.

HE31: The use of the OWASP Ten Best Practices methodology increased knowledge of web
applications.

Table 11. Normality test

 Shapiro-Wilk
Statistical Gl Gis.

Increasing Knowledge - Pre ,785 17 ,001
Increasing Awareness - Post ,642 17 ,000

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

419

Pre-Test Knowledge, Table 11, shows the results after applying the normality test from the data
measured in the increase in pre-test knowledge, it was obtained that the level is less than 0.05, which
indicates that the sample does not fit the normal distribution.

Increased Post-Test Knowledge, Table 11 shows the results after applying the normality test from
the data measured in the increase in post-test knowledge, it was obtained that the level is less than 0.05,
which indicates that the sample does not fit the normal distribution.

Table 12: Wilcoxon Signed Rank Test – Increasing Knowledge of OWASP Technical Methodology

Ranges
 N Average Range Sum of Ranks
Increasing Knowledge - Post -
Increasing Knowledge - Pre

Negative Ranges 7a 5,93 41,50
Positive Ranges 3b 4,50 13,50
Draws 7c
Total 17

a. Increasing Knowledge - Post < Increasing Knowledge - Pre
b. Increasing Knowledge - Post > Increasing Knowledge - Pre
c. Increasing Knowledge - Post = Increasing Knowledge - Pre

Table 12 shows the statistics on the increase in knowledge in the use of the OWASP technical
methodology.

Table 13: Z-Test Statistic – Knowledge Increase in the OWASP Methodology
Test Statisticians

 Increasing Knowledge - Post - Increasing
Knowledge - Pre

Z -1,513b
Asymptotic sig. (bilateral) ,130
a. Wilcoxon Sign Range Test
b. It is based on negative ranges.

After performing the data analysis using SPSS in the Z-zone of Table 13, -1.513 was obtained,

which was in the rejection region and a value of p = 0.130 > 0.05 was obtained, therefore, HE30 was
rejected, and HE31 was accepted that "The use of OWASP techniques methodology increased
knowledge of Java web applications".

Fig 5: Knowledge of the use of the OWASP Top Ten best practice methodology in web applications (Pre-Test)

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

420

Fig 6: Increased knowledge in the use of the OWASP Top Ten best practice methodology in web applications (Post-Test)

According to the results presented, there is statistical evidence that supports the rejection of the null

hypothesis, which allows us to conclude that the implementation of the OWASP techniques
methodology for Java web applications significantly improved the increase in knowledge. In addition,
the figure shows an increase in knowledge, moving from a fair level to one considered good.

HE40: The use of OWASP's Top Ten Best Practices methodology will not improve the level of
security in Java web applications.

HE41: The use of OWASP's Top Ten Best Practices methodology improved the level of security in
Java web applications.

Confirm that the data follows a normal distribution.

Table 14. Normality test
 Shapiro-Wilk

Statistical Gl Gis.
Security Level Enhancement - Pre ,815 17 ,003
Improved Security Level - Post ,733 17 ,000

Pre-Test Security Level, Table 14, shows the results after applying the normality test from the data

measured in the improvement in the pre-test safety level, it was obtained that the level is less than 0.05,
which indicates that the sample does not fit the normal distribution.

Improved Post-Test Security Level, Table 14, shows the results after applying the normality test
from the data measured in the improvement in the post-test safety level, it was obtained that the level
is less than 0.05, which indicates that the sample does not fit the normal distribution.

Table 15: Wilcoxon Signed Range Test – Improvement in the level of confidence towards the
OWASP technical methodology

Ranges
 N Average Range Sum of Ranks
Security Level Improvement -
Post - Security Level
Improvement - Pre

Negative Ranges 0a ,00 ,00
Positive Ranges 4b 2,50 10,00
Draws 13C
Total 17

a. Security Level Improvement - Post < Security Level Improvement - Pre
b. Security Level Improvement - Post > Security Level Improvement - Pre
c. Improvement in Security Level - Post = Improvement in Security Level - Pre

Table 15 shows the statistics on the improvement in the level of security in the use of the OWASP
technical methodology.

