
53

A Study on Intermediate Code Generation for

Security Weakness Analysis of Smart Contract

Chaincode

YangSun Lee

SeoKyeong University, Seoul, Rep. of Korea

yslee@skuniv.ac.kr

Abstract. The hyperledger fabric is a modular blockchain framework used by

private companies to develop blockchain-based products, solutions, and

applications using plug-and-play components. The smart contracts operating in this

framework is created by implementing a chaincode. When implementing a

chaincode, there may be a security weakness inside the code, which is the root

cause of the security vulnerability. However, when the contract is completed and

the block is created, the chaincode cannot be arbitrarily modified, so the security

weakness must be analyzed before execution. This paper conducted a study on

chaincode intermediate code generation for security weakness analysis of

chaincode operating in hyperledger fabric blockchain framework. Analysis of

security weaknesses at the source code level is not easy because the code logic is

not clear and the complexity is high. On the other hand, security weakness analysis

at the intermediate code level is easy to analyze because the code logic of the source

code is clearly represented and the complexity is lower than that of the source code.

Keywords: Security weakness analysis, smart contract, chaincode, hyperledger

fabric, blockchain, intermediate code generation

ISSN 2409-2665

Journal of Logistics, Informatics and Service Science

Vol. 9 (2022) No.1, pp.53-67

DOI:10.33168/LISS.2022.0105

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

54

1. Introduction

The hyperledger fabric is a modular blockchain framework used by private

companies to develop blockchain-based products, solutions, and applications using

plug-and-play components. The smart contracts operating in this framework is

created by implementing a chaincode. When implementing the chaincode, there may

be a security weakness inside the code, which is the root cause of the security

vulnerability, but when the contract is completed and a block is created, the chaincode

cannot be modified arbitrarily, so the security weakness must be analyzed before

execution (Lin, Liao, 2017. Fagan, 1976, Son, et al., 2015).

This paper conducted a study on chaincode intermediate code generation for

security weakness analysis of chaincode operating in hyperledger fabric blockchain

framework. Security weakness analysis includes static analysis and dynamic analysis

techniques. Static analysis is a technique that analyzes a program without running it,

and dynamic analysis is a technique that analyzes the program as it actually runs.

Analysis of security weaknesses at the source code level is not easy because the code

logic is not clear and the complexity is high. On the other hand, intermediate code

clearly expresses the code logic of the source code, and because its complexity is

lower than that of the source code, it is easy to analyze all the execution paths of the

program. Dynamic analysis is also easy because intermediate code can be executed

on virtual machine execution systems targeting intermediate code (Lee et al., 2017,

Son, Lee, 2012, Jeong et al., 2019, Cousot, Cousot, 2002).

2. Related studies

2.1. Hyperledger fabric framework

The hyperledger fabric (Cachin, 2016) is a licensed blockchain network provided by

IBM and Digital Asset, a platform for developing blockchain solutions and

applications. It provides a modular architecture that represents the role between nodes

in a blockchain network, the execution of smart contracts(fabric's chaincode), and the

configurable consensus and membership services. The hyperledger fabric blockchain

networks execute chaincode, access ledger data, approve transactions, and interface

with applications.

Since chaincode running on the hyperledger fabric network cannot be arbitrarily

modified when the contract is completed, it can develop into a security vulnerability

when the chaincode with security weakness is executed. Therefore, in order to solve

this problem, it is necessary to diagnose security weakness items using static analysis

methods that can be analyzed before software execution.

2.2. Software security weakness analysis

A Software security weakness analysis is an analysis technique that diagnoses

whether the security weakness, which is the root cause of security vulnerability, exists

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

55

inside the software, and proactively detects and removes potential vulnerabilities such

as software defects and errors to proactively eliminate the possibility of security

threats such as hacking. Security weakness analysis method is divided into static

analysis and dynamic analysis (Kim et al., 2020, Wichmann et al., 1995, Cousot,

Cousot, 2002, Abdellatif, Brousmiche, 2018, Bhargavan et al., 2016).

Static analysis is usually done by code review and is performed during the

implementation phase of the security development life cycle. The ideal static analysis

is to find software defects automatically. However, this increases time and resource

costs. This helps security analysts find security weaknesses in their areas of interest,

rather than automatically finding them. Unlike static analysis, dynamic analysis does

not have access to the source code, and vulnerability scanning and penetration testing

are used as dynamic analysis methods to find security weaknesses in running

applications.

2.3. Intermediate code

Intermediate code is an intermediate step code that is meaningfully equivalent to the

source code independent of the target machine to help analyze the computer program.

