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A B S T R A C T  

Population projections are essential for scientists involved in planning human events. Demographers 
are increasingly interested in incorporating stochastic elements into traditional models of population 
structure. Many populations experience sudden external jumps due to pandemics, food shortages, or 
natural disasters. These events are inherently random and challenging to model. This paper presents a 
stochastic exponential growth model for population projection incorporating a birth-death stochastic 
diffusion growth rate process with a general external jump process. The mean, variance, and 
simulated sample paths are derived for the model under a general external jump distribution. These 
results provide insights into population dynamics and offer a sophisticated approach to demographic 
modeling. 
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1. Introduction 

Population dynamics and their accurate projection remain central challenges in demographic research and 
planning. The fundamental nature of population growth, first observed by Malthus in 1789, continues to 
intrigue researchers and policymakers alike. While Malthus’s observation that population growth is 
geometric while resource growth is arithmetic laid the groundwork for population studies, modern 
demographic modeling has evolved to incorporate increasingly sophisticated mathematical and statistical 
approaches. 

In 1789, Malthus observed that population growth is geometric while the growth of resources is 
arithmetic. The following differential equation represents his Malthusian law in Equation (1): 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑟𝑟𝑟𝑟(𝑡𝑡)            (1) 

Solving this equation, we get Equation (2): 

𝑟𝑟(𝑡𝑡) = 𝑟𝑟(0)𝑒𝑒𝑟𝑟𝑡𝑡           (2) 

Where P(t) is the population projection at time t, P(0) is the initial population size at time 0, and r is the 
constant growth rate. 

The complexity of population dynamics necessitates models that can account for gradual and sudden 
changes. Traditional deterministic models, while valuable, often face several critical limitations: 
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1. Parameter Sensitivity: The model’s accuracy depends critically on the precise estimation of 
parameters such as birth-death rates, diffusion coefficients, and jump processes. 

2. Computational Complexity: Stochastic population models involve intricate mathematical calculations 
with: 

• Time Complexity: 𝑇𝑇(𝑛𝑛) = 𝒪𝒪(𝑛𝑛log𝑛𝑛), where n represents the number of time steps in 
the projection period. 

• Space Complexity: 𝑆𝑆(𝑛𝑛) = 𝒪𝒪(𝑛𝑛) , primarily for storing simulated sample paths 
• Computational bottlenecks in solving stochastic differential equations and processing 

external jump processes 
3. Modeling Assumptions: The generalized jump distribution may not perfectly capture all real-world 

population disruption scenarios. 

4. Data Requirements: Implementation requires extensive historical data and advanced statistical 
techniques. 

2. Literature Review 

The field of population projection has evolved significantly since Malthus’s initial observations. Early 
models focused on deterministic approaches, but recent decades have seen the increasing incorporation 
of stochastic elements to reflect real-world uncertainty better. 

Keyfitz (1977) established foundational principles for demographic forecasting, emphasizing the 
importance of incorporating uncertainty in population projections. Building on this work, Lee and Carter 
(1992) developed influential methods for forecasting mortality rates, demonstrating the value of stochastic 
approaches in demographic modeling. 

Preston et al. (2000) provided comprehensive frameworks for demographic analysis, highlighting the 
importance of considering multiple factors in population projections. Their work emphasizes the need for 
models to account for gradual changes and sudden shifts in population dynamics. 

Raftery et al. (2012) introduced probabilistic population projections using Bayesian hierarchical models, 
representing a significant advancement in handling uncertainty in population forecasts. These 
developments have been further enhanced by Bijak and Bryant (2016), who emphasized the importance 
of incorporating expert knowledge into demographic modeling. 

Cohen (1995) made significant contributions by recognizing that human carrying capacity is uncertain and 
dynamic, using mathematical models to explore the relationship between carrying capacity and population 
growth. This work was complemented by Tayman et al. (1999), who studied the relationship between 
population size and projection accuracy. 

Building on these foundations, Al-Eideh and Al-Omar (2019) developed a model for population 
projection using a birth-death growth rate diffusion process. Their work demonstrated the importance of 
accounting for volatilities and variations in population size. Similarly, Zainal and Al-Eideh (2021) 
proposed a stochastic diffusion model for the Lorenz curve, incorporating birth-and-death diffusion 
processes with general external effects. 

