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Abstract. Blockchain-based smart contracts are a technology for decentralized 

applications, and their usefulness and development potential have been highly 

evaluated. However, as a technology developed over an extremely short period, 

there are many flaws in the programming language and execution environment used 

for developing and executing smart contracts. In this study, a software weakness 

analyzer is proposed to detect possible software weaknesses in smart contracts. The 

proposed analyzer examines software weaknesses through a security-level 

information flow. For this purpose, the semantics of a smart contract when 

converted into an intermediate code are defined and analyzed on a dynamic monitor. 
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1. Introduction 

As the sizes of blockchain services and their markets continue to increase globally, 

various blockchain-based frameworks are entering the spotlight. Various blockchain-

based frameworks have been developed, and it has become possible to use a general-

purpose programming language when developing decentralized applications, thereby 

increasing the accessibility of decentralized application development. However, such 

accessibility causes security problems because security threats, such as logical errors, 

bugs, and mistakes, can inherently occur during development. Software 

vulnerabilities are classified as the main cause of cyberattacks in a cyber-physical 

infrastructure, which is a core component of modern society. Among the techniques 

used to defend against software vulnerabilities, the most effective method known is 

to remove the inherent weaknesses of the software in advance, such as through a 

secure development life cycle, and related research is also being carried out. A 

blockchain-based smart contract is a technology for decentralized applications, and 

its usefulness and development potential have been highly evaluated. The technology 

was developed over an extremely short period of time, and there are many flaws in 

its programming language and execution environment. As a result, significant 

damage, such as a DAO hacking incidents, have occurred (Abdellatif et al., 2018, and 

Atzei et al., 2017). 

To effectively analyze smart contracts, the proposed technique translates the 

source code into the Smart Intermediate Language (SIL), which is an intermediate 

code for research, and analyzes vulnerabilities while executing it in a virtual machine 

(Lee et al., 2017, and Son et al., 2020). To clarify this process, in this study, for a 

security-level analysis of SIL, the security level of the variable of interest within the 

program is systematically identified by defining the formal semantic structure and 

evaluation rules. 

2. Related studies 

2.1. Dynamic program analysis 

A dynamic program analysis is a computer software analysis performed through 

programs executed on real or virtual processors. For a dynamic program analysis to 

be effective, it must be run based on sufficient test input data to contain virtually any 

output that the analyzed program can create. This dynamic program analysis is used 

for code coverage or memory error detection according to the workload, fault 

localization for finding buggy codes according to the failure or passing of test cases, 

and a security-level analysis for detecting security problems (Kim et al., 2014, and 

Lee et al., 2017). In this study, a security weakness analysis is conducted based on a 

dynamic analysis of the semantic structure of the intermediate language defined for a 

security-level flow analysis during the dynamic monitoring of a virtual machine. 
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2.2. Security-level information flow analysis 

A security-level information analysis is a technique that analyzes the propagation of 

information disclosed by a system and is an analysis technique that dynamically 

tracks the information flow at runtime. In general, in a security-level information flow 

analysis, each variable is assigned a security level, the basic model of which consists 

of two distinct levels, low and high, or in other words, publicly available and 

confidential information. To ensure confidentiality, the security applied should not 

allow information to propagate from high-security variables to low-security variables, 

and to ensure the integrity, should restrict information propagation to high-security 

variables. 

In this study, we propose a smart contract weakness analysis technique that 

applies a security-level information flow. In general, to obtain such information, it is 

necessary to partially process the same task as the execution process of the program 

because the larger the analysis target range, the greater the complexity and the need 

for a number of path analyses. Therefore, in most flow analyses, the scope is limited 

to the main area of interest, or even to the basic block unit (Bhargavan et al., 2016). 

Unlike with existing methods, this study defines the formal semantics for the 

intermediate code and directly monitors possible weaknesses using a virtual machine. 

2.3. Hyperledger fabric 

Hyperledger fabric is a licensed blockchain network provided by IBM and Digital 

Asset, and is a platform for developing blockchain solutions and applications (Cachin, 

2016). It provides a modular architecture representing the role between nodes in a 

blockchain network, the execution of smart contracts (chain code of the fabric), and 

a configurable consensus and membership services. 

Hyperledger fabric blockchain networks execute the chain code, access the ledger 

data, approve transactions, and interface with applications. This is in contrast to 

traditional blockchain platforms, where smart contracts must be written in domain-

specific languages or rely on cryptocurrency (Jeong et al., 2021, and Zheng et al., 

2018). Figure 1 shows the structure of the smart contract on hyperledger fabric. 