The intermediate code acts as an intermediate type of code that connects the front and

rear ends of the compiler. Compilers have become functionally independent modules

by using intermediate code, and their portability has increased (Lee et al., 2017, Son,

Lee, 2012, Abdellatif, Brousmiche, 2018).

In addition, the translation process can be more easily expressed and efficiently

processed because it serves as an intermediate between advanced source code and

lower-level objective code, enabling machine-independent and more efficient

optimization by using intermediate code. Using the intermediate language, the

programs can be executed independently using a virtual machine of the target

machine

2.4. Chaincode intermediate code generator

Analysis of security weaknesses at the source code level is not appropriate due to the

lack of clarity and high complexity of the code logic. On the other hand, the

intermediate code is semantically equivalent to the source code, the code logic is clear

and concise, and the complexity is low. In addition, the presence of intermediate code,

a common format, can increase scalability by reusing security weakness modules,

even if the target language is different.

This paper studies intermediate code generators that generate intermediate code

meaningfully equivalent to chaincode for security weakness analysis inherent in

chaincode. The intermediate code generator in this paper converts a chaincode into a

pre-defined Smart Intermediate Language (SIL) code to generate the Smart Assembly

Format (SAF), which is an assembly file format (Lee et al., 2017, Son, Lee, 2012,

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

56

Lee et al., 2020, Son, Lee, 2014). Figure 1 shows the structure of an intermediate

code generator.

3. Information table for generating intermediate code

Intermediate code generation requires a code generation information. This paper

generates a string pool, literal table, and symbolic table, which are information tables

for code generation.

Fig. 1: Structure of an intermediate code generator

3.1. String pool generator

The string pool generator generates a symbol identification table for access to the

symbol table when generating the intermediate code. The string pool consists of a

symbol name and a symbol identifier, and it accesses the symbol table when

generating the intermediate code.

String pool generation is created through an abstract syntax tree (AST) circulation.

The goal is to create a table that identifies the name of the symbol, so when visiting

the AssignStmt, ValueSpec, TypeSpec, and FuncDec nodes, where the symbol can

exist among the AST nodes, symbol identifiers are generated.

3.2. Literal table generator

Literal table generators generate literal tables by collecting information to process

string literals, escape sequences, and format specificators during intermediate code

generation. Literal table generation is generated while touring AST. Because the

purpose of the string literal is to generate information, the generator generates literal

information when it visits BasicLit among AST nodes.

When visiting the BasicLit node, the generator analyzes whether the literal is a

string literal. If it is a string literal, it analyzes the existence of the escape sequences

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

57

and type specifiers in the string literal, and inserts the string literal into the literal table.

Figure 2 shows the literal table generation process.

3.3. Symbol table generator

The symbol table generator generates a table that stores information about symbols

needed to convert the Golang source code to intermediate code. Figure 3 shows the

relationship between the symbol table and another tables. The symbol table generator,

while traversing AST, produces a total of five tables: symbol table, abstract table,

member table, function table, and access to each table via the mind of the symbol

table. A symbol table is a table that stores basic information about variables and

function symbols with global/local scopes, such as type, symbol name, and offset.

Fig. 2: Literal table generation process

An abstract table is a table that stores symbolic information such as pointers,

arrays, maps, etc., that cannot have substantial storage space. The abstract table

manages the type of pointing target if the symbol is a pointer, or the type of

information stored in the map or array. The member table stores member variables

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

58

and symbol information of the member function of the structure and stores member

kinds that access the symbol table to obtain information such as the member structure

identifier, member identifier, and type and offset for the member. The function table

stores function symbol information, the parameter identifier list of the function, the

return type list, the named return type list, and the receiver identifier.

Fig. 3. Relationship between the symbol table and another tables

Fig. 4: Intermediate code generator model

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

59

3.4. Intermediate code generator

The intermediate code generator traverses the abstract syntax tree and converts the

source code into an intermediate code format or the smart intermediate language

(SIL). The intermediate code generator in this paper consists of a node-type inference

machine, code generation non-visor, and the smart assembly format (SAF) generator,

which converts a source code into SIL using information from information tables

such as symbol tables, string pools, and literal tables. Figure 4 shows a intermediate

code generator structural diagram.

3.5. Semantics analyzer

The AST has only the meaningful information needed to generate intermediate code

by removing unnecessary nodes from the past tree. However, code generation using

AST alone cannot be checked for correct type schemes, which can result in semantic

defects in generated code.

The semantic analyzer uses the symbol table and Golang's type system to explore

the AST and analyze the presence of a semantic defect. The process is as follows.

