
97

A Case Study of Domain Engineering in Software

Product Line Engineering

Jeong Ah Kim

Catholoc Kwandong University, GangNeung, South Korea

clara@cku.ac.kr

Abstract. The software product line is a software development paradigm that

arose from an effort to maximize the quality attributes of software such as

reusability and maintainability. In software product line engineering, there are

several methodologies for improving both the productivity and quality of software.

But, engineers and organizations still have difficulties in adopting the software

product line engineering. In this paper, detail guidelines for performing the

activities of domain engineering in embedded software domain.

Keywords: Software product line, domain engineering, reusability, platform

ISSN 2409-2665

Journal of Logistics, Informatics and Service Science

Vol. 9 (2022) No.1, pp.97-115

DOI:10.33168/LISS.2022.0108

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

98

1. Introduction

The rapid expansion of the software domain requires the fast development of high-

quality software as it becomes more in demand to human needs and daily activities.

However, it requires more careful engineering with a lot of time and effort. Thus,

there is an inevitable dilemma between product quality and productivity. In order to

solve this, a scheme that considers software products with similar functions together

in development is required, rather than developing each software product individually.

In other words, it is a method for developing the desired system by considering

functions and quality attributes that must be achieved by multiple software belonging

to the same domain, ensuring core assets through commonality and variability

analysis, and combining these assets (K Pohl et.al 2005). The development

technology applying this concept is called software product line engineering (SPLE).

SPLE provides methods and tools to systematically reuse software assets and

establish software product lines—portfolios of software products (a.k.a., variants) in

an application domain (Robert Lindohf et. al 2021). It consists of two processes (K

Pohl et.al 2005, Krüger J et.al 2020): Domain engineering for constructing the

software platform and application engineering for making new software product from

the platform. In this paper, variability implementation mechanism for application

engineering was suggested.

2. Various methodologies of software product line engineering

In software product line engineering, there are several methodologies for improving

both the productivity and quality of software. A Feature-Oriented Reuse Method

(FORM) constructs a feature model based on decision-making from the initial

marketing and product planning stages of a software product line, and develops

software in a proactive manner using the feature model (Kyo C. Kang et.al 1998).

Based on the analysis results of the previously developed system through reverse

engineering, a feature model is constructed, and based on this, an engineering

technique is provided to develop software in an extractive manner.

PuLSE (Product Line Software Engineering) is an easy to apply method of

extracting the assets constituting the software product line from existing products

through re-engineering (Joachim Bayer et.al 2008). Algebraic Hierarchical Equations

for Application Design(AHEAD) mainly provides a reactive method that gradually

expands the software product line through iterative refinement. GP(Generative

Programming) method provides a method to generate program code based on the

detailed feature model (Mikoláš Janota et.al 2008).

Currently FORM, PuLSE and AHEAD are the most widely used methodologies

in the world. Among various techniques used to analyze commonalities and

variabilities in software product line engineering, the feature model is used as a de-

facto standard.

https://scholar.google.co.kr/citations?user=L0NCDwsAAAAJ&hl=en&oi=sra
https://link.springer.com/article/10.1007/s10664-020-09913-9#auth-Robert-Lindohf
https://scholar.google.co.kr/citations?user=L0NCDwsAAAAJ&hl=en&oi=sra
https://scholar.google.co.kr/citations?user=L0NCDwsAAAAJ&hl=en&oi=sra

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

99

The world's leading companies, such as Motorola, Ford, Bosch, Toshiba, Hitachi,

Ericsson, Philips, Hewlett-Packard (HP), AT&T, Lucent, ALLTEL, Boeing, and

Lockheed Martine have already achieved significant cost savings in software

development by adopting software product line engineering. Nevertheless, it has not

been sufficiently adopted by South Korean companies, and only large companies are

trying to apply it on a trial basis. Gradually, it is expanding centering on automotive

electrical system software.

