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Abstract. In recent years, fall detection is a hot study topic as video surveillance 

becomes more universal in public and private spaces. The consequence of falls not 

only can result in physical damage but as well as psychological issues, especially 

among the elderly. With the help of the great processing power of a computer, deep 

learning has come into help to compete with traditional fall detection that required 

hand-crafted features. This paper presents a fall detection application using a 

convolutional neural network (CNN) for web-based and mobile-based 

implementations. A deep network can learn to detect a fall automatically by 

showing it with an ample amount of examples. A deep learning network is built to 

detect falls in an image with a CNN structure. A technical representation of the 

proposed design and methodology is organized and presented in this paper. As a 

result, a fall detection web application was built with the integration of a fall 

detection model with 98.37% specificity and 96.47% sensitivity. 

Keywords: Fall detection, machine learning, CNN, mobile application, web 

application 
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1. Introduction 

In recent years, falls are said to cause about 37.3 million serious injuries and 646,000 

deaths per year, making them a global public health hazard (Santos, et al., 2019). Falls 

can result in a wide range of outcomes, from no injury or slight injury to major injury 

or death. For example, pain, bruising, scratches, and bleeding are the common 

impacts of the fall. A fall has significant psychological implications since it 

significantly affects the self-confidence and independence of those who are afflicted. 

This could lead to more serious falls in the future, or it could lead to a loss in health. 

Other common repercussions include early nursing home admission and a constant 

dread of falling, both of which reduce the quality of life (Cumming, Salkeld, Thomas, 

& Szonyi, 2000). 

Various approaches based on modern equipment have been proposed in recent 

years for the detection of fall incidents. Because wearable devices rely on sensors 

attached to the user's body, such as tilt sensors, accelerometers, gyroscopes, interface 

pressure sensors, and magnetometers, they have been widely used in past studies to 

capture and analyze body movement. These approaches managed to achieve decent 

performance in fall detection for the elderly but there are still some limitations. For 

example, the sensor is considered invasive as the elderly must wear or attach the 

sensor to their body parts for the sensor to function. The elderly who have mobility 

issues might find it troublesome and uncomfortable to wear the sensors that added 

weight to their body. To address this shortcoming of the wearable sensor, the camera-

based fall detection method is short-listed to be the most suitable approach. 

The expected output of this project is an application that can detect fall events in 

a live video sequence with the use of machine learning techniques. The application 

also provides some settings and adjustments for the user to turn on or off the 

application notification and receive an email notification when a fall is reported. 

2. Related Work 

2.1. Background Subtraction Methods 

Generally, the human body should be extracted from the background for further 

feature extraction including the human position, shape, and motion. In the study (Lin, 

Wang, Hong, Kang, & Huang, 2016), a Gaussian mixture model (GMM) is used to 

build or establish a background model for the segmentation of foreground objects. 

Optical flow images are used by (Núñez-Marcos, Azkune, & Arganda-Carreras, 

2017) as the input of their neural network. Extracted optical flow images represent 

only the motion of the video frames while ignoring appearance-related information. 

In the work done by (Harrou, Zerrouki, Sun, & Houacine, 2017), the body 

silhouette is extracted from the video by their segmentation module. Background 

subtraction is used to extract the human silhouette by computing the difference 

between the background template and the input image. Similar to the research of 
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(Harrou, Zerrouki, Sun, & Houacine, 2019) , the author uses the background 

subtraction method and morphological processing to produce a cleaner silhouette. 

For the image processing stage in the research by (Panahi & Ghodsb, 2018), 

frames are repaired with the application of a median filter and the detection of the 

invalid pixels where zeros values will be substituted with the nearest valid pixel. After 

that, the first frame subtraction is applied to eliminate the background, followed by 

morphological operations and contour extraction to remove the noise. 

(Chen, Li, Wang, Hu, & Ye, 2020) had suggested the use of Mask R-CNN for 

the background subtraction. Mask R-CNN is a deep learning method extents from the 

Fast R-CNN (Girshick, 2015) with an additional parallel processing branch to predict 

the object mask, and substitute the original ROI Align with ROI pooling. 