1. If you visit the terminal node of the node during the AST traversal, specify the

type of terminal node information of the symbol table. 2. Visiting a non-terminal

node during the AST tour analyzes the existence of semantic defects in the non-

terminal node according to the type of the lower node and type system, and specifies

the node type to facilitate code generation.

Figure 5 shows an example of semantic analysis.

In Figure 5, the type information of a,b, the terminal node of AST, is accessed

and imported from the symbolic table and the type of terminal node is specified. The

ADD nodes, which are non-terminal nodes, verify that terminal nodes a and b are of

the same type according to the Golang type system, determine that the two types are

semantically non-defective, and combine type information in favor of code

generation. Subsequently, the non-terminal node ASSIGN verifies that the terminal

node c and the non-terminal ADD node are of the same type according to the type

system and determines that there is no semantic defect if the type is the same.

For non-terminal nodes related to function calls, the parameter type of the

function is taken from the symbol table and assigned to the terminal node Println. The

non-terminal node SELECTOR is assigned an interface, a type of function parameter.

Finally, the non-terminal node CALLER checks whether the parameter type of the

SELECTOR node includes the type of terminal node c.

3.6. Code generation visitor

Code generation non-visitors generate intermediate code while traveling through

semantic trees generated by semantic analysts. The code generation process is done

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

60

through pattern matching, and is largely divided into expression and statement

processing.

Expression processing is largely divided into a symbol processing and a operator

processing. The symbol processing uses information from the information table to

generate intermediate code using the base, offset, address, and value information of

stored symbols. Operator processing uses the type information given to the semantic

tree to determine the type of operator, and generates intermediate code using a code

matrix that maps this type information to intermediate code.

Fig. 5: Example of semantic analysis

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

61

Sentence processing produces sentences such as conditional statements,

repetitive statements, and assigned statements in semantically equivalent

intermediate codes. Each sentence generates an intermediate code to match the

intermediate code pattern of the sentence. Figure 6 shows the intermediate code

pattern of the repeat statement.

Fig. 6: Intermediate code pattern of the repeat statement

In the intermediate code SIL, the iteration pattern begins with a start label to

signal the beginning of the iteration. Then, an intermediate code region appears for

the iteration condition and a branch code determining the iteration termination based

on the iteration condition. The body code area of the repeat statement that runs when

the repeat condition is satisfied appears, as well as the code area that updates the

initial expression of the repeat condition appears. Finally, after the execution of the

repeat body is completed, an unconditional branch code that branches to the starting

point of the repeat statement, followed by and an end label that indicates the end of

the repeat statement.

Figure 7 illustrates the code generation process of repetitive statements through

pattern matching. Code generation visors are generated by matching repeat patterns

when generating intermediate code for repeat statements. First, a repeat start label is

generated, and if a condition node in the semantic tree exists, a code that corresponds

to a condition statement or a condition code for an infinite loop will be generated.

The loop termination branch code is then generated followed by the recurrent body

code. Finally, if an initial value update node exists, it generates an increasing or

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

62

decreasing expression; otherwise, it generates a code that branches unconditionally

to the starting point of the iteration, and then generates a repeat end label.

Fig. 7: Code generation process of the repeat statement

3.7. SAF generator

The Smart Assembly Format (SAF) generator generates assembly files using

intermediate code tables and information tables generated by the code generation

visor. Figure 8 shows a structure of the SAF generator.

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

63

Fig. 8: Structure of the SAF generator

The SAF generator consists of a header section generator, a code section

generator, and a data section generator. The header section generator generates

information such as the number of literals defined, the number of initialized variables,

the number of uninitialized variables, and the name of the entry function, representing

the key information that constitutes the SAF file. When creating a header section, the

generator uses the information from the literal table and the symbol table to generate

each information in a format. The code section generator generates SIL code

information for the function, which is the information that represents the execution

code of the program. When generating code sections, the SAF generator uses SIL

code table information to generate them in a format. The data section generator

generates global variables and literal information referenced in the code domain, the

information that represents the data in the program. The generator takes global

variable information from the symbolic table and generates it according to the format,

and converts literals into hexadecimal numbers using literal table information to

generate data section information.

4. Experimental results and analysis

To ensure that the intermediate code generator for the proposed chaincode security

weakness analysis runs normally, the chaincode embedded in the security weakness

is converted to intermediate code. The experiment was conducted using two examples:

ReadYourWrite.go and UnhandledError.go. Figures 9 and 10 show the results of the

intermediate code conversion of each example.

Next, the generated intermediate codes were run as a virtual machine, namely

the Smart Virtual Machine (SVM) (Cousot, Cousot, 2002), to verify that the

intermediate code generation of the chaincodes was not defective. Figures 11 and 12

show the results of running the generated intermediate code as a virtual machine SVM.

