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Abstract. The hyperledger fabric is a modular blockchain framework used by 

private companies to develop blockchain-based products, solutions, and 

applications using plug-and-play components. The smart contracts operating in this 

framework is created by implementing a chaincode. When implementing a 

chaincode, there may be a security weakness inside the code, which is the root 

cause of the security vulnerability. However, when the contract is completed and 

the block is created, the chaincode cannot be arbitrarily modified, so the security 

weakness must be analyzed before execution. This paper conducted a study on 

chaincode intermediate code generation for security weakness analysis of 

chaincode operating in hyperledger fabric blockchain framework. Analysis of 

security weaknesses at the source code level is not easy because the code logic is 

not clear and the complexity is high. On the other hand, security weakness analysis 

at the intermediate code level is easy to analyze because the code logic of the source 

code is clearly represented and the complexity is lower than that of the source code. 
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1. Introduction 

The hyperledger fabric is a modular blockchain framework used by private 

companies to develop blockchain-based products, solutions, and applications using 

plug-and-play components. The smart contracts operating in this framework is 

created by implementing a chaincode. When implementing the chaincode, there may 

be a security weakness inside the code, which is the root cause of the security 

vulnerability, but when the contract is completed and a block is created, the chaincode 

cannot be modified arbitrarily, so the security weakness must be analyzed before 

execution (Lin, Liao, 2017. Fagan, 1976, Son, et al., 2015). 

This paper conducted a study on chaincode intermediate code generation for 

security weakness analysis of chaincode operating in hyperledger fabric blockchain 

framework. Security weakness analysis includes static analysis and dynamic analysis 

techniques. Static analysis is a technique that analyzes a program without running it, 

and dynamic analysis is a technique that analyzes the program as it actually runs. 

Analysis of security weaknesses at the source code level is not easy because the code 

logic is not clear and the complexity is high. On the other hand, intermediate code 

clearly expresses the code logic of the source code, and because its complexity is 

lower than that of the source code, it is easy to analyze all the execution paths of the 

program. Dynamic analysis is also easy because intermediate code can be executed 

on virtual machine execution systems targeting intermediate code (Lee et al., 2017, 

Son, Lee, 2012, Jeong et al., 2019, Cousot, Cousot, 2002). 

2. Related studies 

2.1. Hyperledger fabric framework 

The hyperledger fabric (Cachin, 2016)  is a licensed blockchain network provided by 

IBM and Digital Asset, a platform for developing blockchain solutions and 

applications. It provides a modular architecture that represents the role between nodes 

in a blockchain network, the execution of smart contracts(fabric's chaincode), and the 

configurable consensus and membership services. The hyperledger fabric blockchain 

networks execute chaincode, access ledger data, approve transactions, and interface 

with applications. 

Since chaincode running on the hyperledger fabric network cannot be arbitrarily 

modified when the contract is completed, it can develop into a security vulnerability 

when the chaincode with security weakness is executed. Therefore, in order to solve 

this problem, it is necessary to diagnose security weakness items using static analysis 

methods that can be analyzed before software execution. 

2.2. Software security weakness analysis 

A Software security weakness analysis is an analysis technique that diagnoses 

whether the security weakness, which is the root cause of security vulnerability, exists 
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inside the software, and proactively detects and removes potential vulnerabilities such 

as software defects and errors to proactively eliminate the possibility of security 

threats such as hacking. Security weakness analysis method is divided into static 

analysis and dynamic analysis (Kim et al., 2020,  Wichmann et al., 1995,  Cousot, 

Cousot, 2002, Abdellatif, Brousmiche, 2018, Bhargavan et al., 2016). 

Static analysis is usually done by code review and is performed during the 

implementation phase of the security development life cycle. The ideal static analysis 

is to find software defects automatically. However, this increases time and resource 

costs. This helps security analysts find security weaknesses in their areas of interest, 

rather than automatically finding them. Unlike static analysis, dynamic analysis does 

not have access to the source code, and vulnerability scanning and penetration testing 

are used as dynamic analysis methods to find security weaknesses in running 

applications. 