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

421

Table 16: Z-Test Statistic – Improvement in the Level of Security in the OWASP Methodology

Test Statisticians
 Security Level Improvement - Post -

Security Level Improvement - Pre
Z -2,000b
Asymptotic sig. (bilateral) ,046
a. Wilcoxon Sign Range Test
b. It is based on negative ranges.

After analyzing the data using the SPSS in the Z zone of Table 16, -2.000 was obtained, which was

found in the rejection region and a value of p = 0.046 < 0.05 was obtained, therefore, the HE40 was
rejected and the HE41 was accepted, it was accepted that "The use of the OWASP best practices
methodology improved the level of security in Java web applications".

Fig 7: Level of Security in the use of the OWASP Top Ten Best Practice methodology in web applications (Pre-Test)

Fig 8: Level of Security in the use of the OWASP Top Ten Best Practice methodology in web applications (Post-Test)

According to the results presented, there is statistical evidence that supports the rejection of the null
hypothesis, which allows us to conclude that the implementation of the OWASP techniques
methodology for Java web applications significantly improves the level of security. In addition, there
is an improvement in the level of security in the figure, going from a fair level to one considered good.

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

422

5. Conclusion
This study examined the security of Java web applications in comparison to other penetration testing
techniques. The findings highlight OWASP's ability to assess vulnerabilities such as injection, broken
access control, and misconfigurations. Important metrics such as accuracy, specificity, and risk
assessment values demonstrate that OWASP's structured approach works. However, there are
limitations, such as the amount of manual work required. To improve effectiveness, integration of
OWASP with automated scanners should be considered in future work. In summary, this study
demonstrates that the OWASP methodology is useful for developers to implement secure coding
practices and for organizations to strengthen web application security.

Acknowledgments
We are very grateful to all the people who contributed knowledge and made this article a success.

References

Acosta Santana, J. J. (2022). Pentesting en entornos controlados [Universidad de La Laguna].
Disponible
en:https://riull.ull.es/xmlui/bitstream/handle/915/28744/Pentesting%20en%20entornos%20controlado
s.pdf

Aljabri, M., Aldossary, M., Al-Homeed, N., Alhetelah, B., Althubiany, M., Alotaibi, O., & Alsaqer, S.
(2022). Testing and exploiting tools to improve OWASP Top ten security vulnerabilities detection.
2022 14th International Conference on Computational Intelligence and Communication Networks
(CICN). Disponible en: https://doi.org/10.1109/cicn56167.2022.10008360

Ahumada Munar, J. C. (2019). Análisis de metodologías para la implementación de un esquema de
seguridad en el desarrollo de aplicaciones on line [Universidad Nacional Abierta y a Distancia].
Disponible en: https://repository.unad.edu.co/bitstream/handle/10596/33795/jcahumadam.pdf

Alazmi S, De Leon DC. A systematic literature review on the characteristics and effectiveness of web
application vulnerability scanners. IEEE Access. 2022;10:33200-33219.
doi:10.1109/access.2022.3161522

Ayachi, Y., Ettifouri, E. H., Berrich, J., & Bouchentouf, T. (2018). Modeling the OWASP most critical
WEB attacks. En Smart innovation, systems, and technologies. Disponible en:
https://doi.org/10.1007/978-3-030-03577-8_49

Bergillos Pedraza, S. (2021). La seguridad como punto de partida del desarrollo web [Universidad de
Girona]. Disponible en: https://dugi-
doc.udg.edu/bitstream/handle/10256/22561/Memoria_SergiBergillosPedraza_01-09-21.pdf

Blandón-Jaramillo, C. A., & Jaramillo-Becerra, J. S. (2023). Calidad del software y seguridad de
aplicaciones a partir del proceso de desarrollo de software AGILISO y el estándar OWASP. Revista
Tecnología En Marcha, 36(8), Pág. 5–22. https://doi.org/10.18845/tm.v36i8.6923

Bravo Mullo, S. J. (2019). Contribuciones para la Detección de Ataques Distribuidos de Denegación de
Servicio (DDoS) en la Capa de Aplicación [Universidad Mayor de San Marcos]. Disponible en:
https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/18699/Bravo_ms.pdf

