
36

 A Smart Contract Weakness and Security Hole

Analyzer Using Virtual Machine Based Dynamic

Monitor

Yunsik Son 1 and YangSun Lee 2

1Dongguk University, Seoul, Rep. of Korea
2SeoKyeong University, Seoul, Rep. of Korea

yslee@skuniv.ac.kr

Abstract. Blockchain-based smart contracts are a technology for decentralized

applications, and their usefulness and development potential have been highly

evaluated. However, as a technology developed over an extremely short period,

there are many flaws in the programming language and execution environment used

for developing and executing smart contracts. In this study, a software weakness

analyzer is proposed to detect possible software weaknesses in smart contracts. The

proposed analyzer examines software weaknesses through a security-level

information flow. For this purpose, the semantics of a smart contract when

converted into an intermediate code are defined and analyzed on a dynamic monitor.

Keywords: Blockchain, smart contract, software weakness, semantics,

security-level information flow

ISSN 2409-2665

Journal of Logistics, Informatics and Service Science

Vol. 9 (2022) No.1, pp.36-52

DOI:10.33168/LISS.2022.0104

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

37

1. Introduction

As the sizes of blockchain services and their markets continue to increase globally,

various blockchain-based frameworks are entering the spotlight. Various blockchain-

based frameworks have been developed, and it has become possible to use a general-

purpose programming language when developing decentralized applications, thereby

increasing the accessibility of decentralized application development. However, such

accessibility causes security problems because security threats, such as logical errors,

bugs, and mistakes, can inherently occur during development. Software

vulnerabilities are classified as the main cause of cyberattacks in a cyber-physical

infrastructure, which is a core component of modern society. Among the techniques

used to defend against software vulnerabilities, the most effective method known is

to remove the inherent weaknesses of the software in advance, such as through a

secure development life cycle, and related research is also being carried out. A

blockchain-based smart contract is a technology for decentralized applications, and

its usefulness and development potential have been highly evaluated. The technology

was developed over an extremely short period of time, and there are many flaws in

its programming language and execution environment. As a result, significant

damage, such as a DAO hacking incidents, have occurred (Abdellatif et al., 2018, and

Atzei et al., 2017).

To effectively analyze smart contracts, the proposed technique translates the

source code into the Smart Intermediate Language (SIL), which is an intermediate

code for research, and analyzes vulnerabilities while executing it in a virtual machine

(Lee et al., 2017, and Son et al., 2020). To clarify this process, in this study, for a

security-level analysis of SIL, the security level of the variable of interest within the

program is systematically identified by defining the formal semantic structure and

evaluation rules.

2. Related studies

2.1. Dynamic program analysis

A dynamic program analysis is a computer software analysis performed through

programs executed on real or virtual processors. For a dynamic program analysis to

be effective, it must be run based on sufficient test input data to contain virtually any

output that the analyzed program can create. This dynamic program analysis is used

for code coverage or memory error detection according to the workload, fault

localization for finding buggy codes according to the failure or passing of test cases,

and a security-level analysis for detecting security problems (Kim et al., 2014, and

Lee et al., 2017). In this study, a security weakness analysis is conducted based on a

dynamic analysis of the semantic structure of the intermediate language defined for a

security-level flow analysis during the dynamic monitoring of a virtual machine.

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

38

2.2. Security-level information flow analysis

A security-level information analysis is a technique that analyzes the propagation of

information disclosed by a system and is an analysis technique that dynamically

tracks the information flow at runtime. In general, in a security-level information flow

analysis, each variable is assigned a security level, the basic model of which consists

of two distinct levels, low and high, or in other words, publicly available and

confidential information. To ensure confidentiality, the security applied should not

allow information to propagate from high-security variables to low-security variables,

and to ensure the integrity, should restrict information propagation to high-security

variables.

In this study, we propose a smart contract weakness analysis technique that

applies a security-level information flow. In general, to obtain such information, it is

necessary to partially process the same task as the execution process of the program

because the larger the analysis target range, the greater the complexity and the need

for a number of path analyses. Therefore, in most flow analyses, the scope is limited

to the main area of interest, or even to the basic block unit (Bhargavan et al., 2016).

Unlike with existing methods, this study defines the formal semantics for the

intermediate code and directly monitors possible weaknesses using a virtual machine.