As a community related to software product line engineering and reuse, the

Software Product Line Conference (SPLC), International Conference on Software

Reuse (ICSR), and Variability Modeling of Software-intensive Systems (VaMos) are

active. Unfortunately, there is no translated and published materials related to

software product line engineering in South Korea. However, there is a “Guide to

Applying Software Product Line Engineering Technology Based on Software Reuse”

published by the POSTECH Convergence Software Development Center with the

support of NIPA. The Hall of Fame by SEI presented successful cases of adopting

software product line engineering every year.

Standardization for tools applied to software product line engineering has also

been in progress, and the first standard was published as ISO/IEC 26550 in 2012.

Among them, ISO/IEC 26551 and ISO/IEC 26555 are led by South Korea. The cases

of R&D investment in the United States and the European Union show that software

product line engineering technology has become an irreplaceable means of

strengthening national competitiveness in today's software industry.

3. Research results: Adoption planning for SPL

In order to make a decision to adopt SPL technology, risk analysis, product group

evaluation, and approach determination are carried out. These three tasks are

performed sequentially or in parallel.

3.1. Risk analysis

The activities to identify and analyze risk factors associated with the adoption of

technology are conducted as follows. First, identify risk factors in terms of domain

maturity, stability, and business characteristics. Then, the identified risk factors are

evaluated to determine which problems will pose a threat with what degree of risk in

adopting SPLE. Risk analysis must be conducted by a domain expert as well as a

domain analysis expert.

The things to consider carefully when evaluating risk factors in terms of domain

maturity are as follows:

• Are there generally accessible technical resources and reference cases related

to the technology for the domain?

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

100

• Does the company have experience in developing products corresponding to

the domain? Or are there engineers with experience in developing products

corresponding to the domain?

As for the automotive body domain, the subject of this case study, the risk of

technology adoption has been evaluated as low considering the maturity level and

technologies owned by the company, as well as the fact that the candidate product

groups consist of products that will be applied to next-generation automobiles.

3.2. Product group evaluation

The evaluation of candidate product groups to which the product line will be applied

is the most important task among activities related to technology adoption (Kalender

ME et. al 2013, Rincón L et. al 2019, Berger T et.al 2020). Products to be included

in the product line are selected and the common areas of the product line are identified

by examining details in terms of marketing, product plan, and functionality for the

candidate products discussed in the interview or risk factor analysis. The feature list

obtained in the identification process is used to determine the range of the product

line for the future.

3.3. Approach determination

The SPL basically provides the following three approaches (K Pohl et.al 2005):

Proactive approach, Reactive approach, Extractive approach. In this case study, a

mixed approach is taken with an extractive approach based on an extractive approach,

supplemented by a reactive approach. The reason for the decision to take the

extractive approach is that, like most companies today, this company has a legacy

system for the product. As it is difficult to capitalize all modules at once considering

the development period and technical application period, it has been decided to

proceed by repeatedly capitalizing the modules

4. Research results: Domain engineering

This chapter presents the case of performing domain engineering to develop

reusable assets using SPL technology.

4.1. Domain analysis activities

The SPL domain analysis activities consist of term definition, feature modeling,

legacy system analysis, and domain requirement specification. Term definition and

feature modeling are generally carried out in parallel. Legacy system analysis is an

additional activity as an extractive approach is taken in this case study. The domain

requirement specification is usually performed at the end of the domain analysis

activities.

Term definition is the task of defining the terms used in the domain. The reason

for defining the term is that various words with the same meaning may be used

https://scholar.google.co.kr/citations?user=L0NCDwsAAAAJ&hl=en&oi=sra

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

101

depending on the knowledge, background, and experience of the stakeholders

involved in the development. These differences act as a major factor hindering

communication between stakeholders.

As a part of the term definition activity, a domain glossary is created. The

simplest way to create a glossary is to use a spreadsheet tool such as MS-Excel.

However, the spreadsheet is not suitable to meet the original purpose of knowledge

sharing and quick correction. Therefore, it is recommended to use the web-based

WIKI service. In this case study, the WIKI provided by Redmine is used.

The procedure for creating a glossary using Redmine WIKI is as follows.

• Edit the main page of the WIKI to create a page for the glossary.

• Edit the glossary page to create a session to categorize terms in the

English/Korean alphabet.

• Create a list of terms included in the corresponding alphabet session, and

create a page corresponding to each term.