Because the chain code running on a hyperledger fabric network cannot be 

arbitrarily modified when the contract is completed, it can develop into a security 

vulnerability when a chain code with a security weakness is executed. To solve this 

problem, it is therefore necessary to diagnose security weaknesses using static 

analysis methods that can be analyzed prior to software execution (Abdellatif et al., 

2018, Bhargavan et al., 2016, and Lin et al., 2017). 

2.4. Smart intermediate language for smart virtual machine of runtime 

environments 

Smart Intermediate Language (SIL), the virtual machine code for Smart Virtual 

Machine (SVM) of runtime environments, is designed as a standardized virtual 

machine code model for ordinary smart devices and embedded systems. SIL is a 
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stack-based command set that is independent of language, hardware, and platform 

(Lee et al., 2017, and Son et al., 2020). To accommodate a variety of programming 

languages, SIL is defined based on an analysis of existing virtual machine codes, such 

as bytecode and .NET IL, among others. In addition, it also has a set of arithmetic 

operation codes to cover procedural programming languages and object-oriented 

languages. 

SIL is composed of a meta-code that carries out particular jobs, such as class 

creation, and an operation code that responds to actual commands. An operation code 

has an abstract form that is not subordinate to specific hardware or source languages. 

It is defined in mnemonic  to heighten the readability and applies a consistent name 

rule to make debugging in assembly language levels easier to achieve. In addition, it 

has a short-form operation code for optimization. SIL has six groups (excluding the 

optimization group) of operation codes, and Fig. 2 shows the category of SIL 

operation codes. 

 

 

Fig. 1: Structure of a smart contract on hyperledger fabric 

 

Fig. 2: Category of SIL operation codes 
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2.5. Smart virtual machine (SVM) of runtime environments 

SVM’s detailed module configuration is illustrated in Fig. 4. Largely, it combines 

five components: an Smart Executable file Format (SEF) loader, which is a load input 

SEF file in memory; an interpreter for a stack-based evaluation of the instructions in 

memory ; a managing module group for a runtime environment; a built-in SVM 

library; and a native interface, which is used for interactions with the native platform. 

It is also designed for additional components, such as a debugging and profiling 

interface. 

The interpreter is the core SVM module, and is the SIL code execution routine 

from the loaded SEF file. The interpreter has action procedures that are mapped to 

each SIL code, and it executes instructions with a reference, i.e., metadata stored by 

the loader.  

 

 

Fig. 3: System configuration of smart virtual machine 

During execution, the evaluated data are stored and managed in a stack or heap, 

and if an error occurs while executing, the exception handler catches the error and 

outputs the related error message, halting the VM instance for the given program (Lee 

et al., 2017, and Son et al., 2020). 
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2.6. Weakness analysis method using dynamic monitor 

2.6.1. Weakness analysis for security-level information 

In this study, we examine a method for detecting weaknesses that occur when an 

external input value is used without a proper validation using a data flow analysis of 

the variable. For this, each variable is assigned security-level information and its use 

is monitored. In the proposed weakness analysis method, security-level information 

is defined in two ways. 

Low: When the value of the variable is defined by an unreliable external variable 

or is influenced by a low-level variable. 

High: When the value of the variable is not defined externally or is validated by 

an arbitrary function. 

The process for analyzing the security level of a variable in a smart contract based 

on the above criteria is as follows: First, the program is divided into a declaration part 

and a sentence part . The initialization part of the variable information is analyzed in 

the declaration part, and the use and change process of the variable information are 

analyzed in the sentence. The initialization of the variable information in the 

declaration part is classified as follows: 

1) Parameters of functions and other variables, or initialization by 

function return value 

2) Initialization by constant value 

3) Initialization by arithmetic expression 

In general, the initialization process has the form x = y, and in this case, the 

security level of y is propagated to x. Therefore, initialization by the return value of 

other variables, including parameters or functions, depends on the security level of 

the corresponding value. In addition, initialization using a constant value sets a high 

value, and initialization using an arithmetic expression depends on the evaluation of 

the corresponding arithmetic expression. Statements in which variables are used are 

generally classified into three types: arithmetic expressions, conditional branching 

statements, and looping statements. The security-level information of the operation 

result is determined by using the security level of the operands as the basic unit for 

analyzing the security level in the operation expression. The operation process is 

analyzed as a postfix, and the security level determined in each operation process is 

used as the security level of the upper operation expression. 

The security-level information for the basic operational process is shown in Fig. 

