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Abstract. The objective of this work is to propose a new method of estimating 

velocity and distance based on multi-output convolutional neural network (CNN) 

for orthogonal frequency division multiplexing (OFDM) radars. The two-

dimensional (2D) periodogram is extracted from the received reflected waveforms 

through radar signal processing of received OFDM symbols. Conventionally, 

constant false alarm rate (CFAR) algorithm is used to estimate distance and 

velocity of targets. In contrast, this paper proposes a novel deep-learning based 

approach for the estimation of the targets in OFDM radar systems. The proposed 

multi-output CNN-based target detector estimates the distance and velocity of the 

target simultaneously. The proposed technique is verified through computer 

simulation. The results show that the proposed multi-output CNN-based method 

demonstrates more accurate distance and speed estimates than the conventional 

CFAR. Specifically, the distance and speed estimates of the proposed method are 

9.8 and 12.3 times accurate, respectively, than those of the conventional CFAR. 

Keywords: Target estimation, Deep learning, Multi-output CNN, OFDM radar 

systems, Clutter. 

 

 

 

1. Introduction 

The radio spectrum is one of the most valuable invisible resource. The demand for 
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radio spectrum use has been increasing rapidly through mobile wireless terminals 

such as tablet PCs and smartphone (Na et al., 2018; Singh et al., 2016). Accordingly, 

the frequency spectrum overcrowding is intensifying due to a surge in data traffic. 

There is a lot of researches in various fields being conducted to fully utilize 

insufficient frequency resources (Zhang et al., 2017; Kawamoto et al., 2018). In 

addition to the spectrum demand for communications, radar systems also require 

independent frequency resources. In fact, much wider spectrum is needed for radar 

usage than wireless communications. The utility and importance of radar in many 

fields as well as future automobiles is expected to explode (Gameiro et al., 2018). To 

prepare for such a situation in advance, frequency sharing between radar and 

communication are receiving much interest (Feng et al., 2020). In this field, many 

researches showed the feasibility for the use of communication waveform such as 

orthogonal frequency division multiplexing (OFDM) signal as the radar waveform 

(Barneto et al., 2019). 

The OFDM systems are widely used for high-speed wireless communications in 

5G and future 6G systems. To cope with the demand for high data rate 

communications, those OFDM signals uses millimeter waves and over 100 MHz 

bandwidth. The wideband OFDM waveform satisfies the requirements of high 

precision radar signals (Shi et al., 2017). Based on the observation, OFDM radar 

systems have been emerging in research field and the possibility of replacing the 

existing radar is being considered such as commercial, industrial and military, and 

automotive fields. The radar techniques for detecting the target’s distance and speed 

using OFDM waveforms have been researched in many literatures. Among them, to 

the best of the authors’ knowledge, convolutional neural network (CNN) based 

distance and velocity estimators have not been published. 

This paper proposes a multi-output CNN-based distance and velocity estimation 

method for OFDM radar systems. First, the two-dimensional (2D) periodogram is 

extracted from the received reflected waveforms through radar signal processing. 

Since this periodogram is two-dimensional signal, it is considered a monochromatic 

image. This periodogram is input to both the conventional CFAR detector and 

proposed CNN detector and the detectors estimate distance and velocity of the target. 

The x-axis of the periodogram indicates velocity and the y-axis indicates distance. 

The local maximum position of the periodogram represent the reflected objects. 

Therefore, it is possible to find the distance and velocity of the target by reading the 

local peaks. Conventional CFAR detector finds the local peaks that exceed a certain 

threshold. After that, peak values around zero Doppler frequency are regarded as 

clutters and removed. Thus, only other peaks having non-zero Doppler frequency are 

left. Since conventional method is based on comparison cell under test (CUT) with 

threshold, proper threshold is essential to accurately find the peaks. However, the 

optimal threshold requires the additional information such as noise variance and 

signal to noise ratio (SNR) which is difficult to acquire in advance. On the other hand, 
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the proposed multi-output CNN does not require any additional information other 

than periodogram. 