2.3. Hyperledger fabric

Hyperledger fabric is a licensed blockchain network provided by IBM and Digital

Asset, and is a platform for developing blockchain solutions and applications (Cachin,

2016). It provides a modular architecture representing the role between nodes in a

blockchain network, the execution of smart contracts (chain code of the fabric), and

a configurable consensus and membership services.

Hyperledger fabric blockchain networks execute the chain code, access the ledger

data, approve transactions, and interface with applications. This is in contrast to

traditional blockchain platforms, where smart contracts must be written in domain-

specific languages or rely on cryptocurrency (Jeong et al., 2021, and Zheng et al.,

2018). Figure 1 shows the structure of the smart contract on hyperledger fabric.

Because the chain code running on a hyperledger fabric network cannot be

arbitrarily modified when the contract is completed, it can develop into a security

vulnerability when a chain code with a security weakness is executed. To solve this

problem, it is therefore necessary to diagnose security weaknesses using static

analysis methods that can be analyzed prior to software execution (Abdellatif et al.,

2018, Bhargavan et al., 2016, and Lin et al., 2017).

2.4. Smart intermediate language for smart virtual machine of runtime

environments

Smart Intermediate Language (SIL), the virtual machine code for Smart Virtual

Machine (SVM) of runtime environments, is designed as a standardized virtual

machine code model for ordinary smart devices and embedded systems. SIL is a

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

39

stack-based command set that is independent of language, hardware, and platform

(Lee et al., 2017, and Son et al., 2020). To accommodate a variety of programming

languages, SIL is defined based on an analysis of existing virtual machine codes, such

as bytecode and .NET IL, among others. In addition, it also has a set of arithmetic

operation codes to cover procedural programming languages and object-oriented

languages.

SIL is composed of a meta-code that carries out particular jobs, such as class

creation, and an operation code that responds to actual commands. An operation code

has an abstract form that is not subordinate to specific hardware or source languages.

It is defined in mnemonic to heighten the readability and applies a consistent name

rule to make debugging in assembly language levels easier to achieve. In addition, it

has a short-form operation code for optimization. SIL has six groups (excluding the

optimization group) of operation codes, and Fig. 2 shows the category of SIL

operation codes.

Fig. 1: Structure of a smart contract on hyperledger fabric

Fig. 2: Category of SIL operation codes

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

40

2.5. Smart virtual machine (SVM) of runtime environments

SVM’s detailed module configuration is illustrated in Fig. 4. Largely, it combines

five components: an Smart Executable file Format (SEF) loader, which is a load input

SEF file in memory; an interpreter for a stack-based evaluation of the instructions in

memory ; a managing module group for a runtime environment; a built-in SVM

library; and a native interface, which is used for interactions with the native platform.

It is also designed for additional components, such as a debugging and profiling

interface.

The interpreter is the core SVM module, and is the SIL code execution routine

from the loaded SEF file. The interpreter has action procedures that are mapped to

each SIL code, and it executes instructions with a reference, i.e., metadata stored by

the loader.

Fig. 3: System configuration of smart virtual machine

During execution, the evaluated data are stored and managed in a stack or heap,

and if an error occurs while executing, the exception handler catches the error and

outputs the related error message, halting the VM instance for the given program (Lee

et al., 2017, and Son et al., 2020).

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

41

2.6. Weakness analysis method using dynamic monitor

2.6.1. Weakness analysis for security-level information

In this study, we examine a method for detecting weaknesses that occur when an

external input value is used without a proper validation using a data flow analysis of

the variable. For this, each variable is assigned security-level information and its use

is monitored. In the proposed weakness analysis method, security-level information

is defined in two ways.

Low: When the value of the variable is defined by an unreliable external variable

or is influenced by a low-level variable.

High: When the value of the variable is not defined externally or is validated by

an arbitrary function.