2.2. Fall Classification Methods 

After going through the necessary background subtraction process, the obtained 

silhouette can be used for further feature extraction to obtain the important attributes, 

which will become the subsequence input of the classification algorithm. 

In the research by (Harrou, Zerrouki, Sun, & Houacine, 2017), a multivariate 

exponentially weighted moving average (MEWMA) table and support vector 

machine (SVM) are utilized to detect falls from the camera. The MEWMA chart is 

first trained with the fall-free data, as its ability to detect small shifts, it can identify 

fall and fall-like motion from daily activity. To further distinguish between real fall 

and other fall-like actions for example lying down, an SVM is used to determine the 

best separation hyperplane. 

 (Harrou, Zerrouki, Sun, & Houacine, 2019) uses a generalized likelihood ratio 

(GLR) detector to detect falls in a video feed. The main goal of the GLR test is to 

distinguish between two hypotheses H0 and H1 based on observed data by comparing 

the decision statistic to the control limits. So, fall-free data will be used to train or 

retrieve the threshold value of the GLR. When the GLR decision rule exceeds the 

threshold calculated in the training phase, a fall event is triggered. 

Other than that, (Panahi & Ghodsb, 2018) had proposed using the threshold 

method where a lying flag (LF) is set at a specific frame if the distance between the 

center of an individual’s silhouette and the ground was less than a predetermined 

threshold by fitting ellipse and rectangle to the silhouette. To distinguish between 

falls and normal activities,  (Lin, Wang, Hong, Kang, & Huang, 2016) calculated the 

acceleration and angular acceleration from the ellipse. The motion history image 

(MHI) is used by  (Lin, Wang, Hong, Kang, & Huang, 2016) to detect fall events in 

a real-time situation. MHI is a series of continuous images within a period where the 

most recent movement has the highest intensity, which then steadily decreases as time 

passes. Activities with large motion and high acceleration and angular acceleration 

are classified as fall events. 
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(Panahi & Ghodsb, 2018) performed mathematical calculations to detect the fall 

with features from the fitted ellipse such as the inclination angle, the aspect ratio of 

the fitted rectangle to the ellipse, and the distance between the ellipse’s centroid and 

the ground. These features are fed into SVM for fall classification. 

With the optical flow images generated by (Núñez-Marcos, Azkune, & Arganda-

Carreras, 2017), the author has chosen the VGG-16 architecture as their convolution 

neural network (CNN). The author modified the input layer of the model to receive a 

stack of optical flow images. Transfer learning is applied to the model with the 

following training steps. The neural network is first trained on the Imagenet dataset 

(Deng, et al., 2009) to perform generic image recognition, after that the network is 

trained on UCF101 (Soomro, Zamir, & Shah, 2012) for human action classification 

and finally, the network is frozen and fine-tuned for detecting fall events. 

Multi-task hourglass convolutional auto-encoder (HCAE) is used by (Cai, Li, Liu, 

& Han, 2020) to avoid the loss of information during a multilayer deep network. The 

original video frames are fed into the HCAE in the first phase, and the encoder of the 

HCAE with the hourglass unit (HRU) is used to create an intermediate feature with 

more behavior information. The intermediate feature is used in a multi-task 

mechanism in the second phase, in which fall detection is completed as the main task 

by classifying the intermediate feature using a classifier, and frame reconstruction is 

realized as a secondary task by the decoder to improve the representativeness of the 

intermediate feature. 

2.3. Evaluation Matrix 

In the detection of falls, a True Positive (TP) and True Negative (TN) means that a 

real fall is detected as a fall, and a non-fall is detected as a non-fall. False Positive 

(FP), or type I error is a false alarm where a non-fall is detected as a fall, and False 

Negative (FN), or type II error is a miss detection where a fall is detected as a non-

fall. The confusion matrix is described in Fig.  1. 