4. When an expression x + y exists, if an operand has low security-level information, 

the result of the expression is low security-level information until the validation 

function is applied. 
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Fig. 4: Security-level information propagation 

In condition/branch statements, the sentences comprising each expression are 

composed of basic blocks, and each basic block is connected  to a control flow. Using 

the connected control flow, the process of changing the value of the variable used in 

each sentence is traced within the flow. Figure 5 shows a flow graph for a statement 

in which “if ~ else” statements are nested. The part grouped by the dotted line is the 

unit in the branching process, and the part indicated by the solid line is the part where 

the actual sentence can be executed. An analysis should be conducted for each 

execution flow. 

 

Fig. 5: Execution path example of nested branch statement 
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Table 1: Definitions of sematic object 

  𝒃 = 𝒃𝒂𝒔𝒆 

  𝒐 = 𝒐𝒇𝒇𝒔𝒆𝒕 

  𝒂 = 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 

  𝒗 ∈ 𝑽   𝑽𝒂𝒍𝒖𝒆 

  𝒍 ∈ 𝑳     𝑺𝒆𝒄𝒖𝒓𝒊𝒕𝒚 𝒍𝒆𝒗𝒆𝒍 𝒐𝒇 𝒗 

  𝒙 ∈ 𝑿 (𝒗, 𝒍) 

  𝑽 = 𝒔𝒆𝒕 𝒐𝒇 𝒗𝒂𝒍𝒖𝒆 

  𝑳 = 𝑺𝒆𝒕 𝒐𝒇 𝒔𝒆𝒄𝒖𝒓𝒊𝒕𝒚 𝒍𝒆𝒗𝒆𝒍 ∶≔ {𝒍𝒐𝒘, 𝒉𝒊𝒈𝒉} 

  𝑿 = 𝑷𝒂𝒊𝒓 𝒔𝒆𝒕 𝒐𝒇 𝒗𝒂𝒍𝒖𝒔𝒆 𝒂𝒏𝒅 𝒔𝒆𝒄𝒖𝒓𝒊𝒕𝒚 𝒍𝒆𝒗𝒆𝒍 ∶≔ 𝑽 × 𝑳 

  𝑨 = 𝑺𝒆𝒄𝒖𝒓𝒆 𝒂𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏 𝒓𝒆𝒄𝒐𝒓𝒅 ∶≔  {𝒙𝟎, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒙} 

  𝑨𝒊 = 𝑺𝒆𝒕 𝒐𝒇 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒐𝒇 𝑨 𝒘𝒊𝒕𝒉 𝒃𝒂𝒔𝒆 𝒊 ∶≔ {𝒙𝟎, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒙}  

  𝑨𝒊 = {
𝒈𝒍𝒐𝒃𝒂𝒍 𝒓𝒆𝒄𝒐𝒓𝒅               𝒊𝒇 𝒊 = 𝟎
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒓𝒆𝒄𝒐𝒓𝒅          𝒊𝒇 𝒊 ≥ 𝟏

} 

  𝑺 = 𝑺𝒆𝒄𝒖𝒓𝒆 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒔𝒕𝒂𝒄𝒌 ∶≔  {𝒙𝟎, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒙} 

2.7. Semantics definition of smart intermediate language for dynamic 

monitor 

If the security level of a variable is low, the program may be at risk if the information 

is used for sensitive tasks, such as security decisions or manipulation of the DB and 

transaction values. The following defines the semantic structure used to analyze the 

previously defined security-level information during the program execution.  

The execution of the smart contract is applied in SVM, and the semantic structure 

for security-level analysis is defined for SIL, which is an intermediate language of 

the SVM. Based on the defined semantic structure, the security level of the variable 

of interest is monitored by dynamically analyzing the security-level information flow. 

To define the semantic structure of the specific SIL for a security-level 

information analysis, the semantic object is defined, as shown in Table 1. A semantic 

object is a set of objects required for evaluation rules and SIL security level analysis, 

and consists of data structures, values, and security levels used for an information 

flow analysis. 

The proposed analysis method monitors changes in the environmental 

information according to the execution of the commands. The environmental 

information is defined as a secure activation record A and an operation stack S. 

Because the security activation record maintains the information of the variable and 
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security-level information of the corresponding variable, it is possible to monitor the 

security-level information of the variable according to the execution of the command. 

The command evaluation rules are expressed as follows. 

 

In this study, the evaluation rule is defined in the form of an inference rule using 

environmental information and stack manipulation functions. Table 2 lists the 

environmental information and stack manipulation functions applied in the evaluation 

rules. 