The process for analyzing the security level of a variable in a smart contract based

on the above criteria is as follows: First, the program is divided into a declaration part

and a sentence part . The initialization part of the variable information is analyzed in

the declaration part, and the use and change process of the variable information are

analyzed in the sentence. The initialization of the variable information in the

declaration part is classified as follows:

1) Parameters of functions and other variables, or initialization by

function return value

2) Initialization by constant value

3) Initialization by arithmetic expression

In general, the initialization process has the form x = y, and in this case, the

security level of y is propagated to x. Therefore, initialization by the return value of

other variables, including parameters or functions, depends on the security level of

the corresponding value. In addition, initialization using a constant value sets a high

value, and initialization using an arithmetic expression depends on the evaluation of

the corresponding arithmetic expression. Statements in which variables are used are

generally classified into three types: arithmetic expressions, conditional branching

statements, and looping statements. The security-level information of the operation

result is determined by using the security level of the operands as the basic unit for

analyzing the security level in the operation expression. The operation process is

analyzed as a postfix, and the security level determined in each operation process is

used as the security level of the upper operation expression.

The security-level information for the basic operational process is shown in Fig.

4. When an expression x + y exists, if an operand has low security-level information,

the result of the expression is low security-level information until the validation

function is applied.

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

42

Fig. 4: Security-level information propagation

In condition/branch statements, the sentences comprising each expression are

composed of basic blocks, and each basic block is connected to a control flow. Using

the connected control flow, the process of changing the value of the variable used in

each sentence is traced within the flow. Figure 5 shows a flow graph for a statement

in which “if ~ else” statements are nested. The part grouped by the dotted line is the

unit in the branching process, and the part indicated by the solid line is the part where

the actual sentence can be executed. An analysis should be conducted for each

execution flow.

Fig. 5: Execution path example of nested branch statement

start

start branch

exit

finish branch

finish

start branch

exit

finish branch

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

43

Table 1: Definitions of sematic object

 𝒃 = 𝒃𝒂𝒔𝒆

 𝒐 = 𝒐𝒇𝒇𝒔𝒆𝒕

 𝒂 = 𝒂𝒅𝒅𝒓𝒆𝒔𝒔

 𝒗 ∈ 𝑽 𝑽𝒂𝒍𝒖𝒆

 𝒍 ∈ 𝑳 𝑺𝒆𝒄𝒖𝒓𝒊𝒕𝒚 𝒍𝒆𝒗𝒆𝒍 𝒐𝒇 𝒗

 𝒙 ∈ 𝑿 (𝒗, 𝒍)

 𝑽 = 𝒔𝒆𝒕 𝒐𝒇 𝒗𝒂𝒍𝒖𝒆

 𝑳 = 𝑺𝒆𝒕 𝒐𝒇 𝒔𝒆𝒄𝒖𝒓𝒊𝒕𝒚 𝒍𝒆𝒗𝒆𝒍 ∶≔ {𝒍𝒐𝒘, 𝒉𝒊𝒈𝒉}

 𝑿 = 𝑷𝒂𝒊𝒓 𝒔𝒆𝒕 𝒐𝒇 𝒗𝒂𝒍𝒖𝒔𝒆 𝒂𝒏𝒅 𝒔𝒆𝒄𝒖𝒓𝒊𝒕𝒚 𝒍𝒆𝒗𝒆𝒍 ∶≔ 𝑽 × 𝑳

 𝑨 = 𝑺𝒆𝒄𝒖𝒓𝒆 𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏 𝒓𝒆𝒄𝒐𝒓𝒅 ∶≔ {𝒙𝟎, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒙}

 𝑨𝒊 = 𝑺𝒆𝒕 𝒐𝒇 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒐𝒇 𝑨 𝒘𝒊𝒕𝒉 𝒃𝒂𝒔𝒆 𝒊 ∶≔ {𝒙𝟎, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒙}

 𝑨𝒊 = {
𝒈𝒍𝒐𝒃𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅 𝒊𝒇 𝒊 = 𝟎
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒓𝒆𝒄𝒐𝒓𝒅 𝒊𝒇 𝒊 ≥ 𝟏

}

 𝑺 = 𝑺𝒆𝒄𝒖𝒓𝒆 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒔𝒕𝒂𝒄𝒌 ∶≔ {𝒙𝟎, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒙}

2.7. Semantics definition of smart intermediate language for dynamic

monitor

If the security level of a variable is low, the program may be at risk if the information

is used for sensitive tasks, such as security decisions or manipulation of the DB and

transaction values. The following defines the semantic structure used to analyze the

previously defined security-level information during the program execution.

The execution of the smart contract is applied in SVM, and the semantic structure

for security-level analysis is defined for SIL, which is an intermediate language of

the SVM. Based on the defined semantic structure, the security level of the variable

of interest is monitored by dynamically analyzing the security-level information flow.

