
246

ISSN 2409-2665

Journal of Logistics, Informatics and Service Science

Vol. 12 (2025) No. 3, pp. 246-263

DOI:10.33168/JLISS.2025.0315

TCDRM: A Tenant Budget-Aware Data Replication Framework

for Multi-Cloud Computing

Santatra Hagamalala Bernardin 1, Franck Morvan 2, Riad Mokadem 2, Hasinarivo

Ramanana1, Hasimandimby Rakotoarivelo 1

1 Université of Antananarivo, Mention Informatique et Technologies, Madagascar
2 Institut de Recherche en Informatique de Toulouse (IRIT), University of Toulouse, Toulouse, France

hagamalala.bernardin@univ-antananarivo.mg

Abstract. Multi-cloud computing systems face significant challenges in ensuring acceptable

performance while adhering to tenant budget requirements. This paper proposes a tenant

budget-aware (tenant-centric) data replication framework for Multi-Cloud Computing

(TCDRM). The proposed strategy dynamically creates data replicas based on predefined

thresholds for response time, economic budget of the tenant and data popularity. TCDRM

employs a heuristic replica placement algorithm that leverages the diverse pricing structures

of multiple cloud providers. The TCDRM strategy aims to maintain the required performance

without exceeding the tenant’s budget by taking advantage of the capabilities offered by multi-

cloud environments. The middleware considered acts as an intermediary between tenants and

multiple cloud providers, facilitating intelligent replica placement decisions. To achieve this,

the proposed TCDRM strategy defines strict thresholds for tenant budget and response time.

A performance evaluation is conducted to validate the effectiveness of the strategy. The

results show that our approach effectively meets tenant performance objectives while

respecting their economic constraints. Bandwidth consumption is reduced by up to 78%

compared to non-replicated approaches, and average response time for complex queries is

decreased by 51%, all while adhering to tenant budget limitations.

Keywords: Multi-Cloud computing, Data replication, SLA contract, Tenant Budget.

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

247

1. Introduction

Multi-cloud environments have emerged as a preferred paradigm for deploying data-intensive

applications due to their ability to combine resources from multiple cloud providers. Beyond the

benefits offered by single-cloud solutions (Karvela et al., 2021), multi-cloud provides even greater

flexibility, fault tolerance, and cost-optimization opportunities by allowing tenants to select providers

based on pricing (Armbrust et al., 2010), performance and geographic availability (Stantchev and

Schropfer, 2009). However, they also introduce significant challenges, particularly in the context of

data replication, where economic and performance factors must be balanced across heterogeneous

infrastructures.

One of the most pressing challenges in multi-cloud data management is enabling effective data

replication that considers not only technical performance (e.g., latency, availability), but also the

budgetary constraints of individual tenants. In traditional replication strategies, the focus is often placed

on maximizing provider profit or system-wide efficiency, with limited consideration of tenant-specific

cost sensitivity (Mokadem and Hameurlain, 2020). This leads to inefficiencies, especially in multi-

tenant scenarios where each user may operate under different budget and SLA expectations.

While several replication strategies have been proposed for cloud environments (Milani and

Navimipour, 2016; Shakarami et al., 2021; Mokadem et al.,2022; Dugyani and Govardhan, 2024), most

of them either assume provider-oriented or are tailored for single-cloud contexts. A few studies have

considered tenant-oriented approaches (Limam et al., 2019), but these are rarely extended to support

multi-cloud systems or cost-aware decision-making that reflects the pricing diversity of different

providers. This results in a significant gap in the literature: how to design a data replication strategy that

adapts to tenant budgets in a multi-cloud environment.

In this paper, we address this gap by proposing TCDRM (A tenant budget-aware (tenant-centric) data

replication Framework for Multi-Cloud Computing), a strategy that prioritizes the tenant’s budget while

ensuring acceptable query performance. TCDRM dynamically analyzes execution cost and

performance metrics after each query execution and evaluates whether the creation of new replicas is

necessary based on predefined SLA thresholds and tenant-defined cost ceilings. When these thresholds

are violated, TCDRM triggers a decision-making process to analyze query dependencies and identify

candidate data for replication. A cost-aware replica placement heuristic is then applied to select the

most suitable cloud provider, taking into account both performance and cost, while ensuring tenant

constraints are not exceeded. It takes advantage of provider pricing diversity by selecting the most cost-

effective provider for each query execution, thereby reducing overall costs while preserving

performance.

The main contributions of this paper are as follows:

• We identify and formalize the challenge of tenant-centric data replication in multi-cloud

environments.

• We propose a tenant budget-aware replication strategy (TCDRM) that integrates tenant budget,

popularity and response time thresholds.

• We develop a heuristic for replica placement that narrows the search space and supports cost-

efficient decision-making.

• We extend CloudSim (Calheiros et al., 2011) to simulate a multi-cloud environment with

integrated replication, cost modeling, and query routing.

• We validate the effectiveness of our strategy through simulations that demonstrate its ability to

maintain performance while respecting tenant budgets.

The remainder of this paper is structured as follows: Section 2 reviews related work on data

replication strategies in cloud and multi-cloud systems. Section 3 details the proposed strategy. Section

4 describes the simulation setup, outlines the modifications made to CloudSim, and presents the

experimental results. Finally, Section 5 concludes the paper and outlines directions for future work.

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

248

2. Related Work

One of the objectives of the data replication strategy is to satisfy specific tenant objectives, such as

improving performance (Arar et al.,2024), guaranteeing data availability (Wei et al., 2010), load

balancing (Edwin et al. , 2019), and reducing response time (Tos et al., 2018; Khelifa et al., 2021),

reliability (Li et al., 2017), security (Ali et al., 2018), and energy efficiency (Alghamdi et al ., 2017,

Séguéla et al., 2021), or taking into account multi-objective criteria for tenants (Miloudi et al., 2020;

Boru et al., 2015, Wang & Shannigrahi, 2025; Edwin et al., 2019; Mansouri and Javidi, 2018; Mokadem

and Hameurlain, 2020).

