
85

 Performance Monitoring of MQTT-based Messaging

Server and System

Kitae Hwang, Jae Moon Lee and In Hwan Jung

School of Computer Engineering, Hansung University, 02876 Korea

calafk@hansung.ac.kr

Abstract. In the messaging server where many devices send and receive

messages, the ability to monitor the performance of the server and characteristics

of the messaging is essential. This paper decides MQTT as the messaging

protocol, and analyzes and defines key parameters that show the performance of

the MQTT server and the characteristics of MQTT communication like MQTT

message topics. In addition, this paper built an MQTT messaging server for

testing by using Mosquitto as a MQTT broker and a separate monitoring system

to monitor defined key parameters. In this paper, the system for monitoring the

performance of the MQTT messaging server was built into three parts: a

dashboard server, a monitoring application, and a test load generator. The test

load generator is configured to generate a large amount of MQTT message load

using 11 Raspberry PIs. The monitoring application was developed and installed

on the MQTT server computer and periodically stored the server's performance

and the MQTT message-related parameters processed by Mosquitto in the

dashboard server's DB. The dashboard server was developed as a web server and

implemented so that the administrator can view the data stored in the DB through

a web browser in real time. Through experiments that generate various loads in

the test load generator, it has been confirmed that the monitoring system operates

normally. The monitoring system built in this paper is expected to be a good

model of the monitoring system to be built together when developing an MQTT-

based messaging server.

Keywords: MQTT, Mosquitto, Performance Evaluation, MQTT Broker,

Messaging Server, IoTs.

ISSN 2409-2665

Journal of Logistics, Informatics and Service Science

Vol. 9 (2022) No.1, pp.85-96

DOI:10.33168/LISS.2022.0107

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

86

1. Introduction

The world is evolving into a hyper-connected society where objects with various

built-in sensors and small devices exchange various information in real time (Choi,

2014; Jung et al., 2018). Smart farms, smart universities, and smart city connected

vehicles are representative. In the case of users, mobile devices, mainly smart

phones, are connected to the Internet. The core performance of the connected world

of Internet-connected things depends on the communication technology and

performance between them (Sharma & Towari, 2016).

MQTT (Message Queuing Telemetry Transport) is a communication protocol

standardized by a private standardization organization called OASIS (Organization

for the Advancement of Structured Information Standards). It is a messaging

protocol optimized for mobile devices and small devices with low bandwidth, in

slow and low-quality networks. Since it is designed to transmit messages stably and

focuses on low power, it is evaluated to be faster and more efficient than web-based

information systems (MQTT, 2018; Aichernig & Schumi, 2018; Soni & Makwana,

2017).

MQTT is a text-based message exchange protocol and consists of clients and

MQTT broker. Clients are divided into the subscriber and the publisher, and instead

of directly communicating with each other, the communication between them is

done through the relay of an MQTT broker. The subscriber is a message receiving

client, and it notifies the message to be received by registering the topic string to the

message broker. The publisher is a client that sends a message. When the publisher

sends a topic string and a message to an MQTT broker, the MQTT broker sends the

message to all subscribers waiting for the topic instead. Clients can be subscribers

or publishers, or both.

Figure 1 shows an example of an IoT messaging system based on messages

such as smart city (Su et al., 2011; Kumar et al., 2020; Grgić et al., 2016). There is

an MQTT Server equipped with an MQTT broker, and a number of publishers and

subscribers are connected to the MQTT broker to send and receive messages. For

example, a street light device is a publisher, and when the current street light is on,

if it sends an "on" message with "facility/street_lamp" topic, all subscriber devices

waiting for "facility/street_lamp" topic receive the "on" message. And the message

information is collected on the Dashboard Server and transmitted to the smart city

management center or the administrator computer.

The system that manages the MQTT-based messaging system needs to provide

various statistical information such as what topic messages are being used the most,

how manymessages are being used, how many clients are sending/receiving

messages, and what is the ratio of subscribers and publishers in real time.

Meanwhile, in the MQTT-based messaging system, the message throughput of the

message server increases in proportion to the number of clients, and the CPU

utilization and memory usage of the messaging server are affected accordingly

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

87

(Benchmark of MQTT servers, 2019). Therefore, when an MQTT-based IoT system

is built, a dashboard system that monitors the traffic volume of MQTT messages

and the performance of the MQTT server is essential. The shaded part in Figure 1 is

the subsystem that collects the performance of the MQTT server, monitoring

information about MQTT topics and clients, and outputs it to the administrator.