 

Fig.  1: Confusion matrix (Harrou, Zerrouki, Sun, & Houacine, 2019) 

 

As the performance metrics, the proportion of accurately identified falls in all 

falls is called sensitivity or true positive rate (TPR), the proportion of successfully 
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identified falls in all detected falls is known as precision or positive predictive value 

(PPV), the percentage of accurately detected non-fall in all non-fall events is known 

as specificity or true negative rate (TNR), the fraction of accurately identified falls 

and non-fall activities is known as accuracy (ACC), and the harmonic mean of recall 

and precision is the F-score or F-measure. The performance metrics are described in 

Fig.  2. 

Fig.  2: Performance metrics (Harrou, Zerrouki, Sun, & Houacine, 2019) 

3. Implementation Details 

3.1. System Overview 

3.1.1. Software Architecture 

The software architecture is inspired by https://github.com/IBM/tfjs-web-app. The 

CNN model is built using two popular machine learning packages which are 

TensorFlow and Keras. The training and testing of the model are done in a Python 

environment. The proposed software architecture is illustrated in  

Fig.  3. 
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Fig.  3: Proposed software architecture 

After the model is built and trained, the model will be converted to a web-friendly 

model (JSON) for the model to be executed in a web environment (process 1). After 

this, the JSON should be hosted online at a secure and highly available place so the 

front-end framework can retrieve the model easily. 

As for the front-end part of the application, React is selected to build the user 

interfaces of the website. When the user launches the web application (process 2), the 

application assets and the model files are loaded from the web (process 3). The loaded 

assets and model are stored locally in the browser cache (process 4). The photo is 

taken from the video sequence (process 5) and fed into the model for fall prediction 

(process 6). When a fall is detected for a signed-in user, the current frame will be 

captured and uploaded to Firebase storage (process 7). An email will be sent to the 

user with the link to the image attached (process 8). 

3.1.2. UML Sequence Diagrams 
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The proposed application is a simple fall detection application where limited 

configurations and settings are provided. The target user for the application is the 

family members of the person who is being monitored. The sequence diagram of the 

system setting is given in Fig.  4.  

Fig.  4: Settings sequence diagram 

Considering the main function of the application is to detect fall events from the 

camera feed, the ideal use case scenario is the webcam or smartphone is placed at a 

fixed position after the settings are confirmed. Hence, only a few parameters are 

provided for the user preference such as turning on or off the application’s 

notification and signing in to receive email notifications when a fall occurs. 

When the user selects to view the current settings, the system will request the 

current settings stored in the browser and display them on the user interface. When 

the user changed certain configurations, the system will then save the new settings in 

the browser and apply them. Finally, the latest configurations will be updated on the 

user interface.  
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Fig.  5 illustrates the fall detection sequence diagram. The application will 

retrieve the model and user settings from the browser and load them for this session. 

Then, the smartphone camera or webcam will send the video sequence to the 

application which will be interpreted as a series of frames or images. The image will 

be input into the loaded model and get the prediction result of either fall or no fall. 

Based on the prediction result, a fall will invoke an alternate flow where the current 

image will be uploaded to Firebase storage and returns an image URL, and send the 

push notification or email based on the user settings. 

Fig.  5: Fall detection sequence diagram 

3.2. Fall Detection 

3.2.1. Dataset Used 

There are limited public datasets available for the fall detection task and the URFD 

(Kwolek & Kepski, 2014) is selected as the dataset used for training and testing of 

the model. The authors provide an extra CSV file that contains the extracted features 

for each video sequence. The extracted features provide the labels of every frame in 

all videos that describes the human posture. The dataset provides 70 video sequences 

which consist of 30 fall events and 40 activities of daily living (ADL). Each sequence 

is captured from front-facing and ceiling view angles and RGB and depth images 

from the Microsoft Kinect camera are provided for each frame. Fig.  6 illustrates the 

4 images of a frame extracted from a fall video sequence. 
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With the provided dataset, only RGB images from the front-facing camera are 

used to train the model. This is because the idea use case of the application is to place 

the smartphone or a computer webcam in a room pointed to the main activity space. 