Concurrently, economic aspects, particularly profit maximization, are integrated into these

strategies. In this context, Mokadem et al. (2022) propose a twofold classification based on economic

orientation: provider-oriented strategies and tenant-oriented strategies. Providers-oriented replication

strategies prioritize cost reduction for providers while adhering to the stipulated SLO. This approach

has been illustrated in several studies, including Wei et al. (2010) and Bonvin et al. (2010), Sousa and

Machado (2012), Tos et al. (2016), Liu et al. (2019), Tos et al. (2018) and Khelifa et al. (2022). These

studies highlight the mechanisms for optimizing resources for the benefit of the provider, while

maintaining an adequate level of service for users.

Conversely, tenant-oriented strategies prioritize the reduction of monetary costs incurred by tenants

over providers; notable works in this area include those by Sakr et al. (2011) and Sharma et al. (2011),

Sakr and Liu (2012), Zhao et al. (2015), Limam et al. (2019), and John and Mirnalinee (2020). These

strategies aim to minimize tenant expenditure while ensuring adequate performance.

Sakr and Liu (2012) present an approach by controlling the tenant’s monetary outlay on cloud

database management based on SLAs. They proposed a framework that acts as a middleware between

applications and cloud databases. This framework enables the dynamic, adaptive provisioning of

resources according to application-defined policies to guarantee performance while minimizing

monetary costs. To adapt to variations in workload, replicas are added during periods of high demand

and removed when the load decreases, ensuring the continuous optimization of expenditure.

Limam et al. (2019) proposed a Dynamic Replication strategy, DRAPP (dynamic replication

strategy for Availability, Performance, and Profit), which aims to meet the availability and performance

requirements of cloud systems for databases while considering tenant budget and vendor profit. This

approach triggers the creation of replicas when there is an SLA violation, particularly in the response

time, and the cost of replication does not exceed the initial threshold budget.

Zhao et al (2015) propose a framework-based approach for optimized cost management via

dynamic, intelligent resource provisioning based on application SLA requirements. This framework

adjusts resources in real time and optimizes the use of database replicas to minimize costs while

guaranteeing optimal performance. It relies on virtualization-based replication mechanisms, facilitating

more efficient allocation of cloud resources. Database replicas are deployed on virtual machines (VMs)

located in different geographical zones, enabling us to: (i) reduce costs by exploiting cost-effective

cloud instances depending on the region and (ii) avoid over-provisioning costs by dynamically adjusting

the number of replicas according to demand.

In this context, TCDRM is viewed as a tenant-oriented strategy. This approach triggers data

replication only when the budget allocated by the tenant to a given query is exceeded. In this way,

tenants' financial resources are preserved and access to data is guaranteed in line with their needs.

However, most replication strategies mentioned were designed for single-cloud environments.

These approaches generally fail to consider the diversity of pricing options and configurations available

in a multi-cloud environment, thereby limiting their ability to fully exploit the economic and technical

advantages offered by a distributed infrastructure.

A limited number of studies have looked at how tenants' budgets are considered in a multi-cloud

context. These include the contributions of Chang et al. (2012) and Abu-Libdeh et al. (2010) and

Bessani et al. (2011, 2013), Chen et al. (2014) and Wu et al. (2013), Abouzamazem and Ezhilchelvan

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

249

(2013), Grozev and Buyya (2015), Liu and Shen (2017), Mansouri and Buyya (2019). These studies

explore mechanisms for taking advantage of pricing differences and technical specificities between

multiple cloud providers while respecting tenants' budget constraints.

TCDRM is viewed as a tenant-oriented strategy. This approach triggers data replication only when

the budget allocated by the tenant to a given query is exceeded. In this way, tenants' financial resources

are preserved and access to data is guaranteed in line with their needs.

Chang et al (2012) propose a dynamic programming algorithm to optimize data replication across

multi-cloud, in order to improve cloud storage availability. Their approach is based on the selection of

providers according to two main criteria: the cost and probability of failure. Using optimization

algorithms, they maximized data durability within a predefined budget. Assuming that supplier failures

are independent, this method guarantees users continued access to their data, even in the event of

supplier failure, while optimizing the management of replication costs. By diversifying suppliers and

prioritizing those offering the best cost-availability ratio, users can minimize their expenses while

ensuring the security and accessibility of their data.

Liu and Shen (2017) propose DAR (Data Storage and Request Allocation and Resource Reservation)

to optimize cloud storage, a system that enables tenants to minimize their costs while respecting SLOs

in a multi-cloud environment. DAR is based on two heuristic solutions. First, the dominant cost

allocation algorithm identifies the dominant cost (storage, Get, or Put) for each data element and

allocates it to the data center offering the lowest unit price for this dominant cost. The aim is to reduce

costs within a “pay-as-you-go” framework. On the other hand, the optimal resource reservation

algorithm maximizes the savings achieved through advance reservations compared to pay-as-you-go.

This avoids both overestimation (overbooking) and underestimation (underbooking).

Wang et al, (2020) propose an adaptive data placement architecture, called ADP (Adaptive Data

Placement Architecture) designed for mutli-cloudenvironments. This approach aims to minimize the

total costs and maximize data availability by dynamically adjusting the data placement scheme

according to the frequency of data access, which varies over time. ADPA combines an access frequency

prediction module based on LSTM to anticipate future needs, and a placement optimization module

based on reinforcement learning (Q-learning) to determine the best storage strategy.

Aldailamy et al. (2024) propose two online algorithms: DTS (Deterministic Time Slot) and RTS

(Randomized Time Slot) to dynamically optimize data replication and object placement in a multi-cloud

environment, specifically targeting Online Social Networks (OSNs). These algorithms rely on real-time

analysis of object popularity based on regional access and engagement rates (likes, comments, shares).

Their goal is to guarantee access latency below a 250 ms threshold while minimizing inter-cloud

bandwidth, storage, and replication costs. Although effective, these algorithms do not consider the

variability of pricing policies across cloud providers, which may limit the economic benefits for tenants

in a multi-cloud context.