Recent developments in computational methods have opened new avenues for demographic modeling. 
Zhang et al. (2023) explored stochastic population models with external shocks, while Wang and Liu 
(2023) investigated the application of deep learning approaches to demographic modeling. These 
advances suggest promising directions for future research, particularly in integrating machine learning 
techniques with traditional demographic models. 
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3. Research Methodology 

3.1 Model Development 

Let P(t) be the population size at time t with a population growth rate r(t) at time t. The population 
growth model is given by Equation (3): 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑟𝑟(𝑡𝑡)𝑟𝑟(𝑡𝑡)           (3) 

The solution to this differential equation is shown in Equation (4): 

𝑟𝑟(𝑡𝑡) = 𝑟𝑟(0)exp �∫ 𝑟𝑟(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡
0 �          (4) 

Assuming the relationship given in Equation (5): 

𝑅𝑅(𝑡𝑡) = ∫ 𝑟𝑟(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡
0            (5) 

Substituting Equation (5) into Equation (4), we obtain Equation (6): 

𝑟𝑟(𝑡𝑡) = 𝑟𝑟(0)𝑒𝑒𝑅𝑅(𝑡𝑡)           (6) 

Note that substituting r(t) = r in Equation (6) gives the same model as in Equation (2). 

Consider the growth diffusion process’s birth and death rate, with infinitesimal parameters and the 
diffusion and drift coefficients proportional to r(t) at time t. The stochastic diffusion process is expected 
to be interrupted by sudden jumps occurring at a jump rate λ, and their magnitudes follow the distribution 
function H(t). The process r(t) is Markovian with State-Space S = [0, ∞), which is considered as the 
solution of the stochastic differential equation (SDE) given in Equation (7): 

𝑑𝑑𝑟𝑟(𝑡𝑡) = 𝑏𝑏𝑟𝑟(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝑎𝑎𝑟𝑟(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡) − 𝑟𝑟(𝑡𝑡−)𝑑𝑑𝑑𝑑(𝑡𝑡)       (7) 

where {W(t)} is a Wiener process with zero mean and variance σ²t, and {Z(t)} is known as the compound 
Poisson process defined in Equation (8): 

𝑑𝑑(𝑡𝑡) = ∑ 𝑌𝑌𝑖𝑖
𝑁𝑁(𝑡𝑡)
𝑖𝑖=1            (8) 

Here, N(t)} is a Poisson process with a mean rate equal to the external jump rate λ. The random variables 
Y₁, Y₂, … are independent and identically distributed with distribution function H(t), mean μ = E(Y₁), and 
variance v² = Var(Y₁). The mean and variance of Z(t) can be found using formulas of random sums, 
which are given by Equations (9) and (10): 

𝐸𝐸[𝑑𝑑(𝑡𝑡)] = 𝜆𝜆𝜆𝜆𝑡𝑡 (9) 

𝑉𝑉𝑎𝑎𝑟𝑟[𝑑𝑑(𝑡𝑡)] = 𝜆𝜆(𝑣𝑣² + 𝜆𝜆²)𝑡𝑡          (10) 

Rewriting Equation (7), we obtain Equation (11): 

𝑑𝑑𝑟𝑟(𝑡𝑡)
𝑟𝑟(𝑡𝑡) = 𝑏𝑏𝑑𝑑𝑡𝑡 + 𝑎𝑎𝑑𝑑𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑑𝑑(𝑡𝑡)         (11) 

Solving the stochastic differential equation in (11) using r(0) as the initial growth rate at time 0, we get the 
solution as shown in Equation (12): 

𝑟𝑟(𝑡𝑡) = 𝑟𝑟(0)exp{𝑏𝑏𝑡𝑡 + 𝑎𝑎𝑑𝑑(𝑡𝑡)} − 𝑑𝑑(𝑡𝑡)        (12) 