Other than that, most rooms in Malaysia are installed with a ceiling fan, which could 

affect the position of the camera. Depth images are neglected as most of the camera 

lenses of a smartphone and webcam are not featured to capture depth images. 

Fig.  6: Sample fall frame from URFD 

3.2.2. Data Preprocessing 

The labels provided in the CSV file have three values, “-1” is for not lying, “1” for 

lying, and “0” is the temporary pose during a fall (from not lying to lying). Since the 

designed deep learning network only supports binary classification, the not lying 

value (-1) is replaced with a value 0 so the network understands the fall as 1, no fall 

as 0. The dataset is split into two subsets, one for training and one for testing with a 

ratio of 8:2. The image distribution for training and testing is given in Table 1. 

Table 1: Dataset distribution 

Dataset Total image Fall image No fall image 

URFD 2995 903 2092 

Training set 2396 722 1674 

Testing set 599 181 418 

3.2.3. FallNet Architecture 

The brain of the fall detection application is the model or deep learning network that 

can predict a fall event in a given image. The FallNet proposed by (Reddy & Geetha, 

2010) is used in this application as the backbone structure of the deep learning 
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network (Fig.  7). The author proposed a CNN that takes an input image and outputs 

a probability array with 6 classes of different falls which are abnormal fall, back fall, 

fall from the chair, front fall, normal fall, and side fall. Since the proposed application 

does not need to differentiate the type of falls, the network is modified to output a 

binary decision of fall or no fall. 

This network is chosen for its simplicity and ideal performance metrics with 95.7% 

of precision and 97.6% of F1-score. Also, the image preprocessing process such as 

human background segmentation is not considered and applied in the application for 

real-time fall detection. In this work, the output layer of FallNet is modified to 

produce a single class to indicate a fall or not in the image, not different types of falls. 

Fig.  7: Architecture of FallNet (Reddy & Geetha, 2010) 

3.2.4. Model Training 

The total number of images uses to perform model training is 2995. This number is 

then distributed with a ratio of 80% for training and 20% for testing. In the end, the 

size of the stacked training and testing images are (2396, 480, 640, 3) and (599, 480, 

640, 3) respectively where 480 and 640 are the height and width of the image, and 3 

represent the 3 channels of RGB color. 

FallNet architecture is reproduced using the Keras package by constructing the 

CNN layer by layer. This model is then compiled and trained with the parameters as 

given in Table 2. 

Table 2: Training parameters 

Parameter Value 

Optimizer Adam (lr=0.005) 

Total params 215, 505 

Total trainable params 215, 505 

Loss Binary crossentropy 

Metrics Accuracy 

Epochs 6 
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3.2.5. Model Evaluation 

The model stops its training with loss and validation losses of 0.0452 and 0.0643, 

accuracy and validation accuracy of 0.9858 and 0.9783 which means the convergence 

of the model is achieved. The sensitivity, precision, and f-measure are shown in Table 

3. Fig.  8 and Fig.  9 depict the overall accuracy and loss of the training process, 

respectively. 

Table 3: Performance matrix 

Accuracy Specificity Sensitivity Precision F-measure 

0.9783 0.9837 0.9647 0.9591 0.9619 

 Fig.  8: Graph of accuracy against the number of epoch 

The model is evaluated with the metrics from the predecessor of the fall detection 

model. Table 4 shows the confusion matrix and the performance of the trained CNN 

model. 

Overall, the performance of the CNN model is very acceptable with every 

evaluation score acceding 0.95. With this result, the model is ready to be converted 

to a web-friendly model that can be used and executed in a browser. TensoFlow.js 

provides a convenient way to convert the Keras model into a type that is runnable in 

a JavaScript environment. The function returns a folder consisting of a JSON file and 

bin file which store the model’s structure and its weights. Until this stage, the machine 

learning model is ready and marks the end of the model implementation. 
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Fig.  9: Graph of loss against the number of epoch 

Table 4: Confusion matrix 

  Predicted Label 

  No Fall Fall 

Actual 
Label 

No Fall TN = 422 FP = 7 

Fall FN = 6 TP = 164 

3.3. Software Development 

The software can be divided into two parts, which are the front-end and back-end. 