These multi-cloud approaches thus offer increased flexibility and cost optimization while meeting

data performance and availability requirements. However, most existing strategies have not been

designed specifically for database management. To the best of our knowledge, no work has yet proposed

tenant-oriented data replication strategies for databases in a multi-cloud environment.

3. The Proposed TCDRM Strategy

The proposed TCDRM strategy aims to ensure SLA satisfaction by meeting the response-time

objectives while maintaining the tenant's budget. To achieve this, our strategy addressed four key

questions related to data replication, each associated with a specific decision-making module within the

system: (i) When and what to replicate? This module determines the optimal timing for replication and

identifies the data to be replicated based on its popularity and cost. (ii) Where to replicate? handled by

the placement algorithm, which selects providers based on trade-offs between cost and response time,

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

250

and (iii) replica deletion managed by the deletion algorithm, which continuously monitors replica

popularity to avoid unnecessary storage costs for tenants. These interconnected components form a

coherent and adaptive system capable of balancing performance with cost efficiency. In addition, we

introduce an economic model that estimates the query execution costs (CPU, I/O, and bandwidth),

enabling the dynamic calculation of a budget threshold for replication. This cost-aware model guides

replication decisions to meet financial constraints, while ensuring system responsiveness.

3.1. Architecture overview

We consider that data sources are distributed across multiple clouds connected to the Internet, which is

a network characterized by low bandwidth and high latency. The architecture we adopt is based on

middleware (Fig. 1), which serves as an interface between the user and several cloud service providers.

When a query is issued, the middleware collects information from the various clouds and selects the

best option for the tenant. Furthermore, each provider adopted its own pricing policy. For tenants,

communication costs are often higher than storage costs. Additionally, the communication charges

between different regions are higher than those within the same region, which in turn are higher than

the costs of communication within the same data center.

In a multi-cloud system, each cloud provider (CP) has multiple data centers (DC) distributed across

various geographic regions (RG).

Let CP = {CP1, …, CPj, …,CPr} be a set of r providers connected via the internet to the user

through middleware.

Let RGp = {RGp1, …, RGpi, …, RGpq} be a set of q regions, of provider p, geographical regions

connected via the internet without direct links between them. Each region includes heterogeneous data

centers.

Denote DC = {DCpi1, …, DCpij, …, DCpin} to designate a set of n DCs in a region RGpi of a

provider p. The bandwidth between these DCs is more abundant and cheaper compared to the first level.

In these data centers, virtual machines are offered to tenants to provide storage, computing, and

bandwidth services.

3.2. Which data to replicate and when?

In the proposed strategy, the creation of a new replica depends on three main criteria: the actual query

response time, economic cost associated with query execution, and popularity of the accessed data.

A new replica creation is considered only if (i) the query response time (tQ) exceeds a predefined

SLA threshold (TSLA), or (ii) the monetary cost of the query (cQ) (Algorithm 1, line 4), which we present

later, exceeds the threshold budget (CSLA). Additionally, the creation of replicas is conditioned by the

popularity of the accessed data, which must exceed a fixed popularity threshold (PSLA).

We used the data popularity metric proposed by Chettaoui and Ben Charrada (2012) to estimate the

average request rate of a dataset over its actual usage period, starting from the time of its first access. It

is defined as:

Fig.1: Considered architecture

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

251

pdi = (#𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠)/(𝑇_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑇_(𝑓𝑖𝑟𝑠𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡) + 1) (Equation 1)

 Where:

• #Requests is the total number of requests received from the dataset.

• T_current is the current timestamp (i.e., the time at which popularity is evaluated).

• T_first_request is the timestamp for the first recorded access to the dataset.

This approach avoids the bias introduced by inactive periods before the first use of the dataset and

provides a more realistic representation of its popularity during its active lifetime.

When a query Q is submitted, it is executed immediately according to the execution plan provided by

the DBMS. Let us assume that this Query Execution Plan is provided for each tenant query at the end

of execution. The query's response time and monetary cost, calculated based on the resources used,

were then compared with the thresholds specified in the SLA. We relied on the strategy of Tos et al.

(2016) to estimate the response time (Algorithm 1, line 2). If any of these thresholds are exceeded, a

detailed analysis of the query is performed by examining all data necessary for its execution. If the

popularity of the data (PSLA) exceeds a predefined threshold in the SLA (Algorithm 1, Line 7), the

creation of replicas is considered.

Algorithm 1: Replica Creation.

INPUTS:

 Q: Query to be executed,

 TSLA: Response Time Threshold,

 CSLA: Monetary Cost Threshold,

 D: Set of data items,

 PSLA: Data Popularity Threshold

VARIABLE:

 tQ: Response Time of query Q,

 cQ: Monetary Cost of query Q,

 pdi: Popularity of data item di

OUTPUT:

 RD: List of data items to replicate (initialilly empty)

BEGIN

1. Execute Q

2. tQ ← responseTime(Q) // Calculate response time of Q

3. cQ ← monetaryCost(Q) // Calculate monetary cost of Q

4. IF (tq > TSLA OR cq > CSLA) THEN

5. FOR each data di in D DO

6. pdi ← dataPopularity(di) // Compute popularity of data item

7. IF (pdi > PSLA) THEN

8. Add di to RD //Mark for replication

9. END IF

10. END FOR

11. END IF

END

3.3. Where to replicate?

TCDRM is a heuristic-based algorithm for replica placement designed to reduce the search space and

minimize the time required to identify suitable providers for hosting new replicas. The search is

constrained to providers offering hosting rates below the tenant’s predefined budget threshold (CSLA)

while also ensuring that the expected response time remains within the SLA-defined limit (TSLA).

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

252

Upon the execution of query Q and identification of the relevant data (RD) for replication, the

placement algorithm (Algorithm 2, lines 1–2) evaluates candidate providers using simulation. For each

provider, we simulated query execution over the RD dataset to estimate two key metrics: (i) the

monetary cost of query execution encompassing CPU, storage, and bandwidth usage, and (ii) the

estimated response time based on the current load and resource availability. These simulations are

crucial for assessing the provider suitability.