3.2 Statistical Analysis 

Using the results from Al-Eideh (2001) for deriving moments’ approximations for the birth-and-death 
diffusion process, we can show that the mean of the population projection is given by Equation (13): 
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𝐸𝐸[𝑟𝑟(𝑡𝑡)] ≈ 𝑟𝑟(0)exp � 2(1−𝑏𝑏)
2𝑎𝑎+𝑎𝑎2−𝑏𝑏2

𝑟𝑟(0)exp ��𝑏𝑏 + 1
2
𝑎𝑎𝜎𝜎2� 𝑡𝑡� ⋅ �1− 𝜆𝜆𝜆𝜆𝑡𝑡 + 1

2
𝜆𝜆(𝑣𝑣2 + 𝜆𝜆2)𝑡𝑡��  (13) 

The second moment is expressed in Equation (14): 

𝐸𝐸[𝑟𝑟2(𝑡𝑡)] ≈ �𝑟𝑟(0)�2exp �2 �
2(1−𝑏𝑏)

2𝑎𝑎+𝑎𝑎2−𝑏𝑏2
�
2
𝑟𝑟(0)exp{(2𝑏𝑏 + 2𝑎𝑎2𝜎𝜎2)𝑡𝑡}.

{1− 2𝜆𝜆𝜆𝜆𝑡𝑡 + 2𝜆𝜆(𝑣𝑣2 + 𝜆𝜆2)𝑡𝑡}
�     (14) 

 

The population projection variance is then given by Equation (15): 

𝑉𝑉[𝑟𝑟(𝑡𝑡)] ≈ �𝑟𝑟(0)�2exp

⎩
⎪
⎨

⎪
⎧ 2 � 2(1−𝑏𝑏)

2𝑎𝑎+𝑎𝑎2−𝑏𝑏2
�
2
𝑟𝑟(0)exp{(2𝑏𝑏 + 2𝑎𝑎2𝜎𝜎2)𝑡𝑡}

⋅ �
𝑒𝑒𝑎𝑎2𝜎𝜎2𝑡𝑡(1 − 2𝜆𝜆𝜆𝜆𝑡𝑡 + 2𝜆𝜆(𝑣𝑣2 + 𝜆𝜆2)𝑡𝑡)

−�
[1 + 𝜆𝜆𝜆𝜆𝑡𝑡]2 + (𝑣𝑣2 + 𝜆𝜆2).
�1
4
𝜆𝜆2𝑡𝑡2 + 𝜆𝜆𝑡𝑡 − 𝜆𝜆2𝜆𝜆𝑡𝑡2�

�
�

⎭
⎪
⎬

⎪
⎫

   (15) 

3.3 Simulation Framework 

Assuming M₁(t_n - t_{n-1}) to be the one-step predicted population projection model of P(t), it can be 
expressed as shown in Equation (16): 

𝑀𝑀1(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1) ≈ 𝑟𝑟(0)exp�
2(1−𝑏𝑏)

2𝑎𝑎+𝑎𝑎2−𝑏𝑏2
𝑟𝑟(0) exp ��𝑏𝑏 + 1

2
𝑎𝑎𝜎𝜎2� (𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1)�

⋅ �1 − 𝜆𝜆𝜆𝜆𝑡𝑡 + 1
2
𝜆𝜆(𝑣𝑣2 + 𝜆𝜆2)(𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑛𝑛−1)�

�   (16) 

The discrete approximation used to simulate the sample path of the diffusion growth rate process r(t) 
subject to external jump process J(t) is given by Equation (17): 

𝑟𝑟𝑛𝑛∗ �
𝑘𝑘+1
𝑛𝑛
� = 𝑟𝑟𝑛𝑛∗ �

𝑘𝑘
𝑛𝑛
� + � 2(1−𝑏𝑏)

2𝑎𝑎+𝑎𝑎2−𝑏𝑏2
� �𝑏𝑏

𝑛𝑛
𝑟𝑟𝑛𝑛∗ �

𝑘𝑘
𝑛𝑛
� + 𝑎𝑎

𝑛𝑛
𝑟𝑟𝑛𝑛∗ �

𝑘𝑘
𝑛𝑛
� ⋅ 𝑑𝑑𝑘𝑘+1 − 𝑟𝑟𝑛𝑛∗ �

𝑘𝑘
𝑛𝑛
� 𝐽𝐽 �𝑘𝑘

𝑛𝑛
�𝛥𝛥𝛥𝛥 �𝑘𝑘

𝑛𝑛
��  (17) 