To define the semantic structure of the specific SIL for a security-level

information analysis, the semantic object is defined, as shown in Table 1. A semantic

object is a set of objects required for evaluation rules and SIL security level analysis,

and consists of data structures, values, and security levels used for an information

flow analysis.

The proposed analysis method monitors changes in the environmental

information according to the execution of the commands. The environmental

information is defined as a secure activation record A and an operation stack S.

Because the security activation record maintains the information of the variable and

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

44

security-level information of the corresponding variable, it is possible to monitor the

security-level information of the variable according to the execution of the command.

The command evaluation rules are expressed as follows.

In this study, the evaluation rule is defined in the form of an inference rule using

environmental information and stack manipulation functions. Table 2 lists the

environmental information and stack manipulation functions applied in the evaluation

rules.

The evaluation rules are largely divided into stack instruction evaluation rules

and arithmetic instruction evaluation rules for each instruction. The security level of

information is evaluated according to the instruction execution and returns an

activation record with an operation stack that manages the execution information and

security level. The evaluation rules in this study assume that the security level of

constant values is high, and that the security level of the corresponding information

increases when information is converted through the instructions. Tables 3 and 4 list

the evaluation rules for a stack operation and an instruction, respectively.

Table 2: Manipulation functions for environments and stack

 𝑼𝒑𝒅𝒂𝒕𝒆 = 𝑨 × (𝒃, 𝒐) × 𝑿 → 𝑨′

 𝑮𝒆𝒕 = 𝑨 × (𝒃, 𝒐) → 𝑿

 𝑳𝒐𝒂𝒅𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕 = 𝒂 → 𝑿

 𝑺𝒕𝒐𝒓𝒆𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕 = 𝒂 × 𝑿 → 𝑨′

 𝑻𝒐𝒑 = 𝑺 → {𝒙𝒕𝒐𝒑}

 𝑻𝒐𝒑𝟐 = 𝑺 → {𝒙𝒕𝒐𝒑, 𝒙𝒕𝒐𝒑−𝟏}

 𝑷𝒖𝒔𝒉 = 𝑺 × 𝑿 → 𝑺′

 𝑷𝒐𝒑 = 𝑺 → 𝑿

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

45

Table 3: Evaluation rules for stack operations

 𝒅𝒖𝒑 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′,𝑺′

𝑨′, 𝑺′⊢ 𝒅𝒖𝒑 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉(𝑺′.𝑻𝒐𝒑())

 𝒅𝒖𝒑𝟐 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′,𝑺′

𝑨′, 𝑺′ ⊢ 𝒅𝒖𝒑 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉(𝑺′.𝑻𝒐𝒑𝟐())

 𝒍𝒅𝒄 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒍𝒅𝒄 𝒗 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝒗,𝒉𝒊𝒈𝒉))

 𝒍𝒐𝒅 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒍𝒐𝒅 𝒃 𝒐 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉(𝑨′.𝑮𝒆𝒕(𝒃,𝒐))

 𝒔𝒕𝒓 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒔𝒕𝒓 𝒃 𝒐 ⇓ 𝑨′.𝑼𝒑𝒅𝒂𝒕𝒆((𝒃,𝒐),𝑺′.𝑷𝒐𝒑()),𝑺′

 𝒍𝒅𝒂 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒍𝒅𝒂 𝒃 𝒐 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉(&𝑨′.𝑮𝒆𝒕(𝒃,𝒐), 𝒉𝒊𝒈𝒉)

 𝒍𝒅𝒊 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒍𝒅𝒊 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉(𝑳𝒐𝒅𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕(𝑺′.𝑷𝒐𝒑().𝒗))

 𝒔𝒕𝒊 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒔𝒕𝒊 ⇓ 𝑺𝒕𝒐𝒓𝒆𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕(𝑺′.𝑷𝒐𝒑().𝒗, 𝑺′.𝑷𝒐𝒑()),𝑺′

Table 4: Evaluation rules for instructions

 𝒂𝒅𝒅 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′ , 𝑺′

𝑨′, 𝑺′ ⊢ 𝒂𝒅𝒅 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗+𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒔𝒖𝒃 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒔𝒖𝒃 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗−𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒎𝒖𝒍 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒎𝒖𝒍 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗∗𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒅𝒊𝒗 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′ , 𝑺′