To reduce the search space, the algorithm first filters out providers whose estimated costs exceed

the CSLA (Algorithm 2, line 5). From the remaining candidates, it selects the first provider that meets

the TSLA response time threshold (Algorithm 2, line 7). This two-step filtering process effectively

narrows the search space to providers that meet both economic and performance requirements, thereby

improving the overall efficiency of the replica placement strategy.

Algorithm 1: Replica placement heuristic.

INPUTS:

 RD: A list of data items identified for replication,

 P: A list of available cloud providers,

 Q: A query that triggered the replication decision,

 TSLA: The response time threshold defined in the SLA,

 CSLA: The maximum monetary cost allowed for query execution, based on the tenant's budget

OUTPUT:

The final replica placement decision, i.e., the selected provider(s) for each data item.

BEGIN

1. FOR each data_to_replicate rk in RD DO

2. pi ← firstProvider(P)

3. WHILE pi AND (eMci > CSLA OR eRespTi > TSLA) DO

4. eMci ← estimatedMonetaryCost(Q, rk, pi)

5. IF (eMci < CSLA) THEN

6. eRespTi ← estimatedResponseTime(Q, rk, pi)

7. IF (eRespTi< TSLA) THEN

8. PLACE(rk, pi)

9. END IF

10. END IF

11. pi ← nextProvider(P)

12. END WHILE

13. END FOR

END

3.4. Replica Deletion

To avoid unnecessary storage costs for tenants and maintain an economically sustainable replication

strategy, the TCDRM framework integrates a replica deletion module. We regularly monitor the

popularity of the data on servers hosting replicas. If a replica becomes less popular, meaning its usage

falls below the PSLA threshold for a certain time interval deltaT, it is deleted. deltaT represents a

configurable observation window expressed in evaluation periods (e.g., hours or scheduling intervals).

A replica is deleted only if its popularity remains consistently below the threshold for the entire duration

of the deltaT. This approach avoids frequent creation and deletion of replicas, thereby limiting

unnecessary costs.

The minimum number of replicas required to ensure availability is not addressed in this proposal,

because our strategy is tenant-oriented.

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

253

Algorithm 3: Deletion of low-popularity replicas.

INPUTS:

 PR: A predefined observation period during which access patterns are evaluated,

 DR: The set of currently replicated data items,

 PSLA: The popularity threshold defined in the SLA

OUTPUT:

 Deletion of low-popularity replicas

BEGIN

1. FOR each Period p in PR

2. FOR EACH ReplicatedData rd in DR

3. popularity ← calculatePopularity(rd)

4. IF popularity < PSLA during deltaT THEN

5. deleteReplica(rd) //Replica is deleted only if it is less popular than the threshold

6. ENDIF

7. END FOR

8. END FOR

END

3.5. Economic Model

In a multi-cloud environment, the economic model plays a central role in the design of data management

strategies. Unlike traditional pre-cloud approaches, where resources were statically provisioned, cloud

providers charge for access to services (storage, bandwidth, compute) based on a pay-as-you-go model

(Foster et al., 2008). Some replication strategies in multi-cloud environments incorporate economic

aspects (Liu and Shen,2017; Aldailamy et al., 2024) by aiming to reduce monetary costs. However, they

do not explicitly consider the tenant's budget constraint as a central parameter in their decision-making

mechanisms. The proposed TCDRM in this paper fully embraces this economic logic by placing tenant

budget constraints at the core of its decision-making mechanisms. The proposed replication strategy

thus aims to ensure the required performance levels while controlling the costs borne by the tenant,

leveraging the pricing diversity across multi-cloud providers. The economic model therefore becomes

a structuring parameter both a constraint and an opportunity in optimizing placement decisions.

Thus, for each query submitted by the tenant, the total cost (CQ) is calculated using the

following formula:

CQ = CCPU +CIO +Cbandwidth (Equation 2)

Each component reflects a critical aspect of cloud resource usage.

• CCPU: Cost associated with the CPU time used during query execution. The CPU cost is

commonly measured in vCPU-seconds, with typical pricing ranging from $0.000011 to

$0.000060 per vCPU-second, depending on the provider and region.

• CIO: Represents the cost of storage I/O operations, including reading from and writing to

disks and the cost of creating new replicas. Providers such as AWS and Azure charge per

1,000 operations or per GB transferred to or from storage.

• Cbandwidth: Refers to the cost of transferring data across regions or clouds. This is a

significant factor in mutli-cloud environments. For example, the outbound data transfer

may range from $0.01 to $0.12 per GB.

These cost parameters were not arbitrarily chosen. These are based on publicly available pricing

from major cloud providers (e.g., AWS, Azure, and Google Cloud), which are periodically updated.

Our model uses configurable parameters that can be adapted to reflect the current pricing and tenant

preferences.

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

254

To enforce tenant cost control, we introduce a Monetary Cost Threshold (CSLA) that defines the

maximum acceptable cost for executing a query. When a tenant submits query Q, TCDRM selects the

provider whose estimated cost is within the CSLA limit. If multiple providers qualify, the provider

offering the lowest level is chosen. This decision mechanism abstracts the provider operations as a

"black box" and focuses entirely on optimizing tenant-side cost efficiency.

4. Experimental Analysis

In this section, we evaluate the proposed TCDRM strategy. First, we present the simulation tool and the

various experiments conducted, including the generation of queries. Then, we compare the performance

of TCDRM against NoRepLc (No-Replication-Less cost), a baseline strategy without replication that

integrates a basic cost-aware mechanism by selecting the cheapest provider for each query in a multi-

cloud environment. Finally, we conclude with an analysis of the results.

The fundamental assumptions of our simulation were as follows:

• The TCDRM strategy is tenant-centric. Cloud service providers are treated as black boxes. In

other words, we do not consider intra-DC or inter-DC communication within a single provider.

Instead, we focus on the interactions between different regions (interRegion) to ensure the

validity of the experiment.

• For each query, we consider the submission region, relationships necessary for processing, and

selection of virtual machines (VMs) responsible for execution.