• Edit the page corresponding to each term to create a description of each term.

Feature modeling is the most important task among domain analysis activities (FJ

Van der Linden et.al 2007, Nešić D et. al 2019). This task aims to clearly analyze the

commonalities and variabilities of the products included in the product line (El-

Sharkawy S et.al 2019). It is conducted by referring to product specifications,

requirements definitions, developer interviews, and legacy system codes (Berger T

et.al 2014).

In this case study, 80 features are identified. Three optional features and nine

alternative feature groups (20 features) are identified as variable features. The

identified commonalities and variabilities are used as criteria for classifying modules

in architecture design, which is an engineering task, and are referred to when

classifying and processing variable attributes of modules in detailed module design.

The feature model created by analyzing the slide controller domain of the company

is as follows (some features are omitted). Some examples of feature model

composition rules related to feature composition are as follows.

The legacy system analysis aims at analyzing the functions and structural

problems of the currently used system. The recognized functions and structures are

utilized as improvements when designing the product line architecture (domain

architecture) (Steffen Thiel and Andreas Hein, 2002) (MA Laguna and Y Crespo,

2013) (Len Wozniak and Paul Clements, 2015). The development language of the

legacy system applied to the analysis is ANSI-C, the source size is 26,000 lines of

code (LOC), and the number of original files is about 80. The tool used to analyze

the quality assessment metrics in terms of quality is SourceMonitor v3.5. The Kiviat

Metrics Graph, analyzing the target legacy system with the SourceMonitor tool, is as

shown below.

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

102

The overall analysis results for the legacy system based on the assessment are as

follows.

Overall, the code complexity remains at an adequate level of 3.48. There are

many codes that exceed the recommended level of complexity (2.0 to 4.5).

Refactoring of codes with high complexity may be difficult with the source code

provided by the provider. Among the files with high complexity, there are more than

three functions with a code complexity of 40 or higher. The function with the highest

complexity is seven times more complex with 57 points.

The proportion of comments is considerably lower than that of the code. Based

on this assessment, the engineering direction is established as follows.

• Software has not been designed with modularization in mind.

• Functionality is concentrated on a specific function, which is likely to cause

multiple maintenance issues.

• The architecture should be designed considering modularization from the

architecture design stage.

• Engineering should progress in the direction of lowering code complexity by

properly assigning functions to each module.

Fig. 1: Parts of the feature model

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

103

Fig. 2: Evaluation results of legacy code

Domain requirements specification is the same as the task of discovering the

requirements, which is first carried out when developing a system. Additionally,

discovered requirements are refined by reflecting the variable information identified

based on the feature model, and the variable information inherent in the requirements

is recognized and reflected back in the feature model. The relationship between the

discovered requirements and the feature is a relationship in which specific

requirements are satisfied by the feature. If the variable type of the linked feature is

optional, the corresponding requirements are also optional requirements. In order to

define a requirement as a variant or variation point, a requirement with a high level

of abstraction, such as a business requirement or a customer requirement, should be

concretized into one or more essential requirements through segmentation. The figure

below shows the identified requirements arranged in a layered structure. Among the

10 requirements collected and refined, REQ1.1.1, REQ1.3.2, and REQ1.3.2.1 marked

an orange background are satisfied by the features "Auto Tilt Up Operation,"

"Comport Position Control," and "Auto Comport Open Operation," respectively.

Optional requirements are specified by setting these relationships.

The following items are verified by establishing the relationship between the

features and the requirements.

• Each feature must be assigned to at least one requirement.

• Each requirement must be specified by at least one feature.

4.2. Domain architecture design

For SPL domain architecture design, architecture requirement analysis, legacy

system architecture analysis, architecture design view development, and architecture

design verification are performed. Legacy system architecture analysis is an

additional activity as an extractive approach is taken in this case study. Since this

company has not defined a view necessary for architecture design, views are defined

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

104

in the course of the analysis tasks and the architecture design view development task.

Furthermore, architecture design view development and architecture design

verification tasks are performed repeatedly. The architecture requirement analysis

aims at determining the important quality attributes that must be considered in the

design at the architectural level.