Technologies used for each part are React.js and Firebase respectively. React.js is 

chosen as the front-end JavaScript library because of its ease of use and powerful 

community support. 

The software includes Visual Studio Code as the integrated development 

environment (IDE), PowerShell as the terminal, Node.js and NPM as the server 

environment and package installer, Git and Sourcetree as the version control system 

and Git GUI, and OBS Studio as a virtual webcam, that can play local images or 

videos as webcam input for testing. 

Moreover, Git and GitHub are incorporated to track the progress and manage 

multiple branches throughout the software development. Benefits are taken from 

using the issues tracker to monitor the pending features and bugs, reviewing and 

confirming the merging of several branches, and creating a project Kanban as a issues 

tracker. 
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The email service used in this application is EmailJS. This service allows the 

developer to send emails solely with client-side technology. There is no need for a 

server; simply connect EmailJS to one of the supported email services, Gmail is used 

here, build an email template, and send an email using their Javascript library. This 

platform provides a free plan for testing that comes with 200 monthly requests and 2 

email templates. 

One email service has been created on the EmailJS platform to send notification 

emails upon the fall is detected using the assigned template. The template will receive 

several parameters from the client-side and render custom email content accordingly. 

The variables include user email, user name, current date-time, and an image URL 

that links to the fallen image captured. 

For user authentication and image storage, Firebase is integrated into the 

application. Sign-in method via Google as the provider is enabled to allow the user 

to sign in using their Google account. The storage function is also utilized to store the 

fall images captured from the webcam for the signed-in users. Firebase also provides 

a free plan that allows 5GB of total storage and 1GB of bandwidth per day. The 

authenticated user will be recorded in the user list, along with their email, date created, 

signed-in date, and user UID. 

When a fall is detected for a signed-in user, the application will capture and 

upload the image of current webcam footage to the Firebase storage. In the Firebase 

storage, a hierarchy structure of folders is created to store all the images captured 

from the application. 

4. Discussion 

4.1. Results 

4.1.1. Main Page 

Fig.  10 shows the main page of the application.  

Fig.  10: Main page 
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The main page is made up of two primary components which are the menu bar, 

and the body that shows the current stream of the webcam. A blank screen will be 

shown if the application has no permission to access the webcam or the webcam is 

not found on the device. 

4.1.2. Setting Menu 

Fig.  11 shows the setting menu screen. Upon clicking the menu button on the app 

bar, a slide-out drawer will be displayed on the left side of the page, showing the 

current adjustable settings. A mask is also applied to the main body at the same time. 

Users can choose to sign in with a Google account and toggle the push notifications 

in the settings menu. 

Fig.  11: Setting menu 

4.1.2.1. Account 

Fig.  12 shows the Sign-in pop-up window.  

Fig.  12: Sign-in pop-up 
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It will be shown when the user clicks the “SIGN IN WITH GOOGLE” button. 

Users can select a Google account that is currently signed in inside the browser or 

add another Google account. 

After the user has been signed in successfully, the user details including screen 

name, avatar, and email address will be shown in the setting menu, indicating the 

currently signed-in user. This is shown in Fig.  13. Sign out option is provided by 

clicking the “SIGN OUT” button in red. An email will be sent to the signed-in user 

when a fall is detected. 

Fig.  13: User details 

4.1.2.2. Push Notification 

Other than that, users can toggle the push notification from the settings menu. The 

notification is shown in Fig.  14. The push notification will be sent to the device as 

an alert of the fall. 

Fig.  14: Push notification toggle 
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4.1.3. Fall Detection 

As shown in Fig.  15, the application will send an email and push notification since 

the user exists and the toggle of push notification setting is set to on. The push 

notification will be shown on the screen of the device whether the user stays on the 

web page or not. Clicking on this notification will redirect the user to the webpage. 

The green color toast on the bottom left will be shown on the web page indicating the 

status of sending the email. Fig.  16 depicts that this email has been sent to the signed-

in user, indicating the fall occurred on 26 March 2022 at 12:32 pm local time. The 

user can decide the following action based on the provided link in the email. An 

example of the link’s content is shown in Fig.  17. 