𝑨′ , 𝑺′ ⊢ 𝒅𝒊𝒗 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗/𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒎𝒐𝒅 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒎𝒐𝒅 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗%𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒏𝒆𝒈 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′ , 𝑺′

𝑨′, 𝑺′ ⊢ 𝒏𝒆𝒈 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((−𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

46

 𝒆𝒒 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒆𝒒 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗==𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒏𝒆 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒏𝒆 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗!=𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒈𝒆 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒈𝒆 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗 ≥ 𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒈𝒕 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′ , 𝑺′

𝑨′ , 𝑺′ ⊢ 𝒈𝒕 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗>𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒍𝒆 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′ , 𝑺′ ⊢ 𝒍𝒆 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗≤𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒍𝒕 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒍𝒕 ⇓ 𝑨′ , 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗<𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒃𝒂𝒏𝒅 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒃𝒂𝒏𝒅 ⇓ 𝑨′ , 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗&𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒃𝒐𝒓 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′ , 𝑺′ ⊢ 𝒃𝒐𝒓 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗 | 𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒃𝒙𝒐𝒓 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′ , 𝑺′ ⊢ 𝒃𝒙𝒐𝒓 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗 ^ 𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒃𝒄𝒐𝒎 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒃𝒄𝒐𝒎 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((~𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒔𝒉𝒍 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′ , 𝑺′ ⊢ 𝒔𝒉𝒍 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().≪𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒔𝒉𝒓 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒔𝒉𝒓⇓ 𝑨′ , 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗≫𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒂𝒏𝒅 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′ , 𝑺′ ⊢ 𝒂𝒏𝒅 ⇓ 𝑨′ , 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗&&𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒐𝒓 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒐𝒓 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗||𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

47

 𝒏𝒐𝒕 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒏𝒐𝒕 ⇓ 𝑨′ , 𝑺′.𝑷𝒖𝒔𝒉((!𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒊𝒏𝒄 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′, 𝑺′

𝑨′, 𝑺′ ⊢ 𝒊𝒏𝒄 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((++𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

 𝒅𝒆𝒄 ∶
𝑨, 𝑺 ⊢ 𝑰 ⇓ 𝑨′ , 𝑺′

𝑨′ , 𝑺′ ⊢ 𝒅𝒆𝒄⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉((−−𝑺′.𝑷𝒐𝒑().𝒗, 𝒉𝒊𝒈𝒉)

3. Experiment results

The overall structure of the proposed system is shown in Fig. 6.

When a smart contract is input, it is converted into abstract syntax tree at the

front end, which is again converted into an intermediate language through an

intermediate code converter. The intermediate language uses SIL, through which a

security weakness analysis is applied.

A security weakness analysis is conducted using a separate analysis engine or an

SVM with a dynamic monitor.

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

48

Fig. 6: Structure of the chaincode security weakness analyzer

In this study, a method for dynamically conducting a security weakness analysis

using a dynamic monitor is proposed. For this, the semantic structure and evaluation

rule of each command is defined, and in this way, the security level of the variable of

interest is analyzed.

Figure 7 shows an example code that uses the value defined inside the function,

stores it in the external state value, reads the value from the external state value again,

and assigns it to the internal object. To guarantee the state value in the contract, a

separate state management is required. Because there is no code for managing the

state in this example, the value returned by the GetSate function must be verified.

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

49

When using Goroutines and Channels for concurrency programming, caution should

be exercised because they can lead to non-deterministic behavior in smart contracts

owing to issues regarding the input validation and race condition if not handled

properly. The result of translating the example code into the SIL code is shown on

the right side of Fig. 7.

Fig 7: Smart contract example (Chaincode for Hyperledger Fabric) and translated SIL code

Figure 8 shows the process of analyzing the code in Fig. 7 through the semantic

structure and evaluation rules for the security level information of the SIL defined in

this paper. It can be seen that the level of security information varies according to the

execution of the command for each variable, and it can be confirmed that the security

level for the return value of the GetSate function is evaluated as low.

4. Conclusions and further researches

Smart contracts are decentralized applications that operate based on blockchain

technology. If the programming language and execution environment used for the

creation of smart contracts are not strictly defined, security weaknesses, which are

the root cause of software vulnerabilities, may be inherent in the code and execution

environment. Owing to the nature of blockchain, once a contract is completed and a

block is created, the contract cannot be arbitrarily modified. Thus, if a chain code

with a security weakness is contracted, it cannot be modified, causing a security threat.