2.3. Intermediate code 

Intermediate code is an intermediate step code that is meaningfully equivalent to the 

source code independent of the target machine to help analyze the computer program. 

The intermediate code acts as an intermediate type of code that connects the front and 

rear ends of the compiler. Compilers have become functionally independent modules 

by using intermediate code, and their portability has increased (Lee et al., 2017, Son, 

Lee, 2012,  Abdellatif, Brousmiche, 2018).  

In addition, the translation process can be more easily expressed and efficiently 

processed because it serves as an intermediate between advanced source code and 

lower-level objective code, enabling machine-independent and more efficient 

optimization by using intermediate code. Using the intermediate language, the 

programs can be executed independently using a virtual machine of the target 

machine 

2.4. Chaincode intermediate code generator 

Analysis of security weaknesses at the source code level is not appropriate due to the 

lack of clarity and high complexity of the code logic. On the other hand, the 

intermediate code is semantically equivalent to the source code, the code logic is clear 

and concise, and the complexity is low. In addition, the presence of intermediate code, 

a common format, can increase scalability by reusing security weakness modules, 

even if the target language is different. 

This paper studies intermediate code generators that generate intermediate code 

meaningfully equivalent to chaincode for security weakness analysis inherent in 

chaincode. The intermediate code generator in this paper converts a chaincode into a 

pre-defined Smart Intermediate Language (SIL) code to generate the Smart Assembly 

Format (SAF), which is an assembly file format (Lee et al., 2017, Son, Lee, 2012, 
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Lee et al., 2020, Son, Lee, 2014).  Figure 1 shows the structure of an intermediate 

code generator. 

3. Information table for generating intermediate code 

Intermediate code generation requires a code generation information. This paper 

generates a string pool, literal table, and symbolic table, which are information tables 

for code generation. 

 

Fig. 1: Structure of an intermediate code generator 

3.1. String pool generator 

The string pool generator generates a symbol identification table for access to the 

symbol table when generating the intermediate code. The string pool consists of a 

symbol name and a symbol identifier, and it accesses the symbol table when 

generating the intermediate code.  

String pool generation is created through an abstract syntax tree (AST) circulation. 

The goal is to create a table that identifies the name of the symbol, so when visiting 

the AssignStmt, ValueSpec, TypeSpec, and FuncDec nodes, where the symbol can 

exist among the AST nodes, symbol identifiers are generated.  

3.2. Literal table generator 

Literal table generators generate literal tables by collecting information to process 

string literals, escape sequences, and format specificators during intermediate code 

generation. Literal table generation is generated while touring AST. Because the 

purpose of the string literal is to generate information, the generator generates literal 

information when it visits BasicLit among AST nodes. 

When visiting the BasicLit node, the generator analyzes whether the literal is a 

string literal. If it is a string literal, it analyzes the existence of the escape sequences 
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and type specifiers in the string literal, and inserts the string literal into the literal table. 

Figure 2 shows the literal table generation process. 

3.3. Symbol table generator 

The symbol table generator generates a table that stores information about symbols 

needed to convert the Golang source code to intermediate code. Figure 3 shows the 

relationship between the symbol table and another tables. The symbol table generator, 

while traversing AST, produces a total of five tables: symbol table, abstract table, 

member table, function table, and access to each table via the mind of the symbol 

table. A symbol table is a table that stores basic information about variables and 

function symbols with global/local scopes, such as type, symbol name, and offset. 

 

 

Fig. 2: Literal table generation process 

An abstract table is a table that stores symbolic information such as pointers, 

arrays, maps, etc., that cannot have substantial storage space. The abstract table 

manages the type of pointing target if the symbol is a pointer, or the type of 

information stored in the map or array. The member table stores member variables 
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and symbol information of the member function of the structure and stores member 

kinds that access the symbol table to obtain information such as the member structure 

identifier, member identifier, and type and offset for the member. The function table 

stores function symbol information, the parameter identifier list of the function, the 

return type list, the named return type list, and the receiver identifier. 