The evaluation rules are largely divided into stack instruction evaluation rules 

and arithmetic instruction evaluation rules for each instruction. The security level of 

information is evaluated according to the instruction execution and returns an 

activation record with an operation stack that manages the execution information and 

security level. The evaluation rules in this study assume that the security level of 

constant values is high, and that the security level of the corresponding information 

increases when information is converted through the instructions. Tables 3 and 4 list 

the evaluation rules for a stack operation and an instruction, respectively. 

Table 2: Manipulation functions for environments and stack 

  𝑼𝒑𝒅𝒂𝒕𝒆 =  𝑨 × (𝒃, 𝒐) × 𝑿 → 𝑨′ 

  𝑮𝒆𝒕 =  𝑨 × (𝒃, 𝒐) → 𝑿 

  𝑳𝒐𝒂𝒅𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕 =  𝒂 → 𝑿 

  𝑺𝒕𝒐𝒓𝒆𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕 =  𝒂 × 𝑿 → 𝑨′ 

  𝑻𝒐𝒑 = 𝑺 → {𝒙𝒕𝒐𝒑} 

  𝑻𝒐𝒑𝟐 = 𝑺 → {𝒙𝒕𝒐𝒑, 𝒙𝒕𝒐𝒑−𝟏} 

  𝑷𝒖𝒔𝒉 = 𝑺 × 𝑿 → 𝑺′ 

  𝑷𝒐𝒑 = 𝑺 → 𝑿 
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Table 3: Evaluation rules for stack operations 

  𝒅𝒖𝒑 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,𝑺′

𝑨′, 𝑺′⊢ 𝒅𝒖𝒑 ⇓ 𝑨′, 𝑺′.𝑷𝒖𝒔𝒉(𝑺′.𝑻𝒐𝒑())
 

  𝒅𝒖𝒑𝟐 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,𝑺′

𝑨′,   𝑺′ ⊢ 𝒅𝒖𝒑 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉(𝑺′.𝑻𝒐𝒑𝟐())
 

  𝒍𝒅𝒄 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒍𝒅𝒄 𝒗 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝒗,𝒉𝒊𝒈𝒉))
 

  𝒍𝒐𝒅 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒍𝒐𝒅 𝒃 𝒐 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉(𝑨′.𝑮𝒆𝒕(𝒃,𝒐))
 

  𝒔𝒕𝒓 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒔𝒕𝒓 𝒃 𝒐 ⇓ 𝑨′.𝑼𝒑𝒅𝒂𝒕𝒆((𝒃,𝒐),𝑺′.𝑷𝒐𝒑()),𝑺′ 

  𝒍𝒅𝒂 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒍𝒅𝒂 𝒃 𝒐 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉(&𝑨′.𝑮𝒆𝒕(𝒃,𝒐),   𝒉𝒊𝒈𝒉)
 

  𝒍𝒅𝒊 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒍𝒅𝒊 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉(𝑳𝒐𝒅𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕(𝑺′.𝑷𝒐𝒑().𝒗))
 

  𝒔𝒕𝒊 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒔𝒕𝒊 ⇓ 𝑺𝒕𝒐𝒓𝒆𝑰𝒏𝒅𝒊𝒓𝒆𝒄𝒕(𝑺′.𝑷𝒐𝒑().𝒗,   𝑺′.𝑷𝒐𝒑()),𝑺′ 

Table 4: Evaluation rules for instructions 

  𝒂𝒅𝒅 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′ ,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒂𝒅𝒅 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗+𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒔𝒖𝒃 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒔𝒖𝒃 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗−𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒎𝒖𝒍 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒎𝒖𝒍 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗∗𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒅𝒊𝒗 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′ ,   𝑺′

𝑨′ ,   𝑺′ ⊢ 𝒅𝒊𝒗 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗/𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒎𝒐𝒅 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒎𝒐𝒅 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗%𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒏𝒆𝒈 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′ ,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒏𝒆𝒈 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((−𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
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  𝒆𝒒 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒆𝒒 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗==𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒏𝒆 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒏𝒆 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗!=𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒈𝒆 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒈𝒆 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗 ≥ 𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒈𝒕 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′ ,   𝑺′