Braz, L., Aeberhard, C., Çalıklı, G., & Bacchelli, A. (2022). Less is more: supporting developers in
vulnerability detection during code review. Proceedings of the 44th International Conference on
Software Engineering. ACM Digital Library. Disponible en: https://doi.org/10.1145/3510003.3511560

https://riull.ull.es/xmlui/bitstream/handle/915/28744/Pentesting%20en%20entornos%20controlados.pdf
https://riull.ull.es/xmlui/bitstream/handle/915/28744/Pentesting%20en%20entornos%20controlados.pdf
https://dugi-doc.udg.edu/bitstream/handle/10256/22561/Memoria_SergiBergillosPedraza_01-09-21.pdf
https://dugi-doc.udg.edu/bitstream/handle/10256/22561/Memoria_SergiBergillosPedraza_01-09-21.pdf
https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/18699/Bravo_ms.pdf

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

423

Caucali Beltrán, D. M. (2020) Análisis y definición de requisitos de seguridad informática
fundamentado en OWASP para el cumplimiento en los aplicativos basados en software libre en gestión
documental. [Universidad Nacional Abierta y a Distancia]. Disponible en:
https://repository.unad.edu.co/bitstream/handle/10596/38709/dmcaucalib.pdf

Chango Saavedra, R. J., & Gualpa Sarabia, D. A. (2023). Implementación de pruebas de hackeo ético
para evaluar el sistema de seguridad informática en la empresa RHELEC Ingeniería CIA. LTDA
[Universidad Politécnica Salesiana]. Disponible en:
https://dspace.ups.edu.ec/bitstream/123456789/24450/1/TTS1228.pdf

Chavarría Gonzales, V. (2020). Estudio de los ataques contra website. OWASP [Universidad de las
Islas Baleares]. Disponible en:
https://dspace.uib.es/xmlui/bitstream/handle/11201/151259/Memoria_EPSU0643.pdf

Damanik, V. N. N., & Sunaringtyas, S. U. (2020). Secure Code Recommendation Based on Code
Review Result Using OWASP Code Review Guide. IEEE Xplore. Disponible en:
https://doi.org/10.1109/iwbis50925.2020.9255559

Esquivel Cabezas, H. A., & Lozano Olivares, J. H. (2020). Análisis de seguridad para el sitio web de la
clínica veterinaria de occidente aplicando metodología de pentets owasp [Universidad Nacional Abierta
y a Distancia]. Disponible en:
https://repository.unad.edu.co/bitstream/handle/10596/36704/haesquivelc.pdf

Fernández Miranda, H. A. (2019). Análisis de la seguridad del sitio web del ministerio del trabajo
aplicando pruebas de pentesting en la sede principal de la ciudad de bogotá [Universidad Nacional
Abierta y a Distancia]. Disponible en:
https://repository.unad.edu.co/bitstream/handle/10596/27059/hafernandezm.pdf

Freire Silva, J. E. (2022). Metodología para mitigar vulnerabilidades de almacenamiento mediante
inteligencia de fuentes abiertas (OSINT) en la EEASA [Pontificia Universidad Católica del Ecuador].
Disponible en: https://repositorio.pucesa.edu.ec/bitstream/123456789/3528/1/77818.pdf

Gamboa Safla, D. L. (2021). Vulnerabilidades en aplicaciones web utilizando la metodología de
“proyecto abierto de seguridad de aplicaciones web”. Tesis de maestría, Ecuador [Pontificia
Universidad Católica del Ecuador]. Disponible en:
https://repositorio.pucesa.edu.ec/bitstream/123456789/3175/1/77336.pdf

Gholami, S. (2021). Automated Secure code review for web- applications. DIVA. Disponible en:
https://www.diva-portal.org/smash/get/diva2:1587768/FULLTEXT01.pdf

Haq, I. U., & Khan, T. A. (2021). Penetration Frameworks and Development Issues in Secure Mobile
Application Development: A Systematic Literature Review. IEEE Access, 9, 87806–87825.
https://doi.org/10.1109/access.2021.3088229