• During the execution of each query, we always selected the least expensive virtual machine,

including in the experiments conducted with NoRepLc.

4.1. Simulation Environment

To evaluate the proposed TCDRM strategy, we used CloudSim (Calheiros et al., 2011), a widely

adopted simulator in cloud computing research. However, since CloudSim was originally designed for

single-cloud scenarios, it lacked support for data replication, distributed database query processing, and

cost-aware multi-cloud environments. Therefore, we implemented several significant extensions to

meet these specific requirements.

First, CloudSim was extended to simulate a realistic multi-cloud ecosystem comprising multiple

providers such as AWS, Google Cloud, and Microsoft Azure. Each provider is modeled with its own

data centers, virtual machine types, pricing schemes, and performance parameters. The data centers are

geographically distributed across Europe, the United States, and Asia. Each provider can be configured

independently, enabling the simulation of heterogeneous environments in terms of resource availability,

cost structures, and service quality.

Second, the default cloudlet model was enhanced to support interdependent task execution, which

is essential for accurately simulating complex database queries composed of multiple related operations

distributed across providers.

Third, a hierarchical network latency model was introduced, covering various levels of

communication: intra-VM, intra-datacenter, inter-datacenter (within the same provider), and inter-cloud

(between different providers). Bandwidth between nodes is also configurable, affecting both execution

time and data transfer costs.

Fourth, an economic model was integrated to capture resource usage costs, including CPU, I/O, and

bandwidth (as detailed in Section 4.4), as well as intra- and inter-provider data transfer expenses. This

module relies on realistic pricing models inspired by major cloud providers (cf Tab. 1), enabling cost-

sensitive simulations and supporting budget-aware replication strategies.

Finally, a series of simulations was conducted using 1,000 queries, each involving three to six

relationships distributed across multiple providers. Additionally, 20 relationships were placed in each

region per provider to represent a realistic multi-cloud data distribution scenario.

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

255

4.2. Definition of queries

We considered queries of varying complexity, based on the number of joins and placement of relations:

simple queries and complex queries.

Simple queries perform joins by associating one relationship with each of the three regions.

However, complex queries execute joins between relationships located across all three regions, with

at least two relationships per region.

The region of origin for the queries was selected randomly at the time of submission.

Table 1: Configuration parameters.

We distributed the relationships across various providers and executed the same query 1,000 times

analyze the impact of our method.

4.3. Simulation Results

To validate the proposed strategy, several metrics were measured during the simulation. We focused on

the following aspects:

(i) The replication factor,

(ii) The impact on response time, and

(iii) Impact on costs.

4.3.1. Replica Factor

The goal of TCDRM is to create new replicas, when necessary, to reduce client costs. Although the

creation of these replicas incurs additional costs, they should be viewed as long-term investment. Fig.

2 shows the variation in the number of replicas as a function of the number of queries. During different

experiments, we set the data popularity threshold (PSLA) to 200, representing the frequency of access

to the relationship. As such, the number of replicas gradually increases from the threshold onward, as

replica creation is conditioned by data popularity and other predefined thresholds in the SLA, such as

the response time and the maximum allowable query cost.

Fig. 2: Replica Factor: Number of replicas created as a function of the number of executed queries.

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

256

Fig. 2 shows the number of replicas generated as a function of the number of queries. We observe

an increase in the number of replicas as a function of the query complexity. The maximum number of

replicas differs for each type of query because the number of joins and the placement of each

relationship vary depending on the query type. TCDRM generates replicas in a manner tailored to needs

by analyzing each query.

Fig. 3: Impact on Response Time: Average response time as a function of the number of queries, comparing

simple and complex query workloads.

Fig. 3 shows the average response time as a function of the number of queries for both simple and

complex queries. For both query types, we observed that the trends of the curves representing TCDRM

and NoRepLc were similar up to a certain number of queries. However, the curve representing TCDRM

did not follow a linear progression. A decrease was observed up to a certain point, followed by

stabilization. Starting from the PSLA, we observe a decline in the curve for both query types as TCDRM

begins to replicate, and the number of inter-provider exchanges gradually decreases until the maximum

number of replicas is reached.

With NoRepLc, each request requires data transfer between providers (inter-provider data transfer),

which increases response times. Because the same query is repeated multiple times, an almost linear

curve is created, as shown in Fig. 2. However, we still observed fluctuations in the NoRepLc curve for

complex queries. This is because the origin of the query was random for each query. In addition to inter-

provider exchanges, these fluctuations represent exchanges between regions, as relationships may be

located in different regions.

In other words, the curves show a significant reduction in the response times for TCDRM. Although

optimizing the response times is not the primary goal of our strategy, TCDRM significantly reduces the

response time compared to NoRepLc. By utilizing the already created replicas, the bandwidth

consumption is reduced, which in turn halves the response time. We expect these gains to become more

significant as the number of providers increases.

4.3.2. Effect on Bandwidth Consumption
In this experiment, we evaluated the cost associated with the bandwidth consumption. Although each

provider sets its own pricing structure, a common factor emerges: the high cost associated with data

transfer between different providers (interProvider). Therefore, these transfers can have a significant

impact on the final costs borne by tenants.

Fig. 4 presents the bandwidth consumption between providers (interProvider) and between regions

(interRegion) for both NoRepLc and TCDRM for both simple and complex queries. It is important to

note that inter-region exchanges occur within the same provider.

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

257

Fig. 4: Bandwidth Consumption Comparison: Inter-rovider vs. interRegion bandwidth usage under TCDRM and

NoRepLc.

In Fig. 4, we observe a similarity in the behavior of the graphs, although their scales differ. In the case

of NoRepLc, the bandwidth consumption between providers (inter-providers) is higher than internal

consumption. This disparity is explained by the distribution of relationships across various providers,

forcing the virtual machine to execute a query to retrieve these relationships. By contrast, TCDRM

creates replicas of the relationships, favoring transfers primarily within the same provider once the

replicas are created. As a result, replication eliminates inter-provider exchanges, and TCDRM

effectively satisfies this requirement.