Fig. 1: MQTT Messaging System

In this paper, we define key parameters for MQTT communication such as

MQTT server performance and MQTT messages and topics, and describe an

example of design and implementation of a monitoring system. Mosquitto (Eclipse

Mosquitto, 2018) was used as an MQTT broker, and a PC with Linux was used as

an MQTT server computer and Mosquitto was run there. To emulate a large number

of MQTT clients, we created dozens to hundreds of publishers and subscribers by

utilizing 11 units of the single board computer, Raspberry Pi (Raspberry Pi, 2018).

A web server and Database were built on the Dashboard computer to store server

performance parameters and MQTT message traffic in real time, and output them to

the administrator's web browser in real time.

2. Related Works

IBM MessageSight is a representative massive messaging server using MQTT.

Without a doubt the IBM MessageSight product has a Web UI that acts as a

dashboard for administration. Through this UI, users can monitor information about

topics, subscriptions, connected clients, and performance of server computers.

Information on topics includes the topic with the most published messages and the

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

88

topic with the most subscribers. Information on subscription includes the subscriber

with the most messages received, the subscriber with the most buffered messages,

etc. The information on the client are information such as client ID and last

connection date, etc. Information about the server is the server's memory usage or

disk usage, etc.

Meanwhile, there are various studies on the dashboard for monitoring IoT

systems based on MQTT (Postol, 2018; Zdraveski et al., 2017). There are various

sites on Internet where you can easily create the dashboard web. There is also an

example of an authoring tool that can simply create a dashboard that monitors the

target MQTT server and IoT system using MQTT with a mouse and keyboard

without programming (ThingsBoard, 2018). However, these dashboard production

sites and authoring tool applications do not monitor performance related to MQTT

servers or MQTT messages, but monitor each sensor value of an IoT system based

on MQTT.

3. Performance Monitoring System

3.1. Monitoring system construction

The system to monitor the MQTT server is composed of 4 subsystems: Target

Messaging Server, Dashboard Server, Test Load Generator, and Web Browser, as

shown in Figure 2.

Fig. 2: System architecture

The Target Messaging Server is a monitoring target message server running a

MQTT broker. Mosquitto, a target MQTT broker, is installed in Target Messaging

Server. In addition, the Target Messaging Server is equipped with a Monitor

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

89

Application that monitors the messaging parameters of MQTT broker and

performance parameters of the server computer and periodically transmits them to

the DB of the dashboard server.

Dashboard Server is a web server system that outputs monitoring results

through a web browser. It is equipped with a DB that stores data monitored from the

Monitoring Application in real time and Node.js (Tilkov & Vinoski, 2010) for web

services, and web pages and chart libraries, etc. The administrator can access the

dashboard server through a web browser and view the monitoring results. A

Mosquitto is additionally installed on Dashboard Server. User.js code of Dashboard

Server publishes monitoring data stored in DB to this Mosquitto periodically in real

time, and JavaScript code (App.js) running in Web Browser subscribes to this

Mosquitto. It receives monitoring data in real time from the Mosquitto and outputs

it in chart format in the Web Browser.

Test Load Generator is a subsystem to load a large amount of MQTT messages

to the target Mosquitto installed in the Target Messaging Server. It consists of 1

Master PC and 11 Raspberry Pi single board computers, which exchange

information using a separate Mosquitto installed on a Raspberry Pi. When the

Master PC issues a command, 10 Raspberry Pis generate MQTT messages to the

target MQTT Broker as instructed.

3.2. Monitoring Parameters

The monitoring data of this study is divided into two parts: server computer

performance and monitoring parameters related to MQTT messages, and are shown

in Table 1 and Table 2, respectively.

Table 1: Parameters of Server Performance

Parameter Meaning

CPU/Core Utilization current CPU/Core Utilization(%)

Memory Usage current Memory Usage(%)

Network-in traffic Network amount received(MB/s)

Network-out traffic Network amount sent(MB/s)

CPU utilization of

Process
CPU utilization used by each process(%)

Memory Usage of

Process
CPU usage by each process(%)

Table 2: Parameters related to MQTT

Parameter Meaning

N_client # of clients connected currently

R_client recent connected client ID

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

90

O_client oldest connected client ID

MAX_client Client ID with maximum message

MIN_client Client ID with minimum message

N_RecMsgTopic # of received messages per topic

N_SedMsgTopic # of sending messages per topic

N_TotalMsgTopic # of bytes of transferred message per topic

3.3. Design of DB Storing Monitoring Data

There are two DB tables that store monitored performance parameters of the server,

as shown in Tables 3 and 4, and two sample data are included in each table. Table 3

is a Performance_Table that stores the server's current performance values, such as

cpu utilization(%), memory usage(KB), and network I/O(KB/sec), and Table 4 is a

Process_Table that stores a list of processes currently running in the Target

Messaging Server including target Mosquitto, cpu usage per process(%), and

memory usage(%).