In the proposed method, distance and velocity of the target is estimated through 

multi-output CNN detector. Usually, typical CNN has one output, but the proposed 

multi-output CNN has two outputs: one for distance and the other for speed. In other 

words, conventional CNN has two detectors that estimate the distance and velocity 

separately but proposed multi-output CNN can estimate two values simultaneously 

with one CNN. The proposed detector is designed based on ResNet-50 (He et al., 

2016). We modify ResNet-50 to estimate the distance and velocity of the target from 

the periodogram directly. We consider two kinds of CNN inputs: two-dimensional 

periodogram for the target without clutter components, and two-dimensional 

periodogram for target with clutter components. The most of radar systems observes 

for particular targets, but the clutter components mentioned here refer unwanted back-

scattered signals or echoes from physical obstacles in the environments such as sea, 

ground, fixed objects, etc (Chiriyath et al., 2017). Thus, the relative velocity of clutter 

components is considered zero (O’Connor et al., 2017). In fact, the clutter 

components always exist. This paper compares the performances under the presence 

or absence of the clutter components. The simulation is conducted to compare the 

performance of conventional and proposed methods. The mean absolute error (MAE) 

was used as a performance indicator, which is averaged difference between the actual 

value of target and the predicted value. According to the simulation results, as the 

SNR increases, MAEs decrease. However, the proposed multi-out CNN outperforms 

the conventional CFAR technique in almost all SNR region in the simulation. At high 

SNRs, the MAEs of proposed detector are 0.83 m distance MAE and 0.88 km/h speed 

MAE. Comparing between clutter-presence and clutter-free cases, much more 

accurate detection is possible when there is no clutter. 

2. OFDM radar system model 

Figure 1 shows OFDM radar system model considered in this paper. In the signal 

transmission process, data is modulated and converted from serial to parallel. The 𝑚-

th generated vector signal is represented as 𝒈𝑚 = [𝑔0,𝑚, 𝑔1,𝑚,⋯𝑔𝑁−1,𝑚]
𝑇 where 𝑁 

is FFT length and 𝑔𝑛,𝑚 is a complex symbol generated through digital modulation. 

The vector signal 𝒈𝑚 is converted into time domain signal through IFFT. The output 

of IFFT is denoted by 𝒈′𝑚 = [𝑔
′
0,𝑚
, 𝑔′

1,𝑚
,⋯𝑔′

𝑁−1,𝑚
]𝑇 . After converting signal 

from parallel to serial, the guard interval CP which prevents that channel would not 

leak energy from adjacent OFDM symbol is inserted in front of the signal. The signal 

inserted CP is denoted by 𝒈′′𝑚 = [𝑔
′
𝑁−𝐿𝑐,𝑚

,⋯𝑔′
𝑁−1,𝑚

, 𝑔′
0,𝑚
, 𝑔′

1,𝑚
,⋯𝑔′

𝑁−1,𝑚
] 

where 𝐿𝑐  is the length of CP. Then, 𝒈′′𝑚  is transmitted via Tx antenna and the 

reflected signal from the targets is received via Rx antenna. Received signal is 

denoted as 𝒇′′𝑚 = [𝑓
′
𝑁−𝐿𝑐,𝑚

,⋯ 𝑓′
𝑁−1,𝑚

, 𝑓′
0,𝑚
, 𝑓′

1,𝑚
,⋯ 𝑓′

𝑁−1,𝑚
] . 𝒈′′𝑚  and 𝒇′′𝑚 

are not same due to time delay, Doppler frequency and signal attenuation of the 
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reflected signal. After removing CP of  𝒇′′𝑚 and converting from serial to parallel, 

the signal becomes 𝒇′𝑚 = [𝑓
′
0,𝑚
, 𝑓′

1,𝑚
,⋯ 𝑓′

𝑁−1,𝑚
]𝑇. Then, by taking FFT the 𝒇′𝑚, 

frequency domain signal is obtained. 𝒇𝑚 is defined as the output of FFT and can be 

written as 𝒇𝑚 = [𝑓0,𝑚, 𝑓1,𝑚, ⋯𝑓𝑁−1,𝑚]
𝑇 . It is possible to identify the targets by 

comparing 𝒈𝑚 and 𝒇𝑚. The same procedure is repeated for the neighboring received 

OFDM symbols and resulting signals are piled up to form a two-dimensional signal. 
 

 
Fig. 1: OFDM radar system model 

When the total M OFDM symbols are transmitted, the transmitted matrix and 

received matrix can be represented as (1) and (2). 