 

Fig. 3. Relationship between the symbol table and another tables 

 

Fig. 4: Intermediate code generator model 
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3.4. Intermediate code generator 

The intermediate code generator traverses the abstract syntax tree and converts the 

source code into an intermediate code format or the smart intermediate language 

(SIL). The intermediate code generator in this paper consists of a node-type inference 

machine, code generation non-visor, and the smart assembly format (SAF) generator, 

which converts a source code into SIL using information from information tables 

such as symbol tables, string pools, and literal tables. Figure 4 shows a intermediate 

code generator structural diagram. 

3.5. Semantics analyzer 

The AST has only the meaningful information needed to generate intermediate code 

by removing unnecessary nodes from the past tree. However, code generation using 

AST alone cannot be checked for correct type schemes, which can result in semantic 

defects in generated code. 

The semantic analyzer uses the symbol table and Golang's type system to explore 

the AST and analyze the presence of a semantic defect. The process is as follows.  

1. If you visit the terminal node of the node during the AST traversal, specify the 

type of terminal node information of the symbol table. 2. Visiting a non-terminal  

node during the AST tour analyzes the existence of semantic defects in the non-

terminal  node according to the type of the lower node and type system, and specifies 

the node type to facilitate code generation.  

Figure 5 shows an example of semantic analysis. 

In Figure 5, the type information of a,b, the terminal node of AST, is accessed 

and imported from the symbolic table and the type of terminal node is specified. The 

ADD nodes, which are non-terminal nodes, verify that terminal nodes a and b are of 

the same type according to the Golang type system, determine that the two types are 

semantically non-defective, and combine type information in favor of code 

generation. Subsequently, the non-terminal node ASSIGN verifies that the terminal 

node c and the non-terminal ADD node are of the same type according to the type 

system and determines that there is no semantic defect if the type is the same. 

For non-terminal nodes related to function calls, the parameter type of the 

function is taken from the symbol table and assigned to the terminal node Println. The 

non-terminal node SELECTOR is assigned an interface, a type of function parameter.  

Finally, the non-terminal node CALLER checks whether the parameter type of the 

SELECTOR node includes the type of terminal node c. 

3.6. Code generation visitor 

Code generation non-visitors generate intermediate code while traveling through 

semantic trees generated by semantic analysts. The code generation process is done 
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through pattern matching, and is largely divided into expression and statement 

processing. 

Expression processing is largely divided into a symbol processing and a operator 

processing. The symbol processing uses information from the information table to 

generate intermediate code using the base, offset, address, and value information of 

stored symbols. Operator processing uses the type information given to the semantic 

tree to determine the type of operator, and generates intermediate code using a code 

matrix that maps this type information to intermediate code. 

 

Fig. 5: Example of semantic analysis 



 

 

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67 

 

61 

 

Sentence processing produces sentences such as conditional statements, 

repetitive statements, and assigned statements in semantically equivalent 

intermediate codes. Each sentence generates an intermediate code to match the 

intermediate code pattern of the sentence. Figure 6 shows the intermediate code 

pattern of the repeat statement. 

Fig. 6: Intermediate code pattern of the repeat statement 

In the intermediate code SIL, the iteration pattern begins with a start label to 

signal the beginning of the iteration. Then, an intermediate code region appears for 

the iteration condition and a branch code determining the iteration termination based 

on the iteration condition. The body code area of the repeat statement that runs when 

the repeat condition is satisfied appears, as well as the code area that updates the 

initial expression of the repeat condition appears. Finally, after the execution of the 

repeat body is completed, an unconditional branch code that branches to the starting 

point of the repeat statement, followed by and an end label that indicates the end of 

the repeat statement.  