Five tables between Tables 5 and 9 store parameters related to MQTT

messages delivered through the target Mosquitto. Table 5 is a

Connection_Info_Table table that contains connection information such as the

number of currently connected clients, recently connected clients, and long-

connected clients, and Table 6 is a Client_Table that stores client names and

accumulated message count information. Table 7 is a Topic_Table containing

information on the topic name, number of transmissions and receptions, and

accumulated message size. Table 8 is a Subscription_Table that stores the names of

subscribers and topics that they subscribe to and Table 9 is Publication_Table with

names of publishers and topics published by them.

Table 3: Performance_Table

cpu_util

(%)

cores_util

(%)

memory_usage

(KB)

network_in

(KB/sec)

network_out

(KB/sec)
date

3.48 0.66/0.44/0.21/0.11 954624 6.11 0
2020-05-15

15:34:10

4.67 0.36/0.11/0.23/0.55 755028 6.18 3.12
2020-05-15

15:34:13

Table 4: Process_Table

pid cpu_util(%) memory_util(%) command

877 1.34 2.30 Mosquitto

29495 1.68 1.00 Java

3.4. Test Load Generator

Test Load Generator to monitor the performance change and the change of

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

91

messaging parameters by sending a large number of MQTT messages to the Target

Messaging Server is configured as shown in Figure 3. A total of 10 Raspberry Pis

were deployed with clients publishing and subscribing to messages, and one other

Raspberry Pi gave orders to these 10 Raspberry Pis. This Raspberry Pi is called

Master Raspberry Pi.

Table 5: Connection_Info_Table

number_of_

current_

connections

recent_

client_id

old_

client_id

client_id_of_

minimum_

msg

client_id_of_

maximum_

msg

date

6134 Client55 Client82 Client155 Client82
2020-06-22

13:55:01

7436 Client62 Client102 Client155 Client100
2020-06-22

13:55:04

Table 6: Client_Table

id number_of_messages(bytes)

Client1 1237

Client2 256

Table 7: Topic_Table

topic message_receiving_count message_sending_count accumulated_msg_size

/Hansung/Creative 345 164 23426

/Hansung/Design 243 326 24321

Table 8: Subscription Table

client_id subscription_topic

Client23 Hansung/Design

Client135 Hansung/Imagination

Table 9: Publication_Table

client_id publication_topic

Client25 /Hansung/Creative

Client198 /Hansung/Imagination

And the administrator configures the test configuration that sends the test

command to the Master Raspberry Pi using the Master PC. In Master PC, you can

designate the ones to participate in the test among 10 Raspberry Pis, select whether

to operate as a subscriber or a publisher, designate the number of subscribers and

publishers participating in the test, and specify the topics to be used. The Master

Raspberry Pi, who received the command, instructs 10 Raspberry Pis to work, and

the 10 Raspberry Pis immediately connect to the target Mosquitto and send or

receive messages.

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

92

 Fig. 3: Configuration of Test Load Generator

3.5. Target Messaging Server

The Monitoring Application running in Target Messaging Server is implemented to

perform two functions. One is to find out the server performance in real time using

the /proc file system and save it in the form of Table 3 and Table 4 in the DB of the

Dashboard Server.

The other function is to monitor MQTT messages and traffic of Mosquitto, a

target MQTT broker, and store them in the DB of the Dashboard Server. To this end,

the Monitoring Application parsed the log information output by Mosquitto.

Actually, Mosquitto prints log information to the standard output device for all

MQTT messages arriving or occurring. Therefore, if the Monitoring Application

parses the log information, it can analyze information about the connected clients,

the topic of messages coming and going, and the size of the message.

3.6. Dashboard Server

Dashboard Server was implemented as a web server utilizing Node.js. And the chart

displayed on the web browser was created using a commercial library called rMate.

The DB that stores monitoring data in Dashboard Server was built using MySQL.

Mosquitto was additionally installed on the Dashboard Server to periodically

transmit the data stored in the DB to the web browser. In the Dashboard Server, a

separate JavaScript code periodically reads the data stored in the DB and publishes

it to the Mosquitto broker, and the JavaScript code running in the web browser

subscribes to the Mosquitto to receive the data published by the Javascript code of

server and draws it in a chart format.

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

93

4. Performance Monitoring Result

Figure 4 shows the actual appearance of 11 Raspberry Pis built to load MQTT on

Target Messaging Server. The Raspberry Pi shown at the top in Figure 4 is the

Master Raspberry Pi, and the remaining 10 are actual MQTT clients, which cause

the load of MQTT messages.