The determined quality attribute is used as a basis for materializing the

architecture in the subsequent architecture design process (JeongAh Kim et.al 2018).

The definitions of quality attributes vary, but in this case, they are limited to system

quality attributes. The quality attributes are identified, and a scenario is created by

referring to the definition of quality attributes from a product point of view among

ISO/IEC 25010 quality attributes, with a focus on the quality attributes defined in

CMU SEI. As SPL technology that emphasizes reuse is used in this case study, quality

attribute scenarios are discovered, and a total of four core quality attributes are

identified with quality attributes such as “modifiability” and “maintainability” as a

premise.

Fig. 3: Mapping between features and associated requirements

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

105

Table 1 Quality attributes that need to be achieved in the slide control system

Quality attribute Content

Availability

Anti-pinch should not be operated by misrecognizing the

force caused by vibration from closing the slide, voltage

fluctuation, or vehicle operating environment.

Availability

When controlling the position of the slide, the position must

not be changed by an external interruption (removing the

battery, fast on/off operation, turning off the engine, etc.).

Performance
All functions related to motor control in the controller must

be performed within 2ms.

Reliability

As the reference position of the physical-mechanical part is

slightly changed by the continuous operation of the slide, the

reference position must be continuously updated to prevent

the slide from stopping.

Legacy system architecture analysis is performed through source code review. A

useful structure that can be referenced for architecture design is found by identifying

the software structure implementing the control function, and the direction of

architecture design is determined. In the code structure analysis, after selecting files

directly related to the application based on the code quality assessment, the codes are

reviewed by a person. In this process, it is also possible to use a tool to examine the

dependency between files based on the call relationship. When a folder is recognized

as a module in terms of the source code structure managed in the file system, the

dependency of the modules in the legacy systems and source code review and

developer analysis results are summarized as follows.

There are no criteria for the implementation of logical modules. The codes

corresponding to the application of legacy systems have similar structures. The reason

for the similarity in code structure despite the absence of software architecture design

is that the codes have been written by the same developer. Codes related to control

logic are developed without the concept of modularization. Although it has the unique

code characteristics of embedded systems, modularization at the architectural level is

low. In particular, the part related to the control logic is judged to be a monolithic

system except for input/output as the module is too large. The architecture

corresponding to the control logic is made more specific based on the current codes,

and the design direction is determined in the form of proposing an implementation

model for a logical module recognized in the architecture. In order to establish a clear

architecture, a design view must be defined. Design views can be created naturally

by applying the typical software development methodology. However, most small

and medium-sized controller development companies tend to have no design views

in the absence of any appropriate development methodology defined for the level of

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

106

the company. Or, the architecture view is vaguely classified into static architecture

and dynamic architecture according to the criteria proposed by the automobile

assembly company (OEM), with no definition of what information should be

expressed and described in what way according to the characteristics of the domain

and organization. As a result, even developers in the same organization end up writing

the details of the architecture in different ways in the specification. The following

questions are used to determine the level of understanding of the architectural design

view.

• Is there a software architecture specification?

• Do you understand the architecture view?

• Can you explain exactly what kind of diagram you use for architecture

specification and the relationship between each diagram?

• Can you accurately describe the difference between a general-purpose

modeling language like Unified Modeling Language (UML) and domain

languages like SysML, AADL, and EAST-ADL.

As neither a specific design methodology nor a definition of the design view is

identified for the company in this case study, the architecture design view is defined,

and the representation method is determined prior to developing the architectural

design view. Figure 4 summarizes the architecture design activities, including the

creation and verification of the architecture design view.