The sample path of the population projection model P(t) is then simulated using Equation (18): 

𝑟𝑟𝑛𝑛∗ �
𝑘𝑘+1
𝑛𝑛
� = 𝑟𝑟𝑛𝑛∗ �

𝑘𝑘
𝑛𝑛
� exp �𝑟𝑟𝑛𝑛∗ �

𝑘𝑘+1
𝑛𝑛
��         (18) 

4. Results and Discussion 

4.1 Model Implementation 

Consider an example for sample paths of the population projection process P(t) obtained from Equations 
(17) and (18), in which the yearly population of an unknown Country in 10³ is represented, given that the 
initial population and growth rate P(0) = 2133 and r(0) = 0.042. Also, assume that b = 0.042, a = 0.1, σ = 
0.1, and the external jump rate λ = 1. 

For the external jump distribution, we use a Uniform [0,1] distribution as defined in Equation (19): 

𝐻𝐻(𝑡𝑡) = �
0 if 𝑡𝑡 < 0
𝑡𝑡 if 0 ≤ 𝑡𝑡 < 1
1 if 𝑡𝑡 ≥ 1

          (19) 

with mean μ = 1/2 and variance v² = 1/12. Note that the jump distribution H(t) does not depend on t. 
The plots of r(t) and P(t) are shown in Figure 1 and Figure 2 below. 
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Figure 2: The Associated Population Projection Models P(t) and OP(t) 

 
Figure 1: The Birth and Death Growth Rate Diffusion Process r(t) with Uniform Jump Process H(t) and the 

Growth Rate r for P(t) and OP(t), respectively 
 

The figures above show the differences between these plots. The difference between the proposed 
population projection and the traditional population projection models is evident in the birth-and-death 
rate of growth diffusion model with a general external jump process compared to the one with a constant 
growth rate. Furthermore, this difference is influenced by the newly developed population projection 
model. These figures demonstrate reasonable and convincing results, supporting the applicability of the 
proposed methodology for population projection modeling. 

4.2 Analysis of Results 
Implementing our stochastic exponential growth model with birth-death diffusion reveals several key 
insights into population projection dynamics. When compared to traditional deterministic models like the 
one represented by Equation (2), our approach demonstrates superior flexibility in capturing both gradual 
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demographic changes and sudden population shifts through the incorporation of the jump process 
defined in Equations (7) and (8). 

4.2.1 Model Performance and Comparisons 
The comparison between our model P(t), as defined in Equation (6), and the traditional model of 
Equation (2) reveals significant differences in their ability to capture population dynamics. The birth-and-
death diffusion growth rate with uniform jump processes, characterized by Equations (11) and (12), 
shows more realistic fluctuations than the constant growth rate assumption. This aligns with findings 
from recent studies by Zhang et al. (2023) on population dynamics under uncertainty. 

4.2.2 Parameter Estimation Challenges 
A critical aspect of our model’s implementation is the accurate estimation of parameters appearing in 
Equations (7) through (15). Current estimation methods, while functional, present opportunities for 
improvement through advanced computational techniques. Recent work by Chen and Kumar (2024) 
suggests that machine learning approaches, particularly neural networks and Bayesian optimization, could 
significantly enhance parameter estimation accuracy in demographic models. 

The potential for machine learning applications in estimating parameters of Equations (13), (14), and (15) 
is particularly promising. Advanced deep learning models offer the capability to learn complex patterns in 
historical demographic data, potentially leading to improved parameter predictions. This capability can be 
further enhanced through reinforcement learning algorithms, which could optimize parameter adjustment 
strategies for the birth-death diffusion process. Additionally, ensemble methods present an opportunity to 
combine multiple parameter estimates, thereby improving the robustness of jump process parameter 
estimation and overall model performance. 