Fig. 4: Raspberry Pis constructed for Test Load

Figure 5 shows the process of designing the workload in Master PC by using

the Test Load Generator Application created in this study. The user uses this

application to input the load that the 10 Raspberry Pis will generate. For each

Raspberry Pi, the user can specify the MQTT client type (either Subscriber or

Publisher), the range of the number of clients, the duration of the client, and the

topic to be used. The program installed in each Raspberry Pi receives this

instruction, generates a client randomly within the maximum range. And these

clients connect to the target Mosquitto of Target Messaging Server with the

indicated topic and send and receive messages.

Figure 6 shows the status of a web browser that outputs the performance of the

Target Messaging Server computer in real time, and Figure 7 shows the status of

MQTT-related performance in real time.

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

94

Fig. 5: Test Load Generator Application in Master PC

Fig. 6: Real time monitoring of performance of Messaging Server

Fig. 7: Real time monitoring of MQTT related traffic of Target MQTT broker

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

95

5. Conclusion

When implementing an MQTT system that processes large-scale messages,

monitoring the performance of the MQTT broker and the server computer is

inevitable. This paper showed the design and implementation of a system that

monitors the performance of a messaging server equipped with Mosquitto as an

MQTT broker. To put a large test load on the messaging server, we created a large

number of MQTT clients using a total of 11 Raspberry Pis to generate a large

MQTT message load. Also, we implemented an application that monitors the

performance of the messaging server computer and the MQTT message load on

Mosquitto on the messaging server computer, and stores them in a DB installed on

the dashboard server in real time. We built a dashboard server in the form of a web

server and implemented so that the administrator can view the data stored in the DB

through a web browser in real time. The monitoring system built in this paper is

expected to be a good model of the monitoring system to be built together when

developing an MQTT-based messaging server.

Acknowledgment

This research was financially supported by Hansung University.

References

Aichernig, B.K., & Schumi, R. (2018). How Fast Is MQTT? In International

Conference on Quantative Evaluation of Systems, QEST 2018, (pp. 35-56).

Benchmark of MQTT servers (2019). Scalagent. WEB:

http://www.scalagent.com/IMG/pdf/Benchmark_MQTT_servers-v1-1.pdf

Choi, A.J. (2014). Internet of Things: Evolution towards a hyper-connected society.

In 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC) (pp.5-8). DOI:

10.1109/ASSCC.2014.7008846.

Eclipse Mosquitto (2018). https://mosquitto.org.

Grgić, K., Špeh, I., & Heđi, I. (2016). A web-based IoT solution for monitoring data

using MQTT protocol. In International Conference on Smart Systems and

Technologies (SST), (pp. 249-253). DOI: 10.1109/SST.2016.7765668.

Jung, I.H., Lee, J.M., & Hwang, K. (2018). An MQTT based real rime LBS system

for vehicles and pedestrians. International Journal of Engineering and Technology.

7(3.24), 125-130. DOI: 10.14419/ijet.v7i3.24.2252

Hwang et al. / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 85-96

96

Kumar, V., Sakya, G., & Shankar, C. (2020). WSN and IoT based smart city model

using the MQTT protocol. Journal of Discrete Mathematical Sciences and

Cryptography. 22(8). 1423-1434, DOI: 10.1080/09720529.2019.1692449.

MQTT. (2018). https://en.wikipedia.org/wiki/MQTT

Postol, A. (2018). How to Create Web Dashboards for IoT Devices.

https://www.ibm.com/support/knowledgecenter/ko/SSWMAJ_2.0.0/WelcomePage/

ic-homepage.html

Raspberry Pi. (2018). https://www.raspberrypi.org/products/raspberry-pi-3-model-b

Sharma, V., & Tiwari, R. (2016). A review paper on IOT & It's Smart Applications.

International Journal of Science, Engineering and Technology Research (IJSETR),

15(2), 472-476.

Soni, D., & Makwana, A. (2017). A survey on mqtt: a protocol of internet of things

(iot). International Conference on Telecommunication, Power Analysis and

Computing Techniques (ICTPACT-2017).

Su, K., Li, J., & Fu, H. (2011). Smart city and the applications. In International

Conference on Electronics, Communications and Control (ICECC), (pp. 1028-

1031). DOI: 10.1109/ICECC.2011.6066743.

ThingsBoard. (2018). http://thingsboard.io

Tilkov, S., & Vinoski, S. (2010). Node.js: Using JavaScript to Build High-

Performance Network Programs. IEEE Internet Computing. 14(6), 80-83. DOI:

10.1109/MIC.2010.145.

Zdraveski, V., Mishev, K., Trajanov, D., & Kocarev, L. (2017). ISO-Standardized

Smart City Platform Architecture and Dashboard. IEEE Pervasive Computing.

16(2), 35-43. DOI: 10.1109/MPRV.2017.31.