A smart contract must be analyzed for weaknesses before the contract is executed.

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

50

In this study, we proposed a method for analyzing the security level of variables

and detecting security weaknesses in smart contracts. Unlike the existing static

analysis method, the proposed method utilizes a dynamic monitoring of the virtual

system to obtain the same analysis result as when executing the actual code, by which

an evaluation rule that can analyze the security level in the semantic structure of the

SIL code is added and formally defined. Thus, it is possible to systematically analyze

security weaknesses. In the future, we plan to improve the algorithm for calculating

the evaluation rules, allowing the formal semantic rules to be evaluated more

effectively, and we expect that it will be possible to quickly conduct a dynamic

analysis.

Fig. 8: Analysis results of smart contract example

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant

funded by the Korea Government (MSIT) (No.2019R1F1A1045343, No.

2020R1A2C1013296).

References

Abdellatif, T., & Brousmiche, K. L. (2018). Formal Verification of Smart Contracts

based on Users and Blockchain Behaviors Models. In 9th IFIP International

Conference on New Technologies, Mobility and Security, 1-5.

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

51

Atzei, N., Bartoletti, M., & Cimoli, T. (2017). A Survey of Attacks on Ethereum

Smart Contracts SoK. In Proceedings of the 6th International Conference on

Principles of Security and Trust, (pp. 164-186).

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,

Kobeissi, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., & Zanella-Béguelin, S.

(2016). Formal Verification of Smart Contracts. In Proceedings of the 2016 ACM

Workshop on Programming Languages and Analysis for Security, (pp. 91-96).

Cachin, C. (2016). Architecture of the Hyperledger Blockchain Fabric, IBM Research

Report, 1-4

Jeong, J., Kim, D., Ihm, S., Lee, Y., & Son, Y. (2021). Multilateral Personal Portfolio

Authentication System Based on Hyperledger Fabric. ACM Transactions on Internet

Technology, 21(1), 1-17.

Jeong, J., Lim, J., & Son, Y. (2019). A Data Type Inference Method Based on Long

Short-Term Memory by Improved Feature for Weakness Analysis in Binary Code.

Future Generation Computer Systems, 100, 1044-1052.

Kim, D., Ihm, S., & Son., Y. (2021). Two-Level Blockchain System for Digital Crime

Evidence Management, Sensors, 21(9), 3051, 1-17.

Kim, J., & Lee, Y. (2014). A Study on the Optimization Method for the Rule Checker

in the Secure Coding, International Journal of Security and Its Applications, 8(1),

333-342. http://dx.doi.org/10.14257/ijsia.2014.8.1.31

Lee, Y., Jeong, J., & Son, Y. (2017). Design and implementation of the secure

compiler and virtual machine for developing secure IoT services. Future Generation

Computer Systems, 76, 350-357.

Lin, I.C., & Liao, T.C. (2017). A Survey of Blockchain Security Issues and

Challenges, International Journal of Network Security, 19(5), 653-659.

http://dx.doi.org/10.6633/IJNS.201709.19(5).01

Nasir, Q., Qasse, I.A., Abu Talib, M., & Nassif, A.B. (2018). Performance Analysis

of Hyperledger Fabric Platforms. Security and Communication Networks, 2018, 1-14,

https://doi.org/10.3390/computers10010007

Park, J., Kim, H., Kim, G., & Ryou, J. (2020). Smart Contract Data Feed Framework

for Privacy-Preserving Oracle System on Blockchain. Computers, 10(1), 1-12,

doi:10.3390/computers10010007.

Son and Lee / Journal of Logistics, Informatics and Service Science Vol. 9 (2022) No. 1, pp. 36-52

52

Son, Y., Jeong, J., & Lee, Y. (2020). Design and Implementation of an IoT‑Cloud

Converged Virtual Machine System, The Journal of Supercomputing, 76(5), 5259-

5275. https://doi.org/10.1007/s11227-019-02866-x

Zheng, Z., Xie, S., Dai, H.N., Chen, X., & Wang, H. (2018). Blockchain challenges

and opportunities: A survey. Internatioal Journal of Web and Grid Services, 14(4),

352-375.