Helmiawan MA, Firmansyah E, Fadil I, Sofivan Y, Mahardika F, Guntara A. Analysis of Web Security
using Open Web Application Security Project 10. 2020 8th International Conference on Cyber and IT
Service Management (CITSM). octubre 2020. doi:10.1109/citsm50537.2020.9268856

Hilario, F., Milner Liendo, L. C., & Rivera, R. (2023). Evaluation of Cyber Sabotage in Public
Entities. Journal of System and Management Sciences, 13(4), 574-582.
https://doi.org/10.33168/jsms.2023.0434

Hilario, F., Milner Liendo, L. C., C. Corpus, & Zafra, C. (2023). Evaluation of Algorithmic Metrics
with A Focus on Server CyberRisks. Journal of System and Management Sciences, 13(5), 322-338.
http://dx.doi.org/10.33168/jsms.2023.0521

https://dspace.ups.edu.ec/bitstream/123456789/24450/1/TTS1228.pdf
https://dspace.uib.es/xmlui/bitstream/handle/11201/151259/Memoria_EPSU0643.pdf
https://repository.unad.edu.co/bitstream/handle/10596/36704/haesquivelc.pdf
https://repository.unad.edu.co/bitstream/handle/10596/27059/hafernandezm.pdf
https://repositorio.pucesa.edu.ec/bitstream/123456789/3528/1/77818.pdf

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

424

Higuera, J. R. B., Higuera, J. B., Sicilia, J. A., Riera, T. S., Argyros, C. I., & Magreñán, A. (2021).
Combinatorial method with static analysis for source code security in web applications. Cmes-computer
Modeling in Engineering & Sciences, 129(2), 541-565. https://doi.org/10.32604/cmes.2021.017213

Hye-jin, K., & S., M. (2022). A Reinforcement Learning Model for Quantum Network Data
Aggregation and Analysis. Journal of System and Management Sciences, 12(01), 11. Disponible en:
http://www.aasmr.org/jsms/Vol12/JSMS%20February%202022/Vol.12No.01.20.pdf

Ibarra-Fiallos, S., Higuera, J. B., Intriago-Pazmiño, M., Higuera, J. R. B., Sicilia, J. A., & Cubo, J.
(2021). Effective filter for common injection attacks in online web applications. IEEE Access, 9, 10378–
10391. https://doi.org/10.1109/access.2021.3050566

Idris, M. Z., Syarif, I., & Winarno, I. (2021). Development of Vulnerable Web Application Based on
OWASP API Security Risks. IEEE ACCESS. Disponible en:
https://doi.org/10.1109/ies53407.2021.9593934

Ji-Yoon, K., & Chae-Kwan, L. (2022). The Use of Sentiment Analysis and Latent Dirichlet Allocation
Topic-Modeling (LDA) on Web Novel Content Quality Fact. Journal of System and Management
Sciences, 12(2), 16. Disponible en:
http://www.aasmr.org/jsms/Vol12/JSMS%20April%202022/Vol.12No.02.11.pdf

Kennedy, M., Perkins, C., Brown, M., & Prins, K. (2022). Application security automation in
development. 5(3), 216-226 (11). Disponible en:
https://www.ingentaconnect.com/content/hsp/jcs/2022/00000005/00000003/art00004

Kiruba, B., Saravanan, V., Vasanth, T., & Yogeshwar, B. (2022). OWASP Attack Prevention. 2022 3rd
International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE
Xplore Disponible en: https://doi.org/10.1109/icesc54411.2022.9885691

Kumar, S. A., & Rani, Y. U. (2022). Implementation and analysis of Web application security measures
using OWASP Guidelines. IEEE Access. https://doi.org/10.1109/icmacc54824.2022.10093657

Lala, S. K., Kumar, A., & Subbulakshmi, T. (2021). Secure Web development using OWASP
Guidelines. IEEE Access. Disponible en: https://doi.org/10.1109/iciccs51141.2021.9432179

Menéndez Arante, S. C. (2022). Auditoría de Seguridad Informática. Grupo RA-MA.
https://www.digitaliapublishing.com/a/116389