 

 

𝑮 = ( 

𝑔0,0 𝑔0,1 ⋯ 𝑔0,𝑀−1
𝑔1,0 𝑔1,1 ⋯ 𝑔1,𝑀−1
⋮ ⋮ ⋱ ⋮

𝑔𝑁−1,0 𝑔𝑁−1,1 ⋯ 𝑔𝑁−1,𝑀−1

 ) (1) 

 

 

𝑭𝒓 =

(

  

𝑓0,0 𝑓0,1 ⋯ 𝑓0,𝑀−1
𝑓1,0 𝑓1,1 ⋯ 𝑓1,𝑀−1
⋮ ⋮ ⋱ ⋮

𝑓𝑁−1,0 𝑓𝑁−1,1 ⋯ 𝑓𝑁−1,𝑀−1

 

)

  (2) 

 

In matrix (1) and (2), each row represents the subcarrier whereas each column 

represents OFDM symbol index. For instance, 𝑔3,7  represents the data of 4th 

subcarrier in 8th OFDM symbol. We assume that the following parameters are known. 

The sampling frequency after the IFFT is 𝑓𝑆. The subcarrier space is 𝛥𝑓(= 𝑓𝑆/𝑁). 

Accordingly, the OFDM symbol duration is 𝑇(= 1/𝛥𝑓). The duration of the CP is 

𝑇𝐺. Thus, total duration of OFDM symbol 𝑇𝑂(= 𝑇 + 𝑇𝐺).  The center frequency is 

𝑓𝐶. 

To perform radar imaging and obtain two-dimensional periodogram, it transmits 

a signal 𝑠(𝑡) and it receives a signal 𝑟(𝑡) at the exact same time. The signal 𝑟(𝑡) is 
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composed of a superposition of reflections of the original signal by objects and 

receiver noise. While transmitting, the receiver receives to pick up the reflected signal. 

Thus, transmitter and receiver must be synchronized and there should not have any 

time or frequency offset. The received signal 𝑟(𝑡) has the form as 

 

 𝑟(𝑡) = 

∑ 𝑏ℎ𝑠(𝑡 − 𝜏ℎ)𝑒
𝑗2𝜋𝑓𝐷,ℎ𝑡𝑒𝑗𝜙ℎ

𝐻𝑡−1

ℎ=0
+∑ 𝑏𝑖𝑠(𝑡 − 𝜏𝑖)𝑒

𝑗𝜙𝑖
𝐻𝑐−1

𝑖=0
+ �̃�(𝑡) (3) 

 

where 𝐻𝑡  is the number of reflecting targets and 𝐻𝑐  is the number of clutter 

components. The time delay causes a phase shift of the individual elements 𝑔𝑘,𝑙. The 

phase shift value varies for each subcarrier depending on its frequency. By combining 

these effects, 𝑭𝒓 is form as 

 

 
(𝑭𝑟)𝑘,𝑙 =∑ 𝑏ℎ(𝑮)𝑘,𝑙𝑒

𝑗2𝜋𝑇𝑂𝑓𝐷,ℎ𝑙𝑒−𝑗2𝜋𝜏ℎ𝛥𝑓𝑘𝑒𝑗𝜙ℎ
𝐻𝑡−1

ℎ=0
 

               +∑ 𝑏𝑖(𝑮)𝑘,𝑙𝑒
−𝑗2𝜋𝜏𝑖𝛥𝑓𝑘𝑒𝑗𝜙𝑖

𝐻𝑐−1

𝑖=0
+ (�̃�)

𝑘,𝑙
 

(4) 

 

where (𝑨)𝑘,𝑙 indicates the (𝑘, 𝑙)-th element of the matrix 𝑨. The time delay is 𝜏ℎ  (=

2 × 𝑑ℎ/𝑐0)  which is translated by distance 𝑑ℎ . Doppler frequency is 𝑓𝐷,ℎ(=

2 × 𝑣𝑟𝑒𝑙,ℎ/𝑐0 ) where 𝑣𝑟𝑒𝑙,ℎ  and 𝑐0  are relative velocity and the speed of light, 

respectively. The 𝜙ℎ  is an unknown phase offset and magnitude of the reflected 

signal 𝑏ℎ is factor of signal attenuation and can be written as 

 

 
𝑏ℎ = √

𝑐0𝜎𝑅𝐶𝑆,ℎ

(4𝜋)3𝑑ℎ
4𝑓𝐶
2 (5) 

 

where 𝜎𝑅𝐶𝑆,ℎ, which generally means the size of the target. As mentioned earlier, 

clutter components refer unwanted back-scattered signals by natural environments or 

between Tx and Rx antenna. Therefore, equivalent distance and time delays of clutter 

components are close to zero. The distance of clutter component  𝑑𝑐 is generated for 

simulation by the Weibull distribution of probability density function. 