The module architecture design aims to clearly define the modules that make up

the actual software based on the functional blocks recognized in the conceptual

architecture. Blocks defined in the conceptual architecture can be collected and

defined as one module. Although not covered in the conceptual architecture, a module

that supports the function of the module can also be defined. Since a module is an

important unit that leads to actual implementation, modularization must be taken into

account. Modular architecture is basically expressed in layered architecture style. A

block diagram is used to express how each module interacts with other modules

through which interface. In the process of designing a conceptual architecture, all

recognized blocks have their own roles. The role is suggested by the name of the

block. The layer where the module will be located is designed based on these

characteristics of the blocks. Previously, the characteristics of the blocks recognized

in conceptual architecture have been classified into six types. Input Interface, Output

Interface, Network Communication, and Application/Task are easily found in the

reference architectures of embedded software. Status Management and Logical

Calculation, Operation Handler, and Fault Handler are unique parts of the slide

control software. However, as it is designed under the principle of separating control

and operation, Status Management is in charge of managing the status for control,

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

107

and Calculation or Handler is in charge of the operation to be performed in a specific

state.

Following the principle of the basic layered architectural style in which control

is placed in a higher layer and input/output in a lower layer, the layers are designed

as follows. There are a total of four layers. The lowest layer is horizontally divided

into an input/output interface and a network communication layer. The highest layer

is where the modules responsible for the entire life cycle of the application are located.

After determining the module based on the blocks recognized in the conceptual

architecture in the module architecture layer, the module is assigned to the

corresponding layer.

Fig. 4: Activities and work products of architecture design view development

One block can be defined as one module, or several similar blocks can be

gathered and defined as one module. When defining similar blocks as one module, it

is important to group the blocks included in the conceptual block together. Blocks

that can no longer be divided at conceptual architecture level 1 are defined as a single

module. Since the module architecture view has the role of showing the developer an

overview of the system, it is recommended to indicate not only the internal

components of the system being designed, but also the external elements that directly

interact with the system. A library or module that is not directly developed is an

example of an external element that is typically described in the module architecture

view. In order to reduce the strong dependency between the module closely related

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

108

to the hardware and the target software, a method of placing a glue layer is generally

used. In the module architecture view, the layers that act as a glue layer between the

software and hardware layers include the Input Interface Layer, the Output Interface

Layer, and the Communication Layer. In other words, while the modules assigned to

these layers provide a consistent interface to the software, their logic may have to be

modified according to the contents of the device driver provided by the hardware

whenever hardware is changed.

The factors directly affecting software development are added to the architecture

view. Data objects referenced by the module are taken into account, although they

are not a module that directly composes software. Tools used directly in the

development of the data object under consideration, as well as the modules that

comprise the software, are also considered.

Fig. 5: View of module architecture considering the SW development supporting items

A total of three modules are defined in the data object layer. Configuration

Parameter and Feature Macro List are data used to process the variability of software.

These data objects are used to handle product variability by creating different

instances for each product. The configuration parameter is a data object used directly

for control in software, and the value can be set differently for each product. Feature

Macro List sets a macro corresponding to the feature list selected from the feature

model according to the product. Depending on whether the feature macro is set or not,

the architecture structure and the logic of the module implementing the corresponding

feature are affected. Shared Memory Data is an object in which data shared between

modules is defined. Since most modules that comprise software have a strong

dependency on the data structure defined in this object, the data structure is always

constant for each product, unlike the two data objects described above. The list of

data defined in the shared memory data can be derived from the data defined in the

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

109

conceptual architecture. A total of four modules are defined in the Application Dev

IDE Layer. Among them, VULCAN:DA and uVision 4 are development support

tools, but they are marked with dotted lines as they are not actual subjects of

development. The remaining two modules, Configuration Parameter HMI

Application and Feature Macro Generator, are supporting tools developed directly to

implement the product line.

Configuration Parameter HMI Application is a tool to set the value of the

configuration parameter described above for each product. Although this HMI

application is not software running on the target hardware platform, it has been added

to the product line architecture as an element setting the value of the data object

utilized by the target software. This HMI application is an element derived from the

process of designing how to reflect the parameter variation points identified in the

process of creating the feature model for the product.

Feature Macro Generator is added to the product line architecture as a tool that

generates the Feature Macro List that affects the variability of software according to

the selection of the feature list. In order to verify that the function is well reflected in

the architectural design, the acquired use case scenario can be used. Whether the use

case scenario is performed correctly based on the interface designed in the

architecture can be examined. In other words, whether the interaction between

modules is made according to the scenario is checked. Information on the interface

identified based on the scenario created for the use case should be reflected in the

module architecture design. Whether the functional features identified during domain

analysis are all implemented as modules of the architecture can be examined by

establishing the relationship between the features and the modules constituting the

architecture. Whether the optional or alternative variable information identified in the

feature model is well reflected in the module is examined to make sure that an

architecture suitable for the product line has been designed.