Miao, L., Zhang, B., Chen, W., & Zhang, X. (2019). A survey of exploitation and Detection Methods
of XSS vulnerabilities. IEEE Access, 7, 182004–182016. https://doi.org/10.1109/access.2019.2960449

Mohammed, A., Alkhathami, J., Alsuwat, H., & Alsuwat, E. (2021). Security of Web Applications:
Threats, Vulnerabilities, and Protection Methods. International Journal of Computer Science and
Network Security, 21(8), 167–176. https://doi.org/10.22937/IJCSNS.2021.21.8.22

Nagendran, K. (2019). Web Application Penetration Testing. In International Journal of Innovative
Technology and Exploring Engineering (Vol. 8, Issue 10, pp. 1029–1035). Blue Eyes Intelligence
Engineering and Sciences Engineering and Sciences Publication - BEIESP. Disponible en:
https://doi.org/10.35940/ijitee.j9173.0881019

Priyawati, D., Rokhmah, S., & Utomo, I. C. (2022). Website Vulnerability testing and analysis of
website applications using OWASP. International Journal of Computer and Information System, 3(3),
142-147. Disponible en: https://doi.org/10.29040/ijcis.v3i3.90

Río Hernández, O. (2022). Detección y explotación de vulnerabilidades del top 10 de OWASP y
protección contra éstas [Universidad Politécnica de Cataluña]. Disponible en:
https://upcommons.upc.edu/bitstream/handle/2117/375146/169364.pdf

http://www.aasmr.org/jsms/Vol12/JSMS%20February%202022/Vol.12No.01.20.pdf
https://www.digitaliapublishing.com/a/116389
https://upcommons.upc.edu/bitstream/handle/2117/375146/169364.pdf

Hilario et al., Journal of System and Management Sciences, Vol. 14 (2024) No. 7, pp. 406-425

425

Romero Aliaga, J. J. (2019). Trabajo de investigación de mejores prácticas en desarrollo de sistemas
web contra ataque de inyección [Universidad Tecnológica del Perú]. Disponible en:
https://repositorio.utp.edu.pe/bitstream/handle/20.500.12867/2078/Juan%20Romero_Trabajo%20de%
20Investigacion_Maestria_2019.pdf

Shahid, J., Hameed, M. K., Javed, I. T., Qureshi, K. N., Ali, M., & Crespi, N. (2022). A Comparative
Study of Web Application Security Parameters: Current trends and future directions. Applied Sciences,
12(8), 4077. https://doi.org/10.3390/app12084077

Sierra Huertas, T. (2022). La seguridad informática en el desarrollo de aplicaciones web mediante el
uso de la metodología OWASP [Universidad Nacional Abierta y a Distancia]. Disponible en:
https://repository.unad.edu.co/bitstream/handle/10596/54049/ta52sie605.pdf

Sönmez, F. Ö. (2019). Security Qualitative Metrics for Open Web Application Security Project
Compliance. Procedia Computer Science, 151, 998–1003. https://doi.org/10.1016/j.procs.2019.04.140

Tudela, F. M., Higuera, J. B., Higuera, J. B., Sicilia, J. A., & Argyros, M. I. (2020). On combining static,
dynamic, and interactive analysis security testing tools to improve OWASP Top ten security
vulnerability detection in web applications. Applied Sciences, 10(24), 9119.
https://doi.org/10.3390/app10249119

Zambrano, K. B., Vidal, W. E. B., & Vera, R. R. T. (2022). Vulnerabilidades en los sistemas
informáticos owasp top 10. Journal Business Science, 3(2), 8. Disponible en:
https://revistas.uleam.edu.ec/index.php/business_science/article/view/221/308

https://repositorio.utp.edu.pe/bitstream/handle/20.500.12867/2078/Juan%20Romero_Trabajo%20de%20Investigacion_Maestria_2019.pdf
https://repositorio.utp.edu.pe/bitstream/handle/20.500.12867/2078/Juan%20Romero_Trabajo%20de%20Investigacion_Maestria_2019.pdf
https://repository.unad.edu.co/bitstream/handle/10596/54049/ta52sie605.pdf