 

 
𝑓(𝑑𝑐; 𝜂, 𝛽) =

𝛽

𝜂
(
𝑑𝑐
𝜂
)
𝛽−1

𝑒−(𝑑𝑐/𝜂)
𝛽

 (6) 

 

where 𝜂 and 𝛽 are scale and shape parameters, respectively. The equivalent radar 

cross sections are randomly generated with uniform distribution. The matrix �̃� ∈

𝐶𝑁×𝑀is Gaussian noise. To remove 𝑮 in 𝑭𝒓, elements-wise division is performed to 
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yield. 

 

 
(𝑭)𝑘,𝑙 ≜

(𝑭𝑟)𝑘,𝑙
(𝑮)𝑘,𝑙

 

= ∑ 𝑏ℎ

𝐻𝑡−1

ℎ=0

𝑒𝑗2𝜋𝑇𝑂𝑓𝐷,ℎ𝑙𝑒−𝑗2𝜋𝜏ℎ𝛥𝑓𝑘𝑒𝑗𝜙ℎ + ∑ 𝑏𝑖

𝐻𝑐−1

𝑖=0

𝑒−𝑗2𝜋𝜏𝑖𝛥𝑓𝑘𝑒𝑗𝜙𝑖 + (𝒁)𝑘,𝑙 

(7) 

 

where (𝒁)𝑘,𝑙 = (�̃�)𝑘,𝑙/
(𝑮)𝑘,𝑙. In (7), first exponential inside the summation contains 

Doppler frequency and the second exponential contains time delay. The radar 

problem is to detect and identify two sinusoids. To estimate the sinusoids and sperate 

for the targets, two-dimensional periodogram is used and has the form as 

 

 
(𝑷)𝑁,𝑀 =

1

𝑁𝑀
|∑ ∑ (𝑭)𝑘,𝑙(𝑾)𝑘.𝑙𝑒

−𝑗2𝜋(
𝑘𝑛
𝑁𝐹𝐹𝑇

+
𝑙𝑚
𝑀𝐹𝐹𝑇

)
𝑀−1

𝑙=0

𝑁−1

𝑘=0
|

2

 (8) 

 

where 𝑷 is two-dimensional periodogram and has 𝑁𝐹𝐹𝑇 ×𝑀𝐹𝐹𝑇  size. In (8), The 

result of the sums inside the modulus operator is called complex periodogram. 

𝑁𝐹𝐹𝑇 ×𝑀𝐹𝐹𝑇 is two dimensional DFT (discreate Fourier transform) size. In general, 

𝑁𝐹𝐹𝑇  and 𝑀𝐹𝐹𝑇  are chosen as integer multiples of 𝑁 and 𝑀to enhance estimation 

resolution. 𝑾 is a window matrix generated by 

 

 𝑾 = 𝒘𝑁𝒘𝑀
𝑇 , 𝒘𝑁 ∈ 𝑅

𝑁×1, 𝒘𝑀 ∈ 𝑅
𝑀×1 (9) 

 

where 𝒘𝑁  and 𝒘𝑀  are one-dimensional window vectors. The Hanning window is 

used in this paper. If maximum distance and Doppler frequency of targets are limited 

within certain boundaries, only a cropped region of periodogram 𝑷 is sufficient for 

target detection. Detecting and identifying targets corresponds to the detection of 

local peaks in the periodogram. If a peak is found at indices (�̂�, �̂�), the target distance 

and relative velocity can be calculated as 

 

 
�̂� =

𝑐0�̂�

2𝛥𝑓𝑁𝐹𝐹𝑇
 (10) 

 

 
𝑣 =

𝑐0�̂�

2𝑓𝐶𝑇𝑀𝐹𝐹𝑇
 (11) 

 

Owing to the OFDM symbol duration 𝑇 and the subcarrier spacing 𝛥𝑓, maximum of 

unambiguous ranges and relative velocities as follows 
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 |𝑑𝑚𝑎𝑥||
𝑐0
2𝛥𝑓

| (12) 

 

 |𝑣𝑚𝑎𝑥||
𝑐0

2𝑓𝐶𝑇𝑂
| (13) 

 

If 𝛥𝑓 and 𝑇 are designed to be small enough, the maximum unambiguous values 

can cover the available distance and velocity of targets. 
 