4.3. Product line module development

The SPL module development activities consist of module design, module

implementation, and module verification. In module design, what design should be

considered in order for the module to flexibly absorb the variable information

recognized from the features assigned to the module during the architectural design

process is explained. In module implementation, the rules for developing the source

code based on the designed contents are explained, and the method of implementing

the variable information is considered in the design at the source code level. Module

verification means the testing of units and modules to evaluate the developed source

code. This study focuses on how to reflect variable information in design and its

content in product line module design. For effective explanation, variation points and

variants identified in the application process are introduced by type. Design examples

for data objects identified in the conceptual architecture view are introduced.

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

110

4.4. Product line module implementation

Product line module implementation serves two purposes. First, it aims to create

concrete implementation models based on the conceptual modules acquired from

architecture design. Second, it aims to determine the technique for implementing the

variable information reflected in the design. This section describes the

implementation rules based on the C language used for automotive electrical system

software development.

An object-oriented language such as Java provides various methods to implement

the module defined in the architecture as an independent component at the language

level. However, as for the C language, there is a limit to implementing the logical

module defined in the architecture as an actual independent module at the language

level. This is because calling it an actual module makes it impossible to forcibly block

the access restrictions of the developed module. As a result, developers make

arbitrary use, and architecture and consistency are gradually lost as development

progresses. In order to prevent such a problem in advance, it is necessary to define

the rules for developing modules in the C language. The things to consider

when writing the rules are as follows.

• What is the physical implementation unit of the module? Is it a folder? Is it a

file? Is it a function?

• How should the layer of design be implemented in the architecture?

• How should the interface defined in the architecture design be implemented?

As there are more team members involved in software development, it becomes

increasingly difficult for architectural design to be consistently implemented into

codes in the absence of such rules. If some developers implement the module as a file

while other developers implement the module as a function included in the file,

module management becomes impossible from then on. In this case study, the

following criteria are applied based on the module architecture for implementation.

Table 2: Guideline for structure of module implemetation

Architecture Element Implementation Technique

Layer Folder/Package

Module Module file(.c)

Module Interface Header file containing the interface declaration

Sub Module Function

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

111

There should be as many C files as the number of modules defined in the module

architecture in the package. How to implement the variable elements inside the

module described in the product line module design should be determined. The most

easily used variable information processing mechanism in the C language is to utilize

the macros and the pre-processor provided by the C compiler. A macro is the easiest

way for organizations or developers to deal with variable elements for the first time.

However, with an increase in the number of features, the source code becomes messy,

reducing readability. Accordingly, a more advanced technique should be applied

thereafter.

The mechanism applied to implement the variable information applied in this

case study is as follows.

Table 3: Impmentation mechanism for variation type

Variation Type Variable Part Implementation Mechanism

State of Control Behavior Model Macro

Condition of Transition
Priority of Key

Command based on Key
Script for data creation

Operating Condition Value External HMI program

Parameter Logic Function and macro

Algorithm

In this case study, three implementation mechanisms were mainly used: macro,

declaration of data, and external HMI program. A case of application to simplifying

detailed design using comments when implementing source code is presented. For

electrical system software developers, this may be a strategy that can be used in

situations where it is not possible to spend a lot of time documenting the design

content. As of now, tools that automatically generate documentation based on source

code comments include JavaDoc and Doxygen. Since JavaDoc is dependent on the

Java language, Doxygen is used when development is based on the C language. As

Doxygen provides various comment formats and commands, it has the advantage of

automatically obtaining various types of documents. Doxygen, however, cannot

contain all the details of the design, and it should be used for the purpose of assisting

the simplification of the design. An example of writing comments on source code

using the comment command of Doxygen is shown below. Comments can be added

to the beginning of files, functions, and variables.

