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Abstract. There is a significant interest in stochastic correspondents of 

differential equations and classical differences describing occurrences in 

theoretical models involving population structure.  In this paper, the distribution 

of the extinction time for the linear birth and death diffusion model with 

Catastrophe is considered. The catastrophes occur at a constant rate, and their 

magnitudes are random variables having gamma distribution. The population 

means and the expected time to extinction are also considered for a large initial 

population size. The particular case when the catastrophe sizes are exponentially 

distributed is found, too. 
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1. Introduction 

The improvement of mathematical models for population development is of high 

importance in various fields. For example, the growth and decline of real 

populations will be approximated in several cases by the solution of a differential 

equation. However, there are circumstances in which the essentially random nature 

of population growth should be considered. This leads us to consider stochastic 

models. 

Practically, numerous populations are experiencing sudden catastrophes or large 

downward jumps. A specific example is the reindeer population of St. Paul Island 

(Sheffer (1951)). A hard of 25 reindeers was introduced in 1911. By 1938 the 

number reached approximately 2000, and by 1950 there were was again 8 reindeers 

only. Another example is the Grizzly bear population in Yellowstone Park 

(Craighead et al (1974)). 

The occurrence of such catastrophes, whether due to a lack of food or disasters 

such as earthquakes, overflows, epidemics such Pandemic Cofid-19, etc., is mostly 

analyzed as a random occurrence. However, numerous mathematical models 

describing the growth of populations subject to catastrophes have been analyzed in 

detail. In particular, Brockwell (1985) derived the distribution of the time to 

extinction of a diffusion process with catastrophes occurring at a rate proportional 

to the population size and having magnitudes with distribution function H (.). 

In several different papers, Kaplan et al. (1975), Hanson and Tuckwell (1978), 

(1981), Pakes et al. (1979), Murthy (1981), Trajstman (1981), Brockwell et al. 

(1982), (1983), (1985), (1986), Alawneh and Al-Eideh (2000), Al-Eideh and 

Alawneh (2004) studies have been made of mathematical models for the growth of 

populations subject to randomly occurring catastrophes from various points of view. 

In particular, Brockwell et al. (1982, 1983) consider the class of linear birth and 

immigration processes subject to catastrophes occurring at a rate proportional to the 

population size. They examined the distribution of {Xt}, the stationary distribution, 

and the distribution of time to extinction in the absence of immigration. The 

analysis was limited to catastrophe sizes having an exponential, uniform or 

binomial distributions. 

Brockwell (1985) found the distribution of the time to extinction for the same 

model with arbitrary catastrophe size distribution (independent of population size) 

and also for an analogous diffusion model interrupted by downward jumps with 

arbitrarily distributed sizes. 

Alawneh and Al-Eideh (2000) focuses on an unsolved question related to 

stochastic model for population growth with catastrophe. More specifically, they 

consider a diffusion model with catastrophe occurring at a constant rate and having 

magnitudes with uniform distribution function. The distribution of the extinction 

time and the asymptotic behavior of the expected time to extinction for large initial 
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population size have been derived. 

While, Al-Eideh and Alawneh (2004) determined the exact solution to the Ito 

differential equations for an Ito diffusion process subject to catastrophe under the 

assumption that the catastrophe rate is small and their magnitudes are random 

variables having a general distribution function. The population moments as well as 

the asymptotic distribution and probabilities of extinction times for large initial 

population size of such a process are also derived. 

In this paper, the distribution of the extinction time for the linear birth and death 

diffusion model with Catastrophes is considered.  the catastrophes occur at a 

constant rate and their magnitudes are random variables having gamma distribution. 

The population mean and the expected time to extinction are also considered for 

large initial population size. The particular case when the catastrophe sizes are 

exponentially distributed is found, too. 

2. Method 

Consider the linear birth and death diffusion model in which the diffusion 

coefficient a and the drift coefficient b are proportional to the population size Xt at 

time t.  The diffusion process is assumed to be interrupted by catastrophes occurring 

at a constant rate c and having magnitudes with distribution function H(). Then   

{X, t 0} is a Markov process with state-space S=[0, ) and generator   g, where 
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For all   f D(g), where D(g) is the domain of g, and  a>0, c>0,. Note that 0 is an 

absorbing state. 

Let   F(x, t)   be the distribution function of the process at time t, i.e.,  F(x, t) = 

P(Xt  x). Let   (, t)  be the Laplace transform of  Xt, i.e. 

( )
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Where 

xex  −=),(  (3) 

Observe that  
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And substituting in the ((Breiman (1968), P. 327))  
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(5) 

Since in the section 3, we will consider the Gamma catastrophe distribution Hx(.) 

which is continuous, then in this case x-  may be replaced by x, and by performing 

the Laplace transforms in (5), we find for the constant catastrophe rate that equation 

(5) may be written as 
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3. Population Mean of a Diffusion Population Model with 

Constant Gamma Catastrophe Rate 

In this section, we consider the population mean M(t), of a diffusion population 

process with constant catastrophe rate and Gamma Catastrophe process Hx(y) with 

parameters ( ),m , 0m , and 0 , defined by  
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where ( )m , is called the gamma function, is defined as 
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Notice that ( ) ( )!1−= mm  and ( ) 11 = (cf. Ross (1998), P.223). 

The equation (6) can now be written as 
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By taking →0, we get 
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If xX =0  then the solution of (9) is 
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Now, for the special case when Gamma Catastrophe process Hx(y) with 

parameters ( ),m , where 1=m , and 0 , we get  
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Note that )(ydH x is Exponential catastrophe process with parameter 0 . 

Also, using equation (10), the population mean is then given by 
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4. The Extinction Time of a Diffusion Population Model with 

Constant Gamma Catastrophe Rate 

This section wants to find the distribution of the extinction time and the expected 
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time to extinction for large population size x for the birth-death diffusion model 

with constant catastrophe rate and beta catastrophe size distribution.  

Using the criterion of "drift conditions" (cf. Meyn and Tweedie (1993)) for sure 

extinction, we can find under what conditions the population will become extinct 

almost surely. The drift condition is  

( )  xdyyxyp ,1  (13) 

where ( )yxp ,1
 is the one step transition probability density from the state x to 

state y.  

Note that 

( )= dxyxypM ,)1( 1  (14) 

This implies 
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After some algebraic manipulations, equation (15) implies 



cm
b   (16) 

Let q(x) be the probability of eventual extinction given Xo = x is given by 
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This means that the population will become extinct almost surely if 

. 

Now, let  0:0inf == tXtT  be the time to extinction and 

let xE , denote the expectation conditional on Xo = x. 

Also, using the "drift conditions" (cf. Meyn and Tweedie (1993)) which says that 

if 

( ) ( ) ( ) − 1,1 xvdyyxpxv  

is satisfied for some ( )xv , then 

( )xkvTEx   

where k is constant. 

Take ( ) xxv = , we get 
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( ) 1,1 − xdyyxxp  (18) 

this implies that 
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and then, we get 
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Now, for large x ( →x ), equation (20) becomes 


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Therefore, if  then kxTEx  where k is a constant. 

For the special case when  is Exponential catastrophe process with 

parameter 0 .  Then, the probability of eventual extinction given Xo = x is 

given by 
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and  

kxTEx  if   


c
b   as →x . 

5. Conclusion 

This study provided a methodology for studying the mean and the extinction time of 

the populations. More specifically, the study departs from the traditional before - 

and – after regression techniques and the time series analysis and developed a 

stochastic linear birth and death diffusion model with a constant Gamma 

catastrophe process that explicitly accounts for the variations in populations in a 

random environment.  
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