Fig. 2 illustrates the cost of bandwidth consumption per query for both NoRepLc and the TCDRM.

These results indicate that the bandwidth consumption cost of NoRepLc remains stable and high.

However, the bandwidth consumption costs for TCDRM decrease over time. The number of replicas

and their placements have a significant effect on bandwidth consumption.

Fig. 3 : Bandwidth Cost per Query: Comparison of bandwidth consumption cost per query between NoRepLc

and TCDRM for Simple and Complex Queries

In the TCDRM curve, we observed an oscillation before this decline. This observation can be

explained by the fact that replica creation occurs during these intervals, and their usage gradually

increases, even when processing the same query. Additionally, as the curve reaches its lowest point, it

does not follow a linear trajectory owing to the persistence of inter region exchanges. Indeed, the

heuristic (cf., Section 4.2) seeks an optimal placement to reduce the search space, and the replicas of

the relationships created may end up in regions different from the origin of the query.

Fig. 6 shows the cumulative price of bandwidth usage obtained by experimenting with NoRepLc

and TCDRM for simple and complex queries.

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

258

Fig. 6: Cumulative Bandwidth Cost: Cumulative cost as a function of the number of executed queries.

It was observed that with NoRepLc, a stable trajectory was achieved, whereas with TCDRM, the

trajectory gradually diverged over time. The constant curve of NoRepLc indicates continuous price

stability without replication, whereas the increase is less significant for TCDRM. This highlights the

clear advantage of TCDRM in terms of bandwidth costs for the tenant depending on the number of

queries made.

4.3.3. Effect on Total Price
Fig. 7 illustrates the comparison of the total costs between NoRepLc and TCDRM for both simple and

complex queries. This highlights the expenses associated with storage, bandwidth, and CPU. Overall,

the bandwidth cost was significantly higher than those of the others. The CPU cost remained constant

for all query types and strategies. The storage cost is nonexistent for NoRepLc and negligible for

TCDRM.

Fig. 7: Total Price: comparison of the total costs between NoRepLc and TCDRM

Our strategy aims to adhere to the client’s initial budget by ensuring that the price paid by the tenant

does not exceed a set threshold, while maintaining a reasonable response time. Fig. 7 shows that this

objective was achieved by comparing the total cost obtained with the NoRepLc. Bandwidth cost plays

a predominant role in the total cost. The high costs associated with data transfer have a significant

impact on the total cost, while the cost of storing replicas remains negligible.

4.4. Result Analysis
The experimental results clearly support the original goal of TCDRM: to deliver a tenant-centric,

budget-aware data replication framework tailored for complex multi-cloud environments. A key

strength of TCDRM lies in its ability to strategically balance storage costs, data transfer overhead, and

budgetary constraints, addressing cost dimensions that are often overlooked in conventional replication

mechanisms.

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

259

In particular, the cost of creating new replicas includes both inter-provider data transfer and storage

expenses. Based on average pricing from major cloud providers such as AWS, Azure, and GCP,

standard storage is approximately $0.02/GB per month, while inter-cloud data transfer (egress) averages

$0.10/GB. Thus, transfer costs can be five times higher than storage costs, emphasizing the importance

of reducing unnecessary inter-cloud transfers an objective that TCDRM systematically pursues.

The system was evaluated on a workload of 1,000 queries, a size chosen to strike a balance between

realism and analytical clarity. While it does not simulate all real-world scales, this setup is sufficient to

highlight key performance trends, illustrate cost amortization effects, and demonstrate consistent budget

compliance across diverse access patterns. These experiments serve as a proof of concept, validating

the soundness and benefits of TCDRM’s core principles. Future work will extend the evaluation to

larger workloads to confirm long-term scalability and robustness.

TCDRM further shows strong adaptability to different workload profiles. It performs especially

well under repetitive or clustered access patterns, where the cost of replication is quickly amortized

through repeated data reuse. Even in more irregular or unpredictable workloads, the framework

continues to meet performance goals while remaining budget-compliant, underscoring its flexibility and

practical value.

5. Conclusion

This paper introduces TCDRM, a novel tenant-centric data replication strategy specifically designed

for multi-cloud environments. Unlike previous strategies that primarily optimize for provider profits or

are limited to single-cloud scenarios, TCDRM prioritizes tenant budget constraints while maintaining

acceptable performance levels. By dynamically analyzing query execution metrics against predefined

SLA thresholds for response time, cost, and data popularity, our strategy creates strategically placed

replicas that leverage the diverse pricing structures of multiple cloud providers.

Our comprehensive evaluation through CloudSim simulations demonstrates that TCDRM

significantly outperforms non-replicated approaches in both economic and performance dimensions.

Specifically, TCDRM reduces bandwidth consumption costs by up to 78% for complex queries while

simultaneously decreasing response times by an average of 51%. These improvements are achieved

through intelligent replica placement that minimizes expensive inter- provider data transfers and

leverages lower-cost intra-provider communication.

The findings from this research have important implications for organizations deploying data-

intensive applications across multiple clouds. TCDRM provides a practical framework for balancing

the cost-performance trade-off in these complex environments, particularly benefiting tenants with strict

budget constraints. The threshold-based approach also offers flexibility in adapting to different

workload characteristics and tenant requirements.

A known limitation of the current approach is the reliance on static thresholds to guide replication

decisions. In dynamic environments where query patterns, data popularity, and pricing may fluctuate—

fixed thresholds may lead to suboptimal decisions. To overcome this, we plan to incorporate machine

learning techniques capable of dynamically adjusting these thresholds in real time, based on observed

workload characteristics, data popularity trends, and evolving cost structures.

Future work will focus on three key directions: (1) comparing TCDRM with other state-of-the-art

replication strategies to further validate its advantages, (2) implementing and testing the approach in

real multi-cloud environments to confirm the simulation results, and (3) extending the framework to

address data consistency and security challenges that arise in multi-cloud replication scenarios.

Additionally, we plan to investigate machine learning approaches for dynamically adjusting thresholds

based on changing workload patterns, provider pricing structures and data popularity predictions.