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

64

5. Conclusion and future research

The smart context, which operates in the hyperledger fabric framework, is written by

implementing an interface called a chaincode. When implementing a chaincode, there

may be a security weakness inside the code, which is the root cause of the security

vulnerability. However, when the contract is completed and the block is created, the

chaincode cannot be arbitrarily modified, so the security weakness must be analyzed

before execution.

This paper conducted a study on chaincode intermediate code generators to

analyze the security weaknesses of a chaincode operating in the hyperledger fabric

framework. Security weakness analysis at the source code level is not easy to apply

security weakness analysis techniques because the code logic is not clear and complex.

The intermediate code generated by the intermediate code generator clearly

represents the code logic of the source code, is less complex than the source code, so

it is easy to analyze all the execution paths of the program. It is also suitable for

dynamic analysis because it can be executed by intermediate code interpreters.

Fig. 9: Intermediate code generation results for ReadYourWrite.go

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

65

Currently, the intermediate code generated by the intermediate code generator

has confirmed that the code runs in the virtual machine SVM without any problems.

In the future, we will study the security weakness dynamic analyzer of chaincodes

using SVM, and the security weakness static analyzer that analyzes intermediate

codes using static analysis techniques such as data flow analysis, symbolic execution,

and control flow analysis.

Fig. 10: Intermediate code generation results for UnhandledError.go

Fig. 11: Execution results of UnhandledError.go program

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

66

Fig. 12: Execution results of ReadYourWrite.go program

Acknowledgement

This research was supported by Seokyeong University in 2021.

References

Abdellatif, T., Brousmiche, K. L. (2018). Formal Verification of Smart Contracts

based on Users and Blockchain Behaviors Models, 9th IFIP International Conference

on New Technologies, Mobility and Security(NTMS), France, 1-5.

Aho, Alfred V., Sethi, Ravi, Ullman, Jeffrey D. (1986). Compilers Principles,

Techniques and Tools, Addison-Wesley.

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,

Kobeissi, N., Rastogi, T., Sibut-Pinote, A., Swamy, N., Zanella-Béguelin, S. (2016).

Formal Verification of Smart Contracts, Proceedings of the 2016 ACM Workshop on

Programming Languages and Analysis for Security, 91-96.

Cachin, C. (2016). Architecture of the Hyperledger Blockchain Fabric, IBM Research

Report, 1-4.

Cousot, P., Cousot, R. (2002). Modular Static Program Analysis, LNCS, 2304, 159-

178.

Fagan, M. E. (1976). Design and Code Inspections to Reduce Errors in Program

Development, IBM Systems J., 15(3), 182-211.

Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 53-67

67

https://www.hyperledger.org/

Jeong, J., Son, Y., Lee, Y. (2019). A Study on the Secure Coding Rules for

Developing Secure Smart Contract on Ethereum Environments, International

Journal of Advanced Science and Technology, 12, 47-58.

Kim, S., Son, Y., Lee, Y. (2020). A Study on Chaincode Security Weakness Detector

in Hyperledger Fabric Blockchain Framework for IT Development, Journal of Green

Engineering, Alpha Publishers, 10(10), 7820-7844.

Lee, Y., Jeong, J., Son, Y. (2017). Design and Implementation of the Secure

Compiler and Virtual Machine for Developing Secure IoT Services, Future

Generation Computer Systems, 76, 350-357.

Lin, I.C., Liao, T.C. (2017). A Survey of Blockchain Security Issues and Challenges,

International Journal of Network Security, 19(5), 653–659.

Son, Y., Lee, Y. (2012). A Study on the Smart Virtual Machine for Executing Virtual

Machine Codes on Smart Platforms, International Journal of Smart Home, 6(4), 93-

105.

Son, Y., Lee, Y. (2014). Smart Virtual Machine Code based Compilers for

Supporting Multi Programming Languages in Smart Cross Platform, International

Journal of Software Engineering and Its Applications, 8(5), 249-260.

Son, Y., Jeong, J., Lee, Y. (2020). Design and Iimplementation of an IoT‑Cloud

Converged Virtual Machine System, The Journal of Supercomputing, 76(5), 5259-

5275.

Son, Y., Lee, Y., Oh, S. (2015). A Software Weakness Analysis Methods for the

Secured Software, The Asian International Journal of Life Sciences, 12, 423-434.

Wichmann, B.A., Canning, A.A., Clutterbuck, D.L., Winsbarrow, L.A., Ward, N.J.

Marsh, D.W.R. (1995). Industrial Perspective on Static Analysis, Software

Engineering Journal, 10(2), 69–75.