Figure 7 illustrates the code generation process of repetitive statements through 

pattern matching. Code generation visors are generated by matching repeat patterns 

when generating intermediate code for repeat statements. First, a repeat start label is 

generated, and if a condition node in the semantic tree exists, a code that corresponds 

to a condition statement or a condition code for an infinite loop will be generated. 

The loop termination branch code is then generated followed by the recurrent body 

code. Finally, if an initial value update node exists, it generates an increasing or 
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decreasing expression; otherwise, it generates a code that branches unconditionally 

to the starting point of the iteration, and then generates a repeat end label. 

 

 

Fig. 7: Code generation process of the repeat statement 

3.7. SAF generator 

The Smart Assembly Format (SAF) generator generates assembly files using 

intermediate code tables and information tables generated by the code generation 

visor. Figure 8 shows a structure of the SAF generator. 
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Fig. 8: Structure of the SAF generator 

The SAF generator consists of a header section generator, a code section 

generator, and a data section generator. The header section generator generates 

information such as the number of literals defined, the number of initialized variables, 

the number of uninitialized variables, and the name of the entry function, representing 

the key information that constitutes the SAF file. When creating a header section, the 

generator uses the information from the literal table and the symbol table to generate 

each information in a format. The code section generator generates SIL code 

information for the function, which is the information that represents the execution 

code of the program. When generating code sections, the SAF generator uses SIL 

code table information to generate them in a format. The data section generator 

generates global variables and literal information referenced in the code domain, the 

information that represents the data in the program. The generator takes global 

variable information from the symbolic table and generates it according to the format, 

and converts literals into hexadecimal numbers using literal table information to 

generate data section information. 

4. Experimental results and analysis 

To ensure that the intermediate code generator for the proposed chaincode security 

weakness analysis runs normally, the chaincode embedded in the security weakness 

is converted to intermediate code. The experiment was conducted using two examples: 

ReadYourWrite.go and UnhandledError.go. Figures 9 and 10 show the results of the 

intermediate code conversion of each example. 

Next, the generated intermediate codes were run as a virtual machine, namely 

the Smart Virtual Machine (SVM) (Cousot, Cousot, 2002), to verify that the 

intermediate code generation of the chaincodes was not defective. Figures 11 and 12 

show the results of running the generated intermediate code as a virtual machine SVM. 
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5. Conclusion and future research 

The smart context, which operates in the hyperledger fabric framework, is written by 

implementing an interface called a chaincode. When implementing a chaincode, there 

may be a security weakness inside the code, which is the root cause of the security 

vulnerability. However, when the contract is completed and the block is created, the 

chaincode cannot be arbitrarily modified, so the security weakness must be analyzed 

before execution. 

This paper conducted a study on chaincode intermediate code generators to 

analyze the security weaknesses of a chaincode operating in the hyperledger fabric 

framework. Security weakness analysis at the source code level is not easy to apply 

security weakness analysis techniques because the code logic is not clear and complex. 

The intermediate code generated by the intermediate code generator clearly 

represents the code logic of the source code, is less complex than the source code, so 

it is easy to analyze all the execution paths of the program. It is also suitable for 

dynamic analysis because it can be executed by intermediate code interpreters.  

 

 
Fig. 9: Intermediate code generation results for ReadYourWrite.go 
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Currently, the intermediate code generated by the intermediate code generator 

has confirmed that the code runs in the virtual machine SVM without any problems.  

In the future, we will study the security weakness dynamic analyzer of chaincodes 

using SVM, and the security weakness static analyzer that analyzes intermediate 

codes using static analysis techniques such as data flow analysis, symbolic execution, 

and control flow analysis. 

Fig. 10: Intermediate code generation results for UnhandledError.go 

 

Fig. 11: Execution results of UnhandledError.go program 
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Fig. 12: Execution results of ReadYourWrite.go program 
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