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

260

References

Abouzamazem, A. and Ezhilchelvan, P. (2013) 'Efficient inter-cloud replication for high-availability
services', Proceedings of the 2013 IEEE International Conference on Cloud Engineering (IC2E), San
Francisco, CA, USA, pp.132-139. doi:10.1109/IC2E.2013.27

Abu-Libdeh, H., Princehouse, L. and Weatherspoon, H. (2010) 'RACS: a case for cloud storage
diversity', Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC '10), pp.229-240.
doi:10.1145/1807128.1807165

Aldailamy, A.Y., Muhammed, A., Abdul Hamid, N.A.W., Latip, R. and Ismail, W., (2024). Efficient
multi-cloud storage using online dynamic replication and placement algorithms for online social
networks. IEEE Access, 12, pp.20409–20425. https://doi.org/10.1109/ACCESS.2024.3361748

Ali, M., Bilal, K., Khan, S.U., Veeravalli, B., Li, K. & Zomaya, A.Y. (2018) DROPS: Division and
Replication of Data in Cloud for Optimal Performance and Security. IEEE Transactions on Cloud
Computing, 6(2), pp.303–315. doi:10.1109/TCC.2015.2400460.

Alghamdi, M., Tang, B. and Chen, Y. (2017) 'Profit-based file replication in data intensive cloud data
centers', 2017 IEEE International Conference on Communications (ICC), Paris, France, pp.1-7.
doi:10.1109/ICC.2017.7996728

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A., Stoica, I. & Zaharia, M. (2010) A view of cloud computing. Communications of the ACM,
53(4), pp.50–58. doi:10.1145/1721654.1721672.

Bessani, A., Correia, M., Quaresma, B., André, F. & Sousa, P. (2013) DepSky: Dependable and Secure
Storage in a Cloud-of-Clouds. ACM Transactions on Storage (TOS), 9(4), Article 12, 33 pages.
doi:10.1145/2535929.

Bonvin, N., Papaioannou, T.G. and Aberer, K. (2010) 'A self-organized, fault-tolerant and scalable
replication scheme for cloud storage', Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC '10), New York, NY, USA, pp.205-216. doi:10.1145/1807128.1807162

Boru, D., Kliazovich, D., Granelli, F., Bouvry, P. & Zomaya, A.Y. (2015) Energy-efficient data
replication in cloud computing datacenters. Cluster Computing, 18(1), pp.385–402.
doi:10.1007/s10586-014-0404-x.

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F. & Buyya, R. (2011) CloudSim: A toolkit
for modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1), pp.23–50. doi:10.1002/spe.995.

Chang, C.-W., Liu, P. and Wu, J.-J. (2012) 'Probability-based cloud storage providers selection
algorithms with maximum availability', 2012 41st International Conference on Parallel Processing
(ICPP), Pittsburgh, PA, USA, pp.199-208. doi:10.1109/ICPP.2012.51

Chettaoui, H. and Charrada, F.B. (2012) 'A Decentralized Periodic Replication Strategy Based on
Knapsack Problem', *2012 ACM/IEEE 13th International Conference on Grid Computing*, Beijing,
China, pp.3-11. doi:10.1109/Grid.2012.23

Chen, H.C.H., Lee, P.P.C., Li, Y. & Lui, J.C.S. (2014) NCCloud: A network-coding-based storage
system in a cloud-of-clouds. IEEE Transactions on Computers, 63(1), pp.31–44.
doi:10.1109/TC.2013.167.

Dugyani, R. and Govardhan, A. (2024) 'Survey on data replication in cloud systems', Web Intelligence,
22(1), pp.83-109. doi:10.3233/WEB-230087

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

261

Edwin, E.B., Umamaheswari, P. and Thanka, M.R. (2019) 'An efficient and improved multi-objective
optimized replication management with dynamic and cost aware strategies in cloud computing data
center', Cluster Computing, 22(Suppl 5), pp.11119-11128. doi:10.1007/s10586-017-1313-6

Fahem Arar, Riad Mokadem, Djamel Eddine Zegour. Towards using Reinforcement Learning for
Scaling and Data Replication in Cloud Systems. Doctoral Conference on computer Science
ADCCS’2024, Ecole Supérieure d'Informatique ESI, May 2024, Algiers, Algeria. ⟨hal-04723684v2⟩

Foster, I., Zhao, Y., Raicu, I. and Lu, S. (2008) ‘Cloud computing and grid computing 360-degree
compared’, 2008 Grid Computing Environments Workshop, Austin, TX, USA, pp. 1–10. doi:
10.1109/GCE.2008.4738445.

Grozev, N. and Buyya, R. (2015) 'Performance Modelling and Simulation of Three-Tier Applications
in Cloud and Multi-Cloud Environments', The Computer Journal, 58(1), pp.1-22.
doi:10.1093/comjnl/bxt107

John, S.N. and Mirnalinee, T.T. (2020) 'A novel dynamic data replication strategy to improve access
efficiency of cloud storage', Information Systems and E-Business Management, 18(3), pp.405-426.
doi:10.1007/s10257-019-00422-x

Karvela, P., Kopanaki, E. & Georgopoulos, N. (2021) ‘Challenges and Opportunities of Cloud Adoption
in Supply Chain Management: A SWOT Analysis Model’, Journal of System and Management Sciences,
11(3), pp. 215-234.

Khelifa, A., Mokadem, R., Hamrouni, T. and Ben Charrada, F. (2022) ‘Data correlation and fuzzy
inference system-based data replication in federated cloud systems’, Simulation Modelling Practice and
Theory, 115, 102428. doi: 10.1016/j.simpat.2021.102428.