 
Fig. 2: Example of periodogram, 𝑷, (a) clutter absence (b) clutter presence 

The example of 𝑷 is shown in Figure 2 when distance and velocity of target are 

70 m and 100 km/h, respectively. In Figure 2 (a) shows that the cluster does not exist 

and (b) shows that clutter components exist. We will call to Figure 2 (a) as clutter 

absence periodogram and (b) as clutter presence periodogram. The clutter 

components such as stationary targets are observed where velocity is 0. Positive and 

negative velocity imply approaching and moving away target, respectively. 

3. Estimation technique 

The important task of the radar system is detecting the target exactly. In this section, 

it is described in estimating method the distance and velocity of the target for the 

conventional method. The conventional CFAR algorithm and multi-output CNN are 

used for estimation the target. 

3.1. Conventional estimation method 

Among various CFAR techniques, cell averaging CFAR (CA-CFAR) is most widely 

used. In CFAR, when the target detection is required for a given cell called as cell 

under test (CUT), the noise variance is estimated from adjacent cells. Then, the 

detection threshold, 𝑇𝐻, is given by 

 

 𝑇𝐻 = 𝛼𝐸𝑛 (14) 
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where 𝐸𝑛  is estimated noise power value and 𝛼  is a threshold factor for scaling 

threshold. In CFAR technique, a CUT to be tested is and guard cells are defined to be 

next to the CUT. Training cells (𝑇𝑖) are established on the outside of guard cells. 𝐸𝑛 

is estimated from the training cells and can be calculated as 

 

 
𝐸𝑛 =

1

𝑁𝑡
∑𝑇𝑖

𝑁𝑡

𝑖=1

 (15) 

 

where 𝑇𝑖 is the sample in each training cell and 𝑁𝑡 is the number of training cells. 
 

 
Fig. 3: Example of CFAR detector window 

Figure 3 shows an example of 2D CFAR detector window when band (GB) size 

is 1 × 1 and the training band (TB) size is 2 × 2. Commonly, the number of cells on 

both sides is the same around CUT. The purpose of guard cells is to avoid signal 

components from leaking into 𝑇𝑖. The scaling factor 𝛼 is calculated as 

 

 𝛼 = 𝑁𝑡(𝑃𝑓𝑎
−1/𝑁𝑡 − 1) (16) 

 

where 𝑃𝑓𝑎 is the false alarm probability. 
 

 
Fig. 4: Process of CA-CFAR detector 

Figure 4 shows process of CA-CFAR detector. First, a 2D periodogram is 
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inputted into the detector and the CFAR detects the targets. The output of CFAR 

becomes different by the specified TB, GB and 𝑃𝑓𝑎 . In CFAR algorithm process, 

noise power is estimated from 𝑇𝑖  and the CUT exceeding 𝑇𝐻  becomes one and 

otherwise, the CUT becomes zero. Then, clutters are removed by zero Doppler 

filtering in the CFAR output. The CFAR output is element-wise multiplied by the 𝑷. 

Finally, find the maximum value from the result 2D signal. The maximum is 

considered as the target. In Figure 4, green circle indicates real coordinate and red 

circle indicates predicted coordinate. In zero-Doppler filtering procedure, the target 

with relative velocity close to zero can be discarded. This cause detection error and 

may be a potential problem of CFAR. 

3.2. Proposed estimation method 

The proposed multi-output CNN detector predicts the distance and velocity of the 

target from the periodogram. The CNN is one of the deep learning techniques, 

specialized in image classification (Wang et al., 2016; Jeong et al., 2020; Nam & 

Jeong, 2020). Finding peaks in periodogram can be regarded as an image detection 

problem. Therefore, it is suitable for solving radar problems using CNN. Usually, a 

typical CNN has one output, but the proposed multi-output CNN has two outputs. 