The command supported by Doxygen starts with @ to write a brief introduction,

date of creation, version, rights, etc. Additional information can be included by using

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

112

the @note and @par commands. In this case study, additional information such as

@par Feature:Fault Priority is added to indicate that the module implements a specific

feature. In the comments applied to the function, the @note command can be used to

specify whether the function is an internal module function or an interface function,

in addition to the basic description of the function. Although these comments are not

enforceable, they can be used to make a promise between the developers that the

module will be used through the interface by providing such information to the

developer. The following function is the interface function provided by the ABC

module. In order for another module to interact with this module, this function must

be called. When this function is called, the function that internally determines the

priorities and the internal function that executes the selected command are called in

turn.

Fig. 6: Example of using doxygen with comments

5. Conclusion

This paper is case study of domain engineering for developing the software

product line. Business domain of this software product line is sunroof of automotive.

This company hoped to shorten the development period of products for various

customers and efficiently reuse the products that were developed by improving the

engineering skills of developers through appropriate development methods. Domestic

automobile parts development firms have only one or two developers, with a shortage

of human resources. In order to overcome this, this company decided to adopt

software product line engineering technology as a solution to increase the reusability

and maintainability of software. In this paper, several activities and mechanism for

planning, architecture design, and module development for the software product line

are introduced.

This case study was performed at small organization so that not many developers

have maintained the software. Also there were no standard for implementation and

no supporting environments. The size of software was not huge and the maturity of

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

113

engineers are good. The domain maturity is good and very stable so that adoption of

product line engineering is a critical success factor for improving the quality and

productivity (Ahmed F et. al 2011, Krüger J, Berger T 2020, Faheem Ahmed 2006,

Jinseub Kim et.al 2021).

The lessons learned from this case of technology application are as follows. First,

the reference examples of SPL application of automotive embedded controller

software have been obtained, and lessons were learned for performing SPL

application in the automotive domain. Second, a case of SPL application for a small

development team with less than five developers has been acquired. Lastly, a

foundation for collecting quantitative results in the future has been laid based on the

case of the SPL application for the development of a product used for mass-

production in the near future

Fig. 7: Generated design documents from doxygen

Acknowledgments

“This work is supported by the Korea Agency for Infrastructure Technology

Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and

Transport (Grant 21RSCD-C163348-01).”

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

114

References

K Pohl, G Böckle, FJ van Der Linden (2005). Software product line engineering:

foundations, principles and techniques, Springer.

Robert Lindohf, Jacob Krüger, Erik Herzog, Thorsten Berger (2021). Software

product-line evaluation in the large, Empirical Software Engineering, 26, 30(2021).

Krüger J., Mahmood W., Berger T. (2020). Promote-pl: A round-trip engineering

process model for adopting and evolving product lines. International conference on

systems and software product line engineering.

Kyo C. Kang, Sajoong Kim, Jaejoon Lee1 , Kijoo Kim, Gerard Jounghyun Kim,

Euiseob Shin (1998), FORM: A Feature-Oriented Reuse Method with Domain-

Specific Reference Architectures, Annals of Software Engineering, 5(1), 143–168.

Mikoláš Janota, Joseph Kiniry, Goetz Botterweck (2008). Formal Methods in

Software Product Lines: Concepts, Survey, and Guidelines, Lero Technical Report

Lero-TR-SPL-2008-02.

Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig, Klaus

Schmid, Tanya Widen, Jean-Marc DeBaud (1999). PuLSE: A Methodology to

Develop Software Product Lines,” Proceedings of the 1999 symposium on Software

reusability

Kalender ME, Tüzün E, Tekinerdogan B. (2013). Decision support for adopting

SPLE with Transit-PL. International software product line conference. ACM, SPLC,

pp 150–153,

Rincón L, Mazo R, Salinesi C (2019) Analyzing the convenience of adopting a

product line engineering approach: An industrial qualitative evaluation. International

systems and software product line conference. ACM, SPLC, pp 90–97

Berger T, Steghöfer J, Ziadi T, Robin J, Martinez J. (2020). The state of adoption and

the challenges of systematic variability management in industry. Empirical Softw.

Eng., 25(3), 1755–1797.