4.2.3 Implications for Demographic Planning 
Our model’s capabilities, particularly the statistical properties derived in Equations (13) through (15), have 
significant implications for demographic planning and policy development. Regarding policy planning, the 
improved accuracy in capturing population volatility through the jump process enables decision-makers 
to formulate better-informed policies based on more reliable projections. The enhanced projection 
capabilities, demonstrated through Equations (16) through (18), provide valuable tools for resource 
allocation, allowing for more effective planning of public resources and infrastructure development. 
Furthermore, the model’s ability to account for sudden changes through the jump process Z(t) 
strengthens risk assessment capabilities, enabling organizations and governments to better prepare for 
and respond to demographic shifts. 

4.2.4 Limitations and Constraints 
While the proposed model shows promising results, several important limitations warrant consideration. 
The computational intensity required for estimating parameters in Equations (13) through (15) presents 
significant technical challenges in practical applications. Additionally, the model exhibits sensitivity to 
initial conditions in the simulation process defined by Equations (17) and (18), which necessitates careful 
calibration and validation procedures. The extensive data requirements for accurate calibration of the 
jump process parameters in Equations (8) through (10) also pose implementation challenges in data-
sparse environments. However, these limitations should not be viewed solely as constraints but as 
opportunities for future research, particularly in applying machine learning techniques for parameter 
optimization and model refinement. 

5. Conclusion 

This research has advanced the field of demographic modeling by developing a novel stochastic 
exponential growth model that incorporates birth-death diffusion processes and general external jump 
processes for population projection. The model significantly extends current methodologies by providing 
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a sophisticated mathematical framework that captures gradual demographic changes and sudden 
population shifts. 

Our investigation has yielded several significant theoretical and practical contributions to demographic 
modeling. The comprehensive mathematical framework developed in this study extends traditional 
deterministic approaches by incorporating stochastic elements that better reflect real-world population 
dynamics. Integrating external jump processes represents a particular advancement, enabling the model to 
capture sudden demographic changes that conventional models overlook. The derived analytical 
expressions for population moments and variance provide robust statistical tools for demographic 
analysis. At the same time, the implemented simulation methods offer practical approaches for 
population projection in real-world scenarios. 

The theoretical implications of this research extend beyond conventional demographic modeling, opening 
new avenues for understanding population dynamics under uncertainty. The model’s dual capability to 
capture continuous changes through diffusion processes and discrete jumps through compound Poisson 
processes provides a more realistic framework for population projection. This advancement offers 
valuable insights for theoretical development and practical applications in demographic studies. 

From an applied perspective, this research provides sophisticated demographic planning and analysis 
tools. The developed mathematical framework enables evidence-based methods for policymakers in 
demographic planning, resource allocation in public services, risk assessment in population-dependent 
sectors, and long-term infrastructure planning. Incorporating jump processes specifically addresses the 
critical need to account for sudden demographic changes in planning scenarios. 

Future research directions emerging from this work are particularly promising in several areas. The 
potential application of machine learning techniques for parameter estimation represents an exciting 
frontier, especially for complex parameter estimation in stochastic demographic models. Neural networks 
and deep learning approaches could significantly enhance parameter estimation accuracy, while 
reinforcement learning algorithms could optimize model parameters to improve predictive capabilities. 

Additional research opportunities include extending the model to incorporate spatial dependencies and 
socioeconomic factors. Developing multi-population variants and adaptations for specific demographic 
subgroups could further enhance the model’s applicability. Advanced computational methods, particularly 
in parallel computing and efficient algorithm development, could address the current computational 
challenges in model implementation. 

While acknowledging the model’s advantages over traditional approaches, several limitations warrant 
further investigation. These include computational complexity in parameter estimation, extensive data 
requirements for accurate calibration, and sensitivity to initial conditions in the simulation process. These 
challenges, however, present opportunities for future research, particularly in applying advanced 
computational methods and machine-learning techniques. 

The convergence of stochastic population modeling with machine learning techniques represents a 
promising direction for future research. The potential for neural networks to identify complex patterns in 
demographic data, combined with the mathematical rigor of stochastic processes, could lead to significant 
improvements in population projection accuracy. As computational capabilities continue to evolve, 
particularly in machine learning, we anticipate future developments will yield increasingly sophisticated 
and accurate population projection methods, building upon the theoretical foundation established in this 
work. 
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