When using a typical CNN, there should be at least two detectors that estimate 

distance and velocity, respectively. However, proposed multi-output CNN can 

estimate at once with just one detector. The proposed multi-output CNN structure is 

as shown in Figure 5. The model is based on ResNet-50 but has different input and 

outputs size. The input layer, convolutional layers and the each fully connected layer 

are linked, and at the end, each of two different fully connected layers (fc) receives 

the last pooling layer’s output. Finally, the value corresponding to the distance and 

velocity is predicted. As mentioned earlier, there are two cases of input. One is for 

clutter absence image, the other is for clutter presence image. The input signal is 

cropped periodogram that size is 𝑆 × 𝑆. The number of the fully connected layer 

output is 1 for regression. The input or output size of CNN are varied by number of 

OFDM symbols, 2D FFT size and available target detection range. The proposed 

CNN detector only requires periodogram signal. Unlike the proposed method, CFAR 

require additional information such as noise power estimate and noise variance. 
 

 
Fig. 5: Proposed multi-output CNN structure 
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4. Results 

4.1. Simulation environment 

The periodogram is generated and performance of conventional CFAR detector were 

verified through Matlab. The performance of the proposed multi-output CNN was 

demonstrated through computer simulation using Tensorflow. In the simulation, 𝑓𝑆 =

122.88𝑀𝐻𝑧, 𝑁 = 4096, 𝑀 = 16, 32, 64, 128, 𝑁𝐹𝐹𝑇 = 2048, 𝑀𝐹𝐹𝑇 = 128 and 𝐿𝑐 

is 296. Thus, the symbol duration is 𝑇𝑂 = 35.74𝜇𝑠. The subcarrier spacing is 𝛥𝑓 =

30𝑘𝐻𝑧. Among total 4,096 subcarriers, only 1,284 subcarriers are used, and the 

resulting signal bandwidth is about 40𝑀𝐻𝑧. The carrier frequency is 𝑓𝐶 = 28𝐺𝐻𝑧. 

For training dataset, the reflected signals on a target are randomly generated from 

SNR -14 dB to +22 dB. We crop the periodogram by 100 × 100. Due to the cropped 

2D periodogram, the detectable range of distance and velocity is from 7 m to 230 m 

and from -190 km/h and 190 km/h, respectively. The clutter components are 

randomly generated using Weibull distribution and the associated parameters are 𝜂 =

1 and 𝛽 = 1. In the conventional method, the parameters GB sizes and TB are 1 × 1 

and 5 × 5, respectively. Also, 𝑃𝑓𝑎 for 16, 32 and 64 symbols are 0.24, 0.21 and 0.21, 

respectively. Figure 6 shows the spectrum of generated OFDM signals when 𝑀 = 64. 
 

 
Fig. 6: Spectrum of OFDM signal 

4.2. Training multi-output CNN 

The proposed multi-output CNN learns from the periodograms and corresponding 

distance and velocity labels. As mentioned earlier, there are two case of input signal 

𝑷: clutter free and clutter presence periodograms. The number of training data 𝑁𝑑 

used is 110,000 and the mini-batch size is 100. The maximum epoch is 200 for clutter 

absence case and 800 for clutter presence case. Therefore, the parameters update 

1,100 times in each epoch and total number of parameter updates is 220,000 and 

880,000, respectively. The optimization algorithm is Adam with learning rate 0.001. 

Both clutter absence and clutter presence periodogram has 100 × 100 input size and 
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the number of trainable parameters is 23,536,516. The loss function is mean square 

error (MSE) and can be written as 

 

 
𝑀𝑆𝐸 =

1

𝑁𝑑
∑ (�̂�𝑖

𝑁𝑑

𝑖=1
− 𝑑𝑖)

2 + (𝑣𝑖 − 𝑣𝑖)
2 (17) 

 

In (17), 𝑁𝑑  is the number of training data, �̂�𝑖  and 𝑣𝑖  are the distance and velocity 

output of the CNN during the learning process, respectively. The 𝑑𝑖 and 𝑣𝑖 are actual 

distance or velocity values of target. 
 