FJ Van der Linden, K Schmid, E Rommes (2007). Software product-line in actions,

Springer,

Nešić D, Krüger J, Stănciulescu Ş, Berger T. (2019). Principles of feature modeling.

Joint meeting on European software engineering conference and symposium on the

foundations of software engineering. ACM, ESEC/FSE, 62–73.

https://scholar.google.co.kr/citations?user=L0NCDwsAAAAJ&hl=en&oi=sra
https://books.google.co.kr/books?hl=en&lr=&id=J4GqT4OUsSMC&oi=fnd&pg=PA3&dq=product+line+engineering&ots=SCvFyb0hJf&sig=Ew15XnjbT83FJt_9Cvkw8jq-gJA
https://books.google.co.kr/books?hl=en&lr=&id=J4GqT4OUsSMC&oi=fnd&pg=PA3&dq=product+line+engineering&ots=SCvFyb0hJf&sig=Ew15XnjbT83FJt_9Cvkw8jq-gJA
https://link.springer.com/article/10.1007/s10664-020-09913-9#auth-Robert-Lindohf
https://link.springer.com/article/10.1007/s10664-020-09913-9#auth-Jacob-Kr_ger
https://link.springer.com/article/10.1007/s10664-020-09913-9#auth-Erik-Herzog
https://link.springer.com/article/10.1007/s10664-020-09913-9#auth-Thorsten-Berger
https://link.springer.com/journal/10664
https://dl.acm.org/toc/anse/1998/5/1
https://dl.acm.org/toc/anse/1998/5/1
https://scholar.google.co.kr/citations?user=dK9g6a4AAAAJ&hl=en&oi=sra

Kim / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 97-115

115

El-Sharkawy S, Yamagishi-Eichler N, Schmid K. (2019). Metrics for analyzing

variability and its implementation in software product lines: A systematic literature

review. Information and Software Technology, 106, 1–30.

Berger T, Nair D, Rublack R, Atlee JM, Czarnecki K, Węsowski A. (2014). Three

cases of feature-based variability modeling in industry. International conference on

model driven engineering languages and systems. MODELS, pp 302–319.

Steffen Thiel and Andreas Hein (2002). Modeling and Using Product Line Variability

in Automotive Systems, IEEE Software, 22(4). 66-72

MA Laguna, Y Crespo (2013). A systematic mapping study on software product line

evolution: From legacy system reengineering to product line refactoring, Science of

Computer Programming, 78(8), 1010–1034.

Len Wozniak, Paul Clements (2015). How automotive engineering is taking product

line engineering to the extreme, Proceedings of the 19th International Conference on

Software Product Line. DOI: 10.1145/2791060.2791071

JeongAh Kim, JinSeok Yang (2018). Practice of Hybrid Approach to Develop a

State-based Control Embedded Software Product Line. Advanced Multimedia and

Ubiquitous Engineering, FutureTech 2018.

Ahmed F, Capretz LF. (2011). A business maturity model of software product line

engineering, Information Systems Frontiers, 13(4), 543-560.

Krüger J, Berger T. (2020). An empirical analysis of the costs of clone- and platform-

oriented software reuse. Joint European software engineering conference and

symposium on the foundations of software engineering. ACM, ESEC/FSE.

Faheem Ahmed, Luiz Fernando Capretz. (2006). Maturity Assessment Framework

for Business Dimension of Software Product Family. Interoperability in Business

Information Systems. 1(1), 9-32.

Jinseub Kim, Hakyun Kim. (2021). A Study on the Influence of the Service Quality

of Container Terminal on the Reuse Intention, Asia-pacific Journal of Convergent

Research Interchange, 7(8), 29-38.

https://scholar.google.co.kr/citations?user=d1iPS-0AAAAJ&hl=en&oi=sra
https://scholar.google.co.kr/citations?user=SmhIUI8AAAAJ&hl=en&oi=sra
https://www.sciencedirect.com/science/journal/01676423
https://www.sciencedirect.com/science/journal/01676423
https://www.sciencedirect.com/science/journal/01676423/78/8
https://doi.org/10.1145/2791060.2791071