𝑨′ ,   𝑺′ ⊢ 𝒈𝒕 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗>𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒍𝒆 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′ ,   𝑺′ ⊢ 𝒍𝒆 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗≤𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒍𝒕 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒍𝒕 ⇓ 𝑨′ ,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗<𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒃𝒂𝒏𝒅 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒃𝒂𝒏𝒅 ⇓ 𝑨′ ,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗&𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒃𝒐𝒓 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′ ,   𝑺′ ⊢ 𝒃𝒐𝒓 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗  |  𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒃𝒙𝒐𝒓 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′ ,   𝑺′ ⊢ 𝒃𝒙𝒐𝒓 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗 ^ 𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒃𝒄𝒐𝒎 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒃𝒄𝒐𝒎 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((~𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒔𝒉𝒍 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′ ,   𝑺′ ⊢ 𝒔𝒉𝒍 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().≪𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒔𝒉𝒓 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒔𝒉𝒓⇓ 𝑨′ ,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗≫𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒂𝒏𝒅 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′ ,   𝑺′ ⊢ 𝒂𝒏𝒅 ⇓ 𝑨′ ,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗&&𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒐𝒓 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒐𝒓 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((𝑺′.𝑷𝒐𝒑().𝒗||𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
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  𝒏𝒐𝒕 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒏𝒐𝒕 ⇓ 𝑨′ ,   𝑺′.𝑷𝒖𝒔𝒉((!𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒊𝒏𝒄 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′,   𝑺′

𝑨′,   𝑺′ ⊢ 𝒊𝒏𝒄 ⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((++𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

  𝒅𝒆𝒄 ∶  
𝑨,   𝑺 ⊢ 𝑰 ⇓ 𝑨′ ,   𝑺′

𝑨′ ,   𝑺′ ⊢ 𝒅𝒆𝒄⇓ 𝑨′,   𝑺′.𝑷𝒖𝒔𝒉((−−𝑺′.𝑷𝒐𝒑().𝒗,   𝒉𝒊𝒈𝒉)
 

3. Experiment results 

The overall structure of the proposed system is shown in Fig. 6.  

When a smart contract is input, it is converted into abstract syntax tree at the 

front end, which is again converted into an intermediate language through an 

intermediate code converter. The intermediate language uses SIL, through which a 

security weakness analysis is applied.  

A security weakness analysis is conducted using a separate analysis engine or an 

SVM with a dynamic monitor.  
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Fig. 6: Structure of the chaincode security weakness analyzer 

In this study, a method for dynamically conducting a security weakness analysis 

using a dynamic monitor is proposed. For this, the semantic structure and evaluation 

rule of each command is defined, and in this way, the security level of the variable of 

interest is analyzed. 

Figure 7 shows an example code that uses the value defined inside the function, 

stores it in the external state value, reads the value from the external state value again, 

and assigns it to the internal object. To guarantee the state value in the contract, a 

separate state management is required. Because there is no code for managing the 

state in this example, the value returned by the GetSate function must be verified. 
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When using Goroutines and Channels for concurrency programming, caution should 

be exercised because they can lead to non-deterministic behavior in smart contracts 

owing to issues regarding the input validation and race condition if not handled 

properly. The result of translating the example code into the SIL code is shown on 

the right side of Fig. 7. 

 

 

Fig 7: Smart contract example (Chaincode for  Hyperledger Fabric) and translated SIL code 

Figure 8 shows the process of analyzing the code in Fig. 7 through the semantic 

structure and evaluation rules for the security level information of the SIL defined in 

this paper. It can be seen that the level of security information varies according to the 

execution of the command for each variable, and it can be confirmed that the security 

level for the return value of the GetSate function is evaluated as low. 

4. Conclusions and further researches 

Smart contracts are decentralized applications that operate based on blockchain 

technology. If the programming language and execution environment used for the 

creation of smart contracts are not strictly defined, security weaknesses, which are 

the root cause of software vulnerabilities, may be inherent in the code and execution 

environment. Owing to the nature of blockchain, once a contract is completed and a 

block is created, the contract cannot be arbitrarily modified. Thus, if a chain code 

with a security weakness is contracted, it cannot be modified, causing a security threat. 

A smart contract must be analyzed for weaknesses before the contract is executed. 
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In this study, we proposed a method for analyzing the security level of variables 

and detecting security weaknesses in smart contracts. Unlike the existing static 

analysis method, the proposed method utilizes a dynamic monitoring of the virtual 

system to obtain the same analysis result as when executing the actual code, by which 

an evaluation rule that can analyze the security level in the semantic structure of the 

SIL code is added and formally defined. Thus, it is possible to systematically analyze 

security weaknesses. In the future, we plan to improve the algorithm for calculating 

the evaluation rules, allowing the formal semantic rules to be evaluated more 

effectively, and we expect that it will be possible to quickly conduct a dynamic 

analysis. 

 

 

Fig. 8: Analysis results of smart contract example 
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