 
Fig. 7: Learning Curves for Clutter Absence Periodogram, 

(a) Distance MSE (b) Velocity MSE 

 

 
Fig. 8: Learning Curves for Clutter Presence Periodogram, 

(a) Distance MSE (b) Velocity MSE 

Figures 7 and 8 show the learning curves for clutter absence periodogram and 

clutter presence periodogram, respectively. The number of the targets, 𝐻𝑡 is 1 and the 

number of clutter components 𝐻𝑐 is 0 for (a) and 20 for (b). As shown in the Figures, 

the losses gradually decrease and finally converges to zeros. In the early stage of 

learning, losses have not stabilized, but convergence is observed as training iteration 

increases. 
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4.3. Performance comparison 

For performance verification of the proposed technique, new test signals are 

generated. Each periodogram for the test, the distance 𝑑ℎ  and velocity 𝑣𝑟𝑒𝑙,ℎ  of 

targets is also generated randomly but the SNRs of the targets are the same. The SNR 

ranges from -20 dB to +22 dB with 3 dB step. 10,000 test periodograms are generated 

at each SNR. The performance of the CFAR detector and the proposed multi-out 

CNN is compared using test periodogram. MAE is used as a performance indicator. 

The MAE can be written as 

 

 
𝑀𝐴𝐸 =

1

𝑁𝑒
∑ |�̂�𝑛 − 𝑦𝑛|

𝑁𝑒

𝑛=1
 (18) 

 

where 𝑁𝑒  is the number of test data, �̂�𝑛  is output of multi-output CNN that is 

predicted value and 𝑦𝑛 is actual value of target. 
 

 
Fig. 9: MAE performance for conventional and proposed method, clutter presence case only 

(a) MAE of distance (b) MAE of velocity 

Figure 9 (a) shows MAEs of distance and (b) shows MAEs of velocity for 

conventional CFAR and proposed multi-output CNN in clutter presence environment. 

As the SNR increases, all MAEs improves. In Figure 9, in case of CFAR, distance 

MAE is 8.2 m and velocity MAE is 10.8 km/h at best throughout all symbols. On the 

other hand, proposed CNN has the best performance when SNR is 22 dB and 𝑀 =

128, and the distance and velocity MAEs are 0.83 m and 0.88 km/h, respectively. 

The differences in MAEs between conventional and proposed method are about 7.37 

m and 9.92 km/h. The proposed technique shows much accurate distance and speed 

estimation. 

Figure 10 shows MAE performance comparison of proposed CNN between 

clutter presence and clutter free cases. Figure 10 (a) is the performance when clutter 

is presence and (b) is absence. In both (a) and (b), as the SNR increases, all MAEs 
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decrease. In addition, as the number of transmitted symbols increases, the 

performance in the lower SNR range also improves. The performance of clutter 

absence case is superior to presence case when same symbols are transmitted. At 𝑀 =

128 and SNR 22 dB, the difference of distance MAE is about 0.56 m and velocity 

MAE is about 0.61 km/h. 
 

 
Fig. 10: MAE performance for proposed method only, clutter absence and presence cases  

(a) MAE of distance (b) MAE of velocity 

In other words, the proposed estimates of distance and speed are 9.8 and 12.3 

times more accurate than the conventional CFAR. When comparing the proposed 

techniques with and without clutters, the MAEs of distance and speed estimates 

without clutters are 3.1 and 3.3 times lower, respectively, than those with clutters. 

Those results indicate that clutter components increase misdetection of the targets due 

to confusion between the target and the clutter. In clutter presence case, however, 

properly increasing the number of the transmission symbols 𝑀 can decrease error in 

estimating distance and velocity. 

5. Conclusion 

This paper proposed a new target detection technique for OFDM radar systems. The 

proposed detector was developed based on 2D multi-output CNN techniques. By 

taking the 2D periodogram of the reflected OFDM signals as the CNN input, the 2D 

CNN directly estimates the distance and the velocity of the target without any 

additional information. Through computer simulation, the proposed technique was 

compared with the most famous conventional CFAR technique. According to the 

computer simulation results, the proposed technique outperforms the conventional 

CFAR. Specifically, the MAEs of distance and speed are 9.8 and 12.3 times lower, 

respectively. Those results indicates that the proposed technique estimates the target’s 

distance and velocity much more accurately. If the proposed technique is employed 

in 5G or 6G mobile communications, real-time beamforming and beam-tracking can 
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be realized by performing radar signal processing while communicating between the 

base station and the mobile station. If that happens, the proposed technique may be a 

revolutionary turning point for high-speed communication in millimeter-wave mobile 

environments. 
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