Li, R., Hu, Y. and Lee, P.P.C. (2017) 'Enabling Efficient and Reliable Transition from Replication to
Erasure Coding for Clustered File Systems', IEEE Transactions on Parallel and Distributed Systems,
28(9), pp.2500-2513. doi:10.1109/TPDS.2017.2678505

Limam, S., Mokadem, R. and Belalem, G. (2019) 'Data replication strategy with satisfaction of
availability, performance and tenant budget requirements', Cluster Computing, 22(4), pp.1199-1210.
doi:10.1007/s10586-018-02899-6

Liu, G. and Shen, H. (2017) 'Minimum-Cost Cloud Storage Service Across Multiple Cloud
Providers', IEEE/ACM Transactions on Networking, 25(4), pp.2498-2513.
doi:10.1109/TNET.2017.2693222

Liu, J., Shen, H. and Narman, H.S. (2019) 'Popularity-Aware Multi-Failure Resilient and Cost-Effective
Replication for High Data Durability in Cloud Storage', IEEE Transactions on Parallel and Distributed
Systems, 30(10), pp.2355-2369. doi:10.1109/TPDS.2018.2873384

Mansouri, N. and Javidi, M. (2018) 'An Efficient Data Replication Strategy in Large-Scale Data Grid
Environments Based on Availability and Popularity', AUT Journal of Modeling and Simulation, 50(1),
pp.39-50. doi:10.22060/miscj.2017.12236.5020

Mansouri, Y. and Buyya, R. (2019) 'Dynamic replication and migration of data objects with hot-spot
and cold-spot statuses across storage data centers', Journal of Parallel and Distributed Computing, 126,
pp.121-133. doi:10.1016/j.jpdc.2018.12.003

Milani, B.A. and Navimipour, N.J. (2016) 'A comprehensive review of the data replication techniques
in the cloud environments: Major trends and future directions', Journal of Network and Computer
Applications, 64, pp.229-238. doi:10.1016/j.jnca.2016.02.005

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

262

Miloudi, I.E., Yagoubi, B. and Bellounar, Z. (2020) 'Dynamic Replication Based on a Data
Classification Model in Cloud Computing', in Modelling and Implementation of Complex Systems.
Lecture Notes in Networks and Systems, vol. 124, pp.3-17. doi:10.1007/978-3-030-58861-8_1

Mokadem, R. and Hameurlain, A. (2020) 'A data replication strategy with tenant performance and
provider economic profit guarantees in Cloud data centers', Journal of Systems and Software, 159,
110447. doi:10.1016/j.jss.2019.110447

Mokadem, R., Martinez-Gil, J., Hameurlain, A. and Kueng, J. (2022) ‘A review on data replication
strategies in cloud systems’, International Journal of Grid and Utility Computing, 13(4), pp. 347–362.
doi: 10.1504/IJGUC.2022.125135.

Sakr, S. and Liu, A. (2012) 'SLA-Based and Consumer-centric Dynamic Provisioning for Cloud
Databases', 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA,
pp.360-367. doi:10.1109/CLOUD.2012.11

Sakr, S., Zhao, L., Wada, H. and Liu, A. (2011) ‘CloudDB AutoAdmin: Towards a truly elastic cloud-
based data store’, 2011 IEEE International Conference on Web Services, Washington, DC, USA, pp.
732–733. doi: 10.1109/ICWS.2011.19.

Séguéla, M., Mokadem, R. and Pierson, J.-M. (2021) ‘Energy and expenditure aware data replication
strategy’, 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), Chicago, IL, USA,
pp. 421–426. doi: 10.1109/CLOUD53861.2021.00056.

Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A., Masdari, M. and Shakarami, H. (2021) ‘Data
replication schemes in cloud computing: a survey’, Cluster Computing, 24(3), pp. 2545–2579. doi:
10.1007/s10586-021-03283-7.

Sharma, U., Shenoy, P., Sahu, S. and Shaikh, A. (2011) ‘Kingfisher: Cost-aware elasticity in the cloud’,
2011 Proceedings IEEE INFOCOM, Shanghai, China, pp. 206–210. doi:
10.1109/INFCOM.2011.5935016.

Sousa, F.R.C. and Machado, J.C. (2012) 'Towards Elastic Multi-Tenant Database Replication with
Quality of Service', 2012 IEEE Fifth International Conference on Utility and Cloud Computing,
Chicago, IL, USA, pp.168-175. doi:10.1109/UCC.2012.36

Stantchev, V. and Schröpfer, C. (2009) 'Negotiating and enforcing QoS and SLAs in grid and cloud
computing', in Advances in Grid and Pervasive Computing. Lecture Notes in Computer Science, vol.
5529, pp.25-35. doi:10.1007/978-3-642-01671-4_3

Tos, U., Mokadem, R., Hameurlain, A., Ayav, T. & Bora, S. (2016) A performance and profit oriented
data replication strategy for cloud systems. In: 2016 IEEE Intl Conferences on Ubiquitous Intelligence
& Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). IEEE, pp.780–787.doi:10.1109/UIC-ATC-ScalCom-
CBDCom-IoP-SmartWorld.2016.0125

Tos, U., Mokadem, R., Hameurlain, A., Ayav, T. and Bora, S. (2018) ‘Ensuring performance and
provider profit through data replication in cloud systems’, Cluster Computing, 21, pp. 1479–
1492.doi:10.1007/s10586-017-1507-y

Wang, X., & Shannigrahi, S. (2025). PSMOA: Policy Support Multi-Objective Optimization Algorithm
for Decentralized Data Replication. arXiv preprint arXiv:2505.14574.

Wei, Q., Wang, J., Liu, X., Chen, J. and Zhang, Y. (2010) ‘CDRM: A cost-effective dynamic replication
management scheme for cloud storage cluster’, 2010 IEEE International Conference on Cluster
Computing, Heraklion, Greece, pp. 188–196. doi: 10.1109/CLUSTER.2010.24

Bernardin et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 246-263

263

Wu, Z., Zhang, Y., Zhou, H., Chen, Y. and Zhao, B. (2013) ‘SPANStore: Cost-effective geo-replicated
storage spanning multiple cloud services’, Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pp. 292–308. doi: 10.1145/2517349.2522730

Zhao, L., Sakr, S. and Liu, A. (2015) 'A framework for consumer-centric SLA management of cloud-
hosted databases', IEEE Transactions on Services Computing, 8(4), pp.534-549.
doi:10.1109/TSC.2013.5