Fig.  15: Notifications and email status 

Fig.  16: Email received 
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Fig.  17: Image captured 

4.1.4. PWA Features 

The PWA technology is implemented into the final application. This feature will 

allow faster and easier access to the application for both desktop (Fig.  18) and mobile 

devices (Fig.  19). A special icon appears on the right end of the address bar, 

indicating that this web application is installable on the device. The screen of Installed 

application on home page is shown in Fig.  20. 

Fig.  18: Installed application on desktop 

4.2. Limitations & Challenges 

The fall detection application is not flawless, it contains some limitations for now. 

Firstly, the application does not detect falls in real life with very high accuracy. One 

of the reasons for this is that the model is trained on experimented images. Although 
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the URFD dataset provides multiple actors and scenarios, the machine learning model 

cannot adapt to complex backgrounds and viewing angles which differ for every user. 

The fall detection also doesn’t perform well under various illumination conditions. 

Fig.  19: PWA installation prompt on mobile 

 

Fig.  20: Installed application on home page 
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Other than that, the biggest limitation of the application is the services it uses. 

Two online services are used to send an email and to store captured images. EmailJS 

has a monthly quota of 200 emails for the free plan while Firebase provides 5GB of 

free storage for the free plan. These limitations force the current application to limit 

the number of emails per fall to one and each user can only store an image in the 

database, which means the user could not retrieve older images. 

Moreover, the current machine learning model performs predictions with certain 

delays. This is because the model is designed to receive the entire image as the input 

which leads to a higher amount of time needed to process the image. 

There are a few issues encountered throughout the development and 

implementation process. Firstly, testing the application is a challenging task as the 

application reads video footage from the current webcam to perform fall detection, 

which means the footage must be modified to a video input for testing purposes. The 

solution for this is to use OBS as a virtual webcam to stream local video files as 

webcam input that makes testing out the application possible. 

5. Conclusion 

5.1. Achievements 

The in-room fall detection application is a web application that can detect fall events 

from the video stream of the webcam using a custom CNN machine learning model. 

Functions such as signing in to receive email notifications and toggling push 

notifications are implemented to provide multiple options to the user for desired use 

cases. 

During the initial stage of planning, the background of the area of interest has 

been studied for a deeper understanding of the problems. This also provides possible 

solutions for the problem aimed to be solved. Other than that, the requirements of the 

project were analyzed and presented with the combination of the suitable machine 

learning technique and the software requirements. The detailed explanations of each 

component are listed and defined with the dataset used, data preprocessing, the 

architecture of the selected machine learning technique, and the software designs 

which are represented with several technical drawings. 

In the development phase, the model is trained using the URFD image data using 

Python and Tensorflow package. Evaluation is performed on the testing data, which 

is separated from the main dataset initially. With the decent readings on all the 

evaluation matric, the model is saved and converted to a web-friendly format for 

future use. The software is built using a JavaScript frontend library called React and 

Firebase as the backend storage that provides authentication service as well. Finally, 

the production build application is wrapped up and hosted on Netlify for public access. 

This paper demonstrates the integration of a custom machine learning model that 

is built and trained to classify falls from an image, which is then deployed and utilized 
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by the web front-end library. 

5.2. Future Works 

In the fullness of time, improvement of the application should be done to enhance its 

functionalities and performance. One of the features that can be added to the 

application is supporting multiple cameras. With multiple video streams, the 

application can be transformed into a control panel to report any falls in different 

rooms or spaces. 

Apart from that, a more in-depth research is required to improve the 

generalization of the machine learning model. Multiple approaches can be done to 

minimize or eliminate the effect of different backgrounds such as extracting the 

human silhouette, adding a bounding box to exclude background, and performing 

training on multiple datasets with different environments and illuminations. 

Lastly, a custom email server can be made and deployed to send more emails and 

a scalable database that provides larger storage, allowing the user to retrieve fall 

images that are being captured previously. 
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