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Abstract. Multi-cloud computing systems face significant challenges in ensuring acceptable 

performance while adhering to tenant budget requirements. This paper proposes a tenant 

budget-aware (tenant-centric) data replication framework for Multi-Cloud Computing 

(TCDRM). The proposed strategy dynamically creates data replicas based on predefined 

thresholds for response time, economic budget of the tenant and data popularity. TCDRM 

employs a heuristic replica placement algorithm that leverages the diverse pricing structures 

of multiple cloud providers. The TCDRM strategy aims to maintain the required performance 

without exceeding the tenant’s budget by taking advantage of the capabilities offered by multi-

cloud environments. The middleware considered acts as an intermediary between tenants and 

multiple cloud providers, facilitating intelligent replica placement decisions. To achieve this, 

the proposed TCDRM strategy defines strict thresholds for tenant budget and response time. 

A performance evaluation is conducted to validate the effectiveness of the strategy. The 

results show that our approach effectively meets tenant performance objectives while 

respecting their economic constraints. Bandwidth consumption is reduced by up to 78% 

compared to non-replicated approaches, and average response time for complex queries is 

decreased by 51%, all while adhering to tenant budget limitations.  

Keywords: Multi-Cloud computing, Data replication, SLA contract, Tenant Budget. 
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1. Introduction  

Multi-cloud environments have emerged as a preferred paradigm for deploying data-intensive 

applications due to their ability to combine resources from multiple cloud providers. Beyond the 

benefits offered by single-cloud solutions (Karvela et al., 2021), multi-cloud provides even greater 

flexibility, fault tolerance, and cost-optimization opportunities by allowing tenants to select providers 

based on pricing (Armbrust et al., 2010), performance and geographic availability (Stantchev and 

Schropfer, 2009). However, they also introduce significant challenges, particularly in the context of 

data replication, where economic and performance factors must be balanced across heterogeneous 

infrastructures. 

One of the most pressing challenges in multi-cloud data management is enabling effective data 

replication that considers not only technical performance (e.g., latency, availability), but also the 

budgetary constraints of individual tenants. In traditional replication strategies, the focus is often placed 

on maximizing provider profit or system-wide efficiency, with limited consideration of tenant-specific 

cost sensitivity (Mokadem and Hameurlain, 2020). This leads to inefficiencies, especially in multi-

tenant scenarios where each user may operate under different budget and SLA expectations. 

While several replication strategies have been proposed for cloud environments (Milani and 

Navimipour, 2016; Shakarami et al., 2021; Mokadem et al.,2022; Dugyani and Govardhan, 2024), most 

of them either assume provider-oriented or are tailored for single-cloud contexts. A few studies have 

considered tenant-oriented approaches (Limam et al., 2019), but these are rarely extended to support 

multi-cloud systems or cost-aware decision-making that reflects the pricing diversity of different 

providers. This results in a significant gap in the literature: how to design a data replication strategy that 

adapts to tenant budgets in a multi-cloud environment. 

In this paper, we address this gap by proposing TCDRM (A tenant budget-aware (tenant-centric) data 

replication Framework for Multi-Cloud Computing), a strategy that prioritizes the tenant’s budget while 

ensuring acceptable query performance. TCDRM dynamically analyzes execution cost and 

performance metrics after each query execution and evaluates whether the creation of new replicas is 

necessary based on predefined SLA thresholds and tenant-defined cost ceilings. When these thresholds 

are violated, TCDRM triggers a decision-making process to analyze query dependencies and identify 

candidate data for replication. A cost-aware replica placement heuristic is then applied to select the 

most suitable cloud provider, taking into account both performance and cost, while ensuring tenant 

constraints are not exceeded. It takes advantage of provider pricing diversity by selecting the most cost-

effective provider for each query execution, thereby reducing overall costs while preserving 

performance. 

The main contributions of this paper are as follows: 

• We identify and formalize the challenge of tenant-centric data replication in multi-cloud 

environments. 

•  We propose a tenant budget-aware replication strategy (TCDRM) that integrates tenant budget, 

popularity and response time thresholds. 

• We develop a heuristic for replica placement that narrows the search space and supports cost-

efficient decision-making. 

• We extend CloudSim (Calheiros et al., 2011) to simulate a multi-cloud environment with 

integrated replication, cost modeling, and query routing. 

• We validate the effectiveness of our strategy through simulations that demonstrate its ability to 

maintain performance while respecting tenant budgets. 

The remainder of this paper is structured as follows: Section 2 reviews related work on data 

replication strategies in cloud and multi-cloud systems. Section 3 details the proposed strategy. Section 

4 describes the simulation setup, outlines the modifications made to CloudSim, and presents the 

experimental results. Finally, Section 5 concludes the paper and outlines directions for future work. 
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2. Related Work 

One of the objectives of the data replication strategy is to satisfy specific tenant objectives, such as 

improving performance (Arar et al.,2024), guaranteeing data availability (Wei et al., 2010), load 

balancing (Edwin et al. , 2019), and reducing response time (Tos et al., 2018; Khelifa et al., 2021), 

reliability (Li et al., 2017), security (Ali et al., 2018), and energy efficiency (Alghamdi et al ., 2017, 

Séguéla et al., 2021), or taking into account multi-objective criteria for tenants (Miloudi et al., 2020; 

Boru et al., 2015, Wang & Shannigrahi, 2025; Edwin et al., 2019; Mansouri and Javidi, 2018; Mokadem 

and Hameurlain, 2020). 

Concurrently, economic aspects, particularly profit maximization, are integrated into these 

strategies. In this context, Mokadem et al. (2022) propose a twofold classification based on economic 

orientation: provider-oriented strategies and tenant-oriented strategies. Providers-oriented replication 

strategies prioritize cost reduction for providers while adhering to the stipulated SLO. This approach 

has been illustrated in several studies, including Wei et al. (2010) and Bonvin et al. (2010), Sousa and 

Machado (2012), Tos et al. (2016), Liu et al. (2019), Tos et al. (2018) and Khelifa et al. (2022). These 

studies highlight the mechanisms for optimizing resources for the benefit of the provider, while 

maintaining an adequate level of service for users. 

Conversely, tenant-oriented strategies prioritize the reduction of monetary costs incurred by tenants 

over providers; notable works in this area include those by Sakr et al. (2011) and Sharma et al. (2011), 

Sakr and Liu (2012), Zhao et al. (2015), Limam et al. (2019), and John and Mirnalinee (2020). These 

strategies aim to minimize tenant expenditure while ensuring adequate performance. 

Sakr and Liu (2012) present an approach by controlling the tenant’s monetary outlay on cloud 

database management based on SLAs. They proposed a framework that acts as a middleware between 

applications and cloud databases. This framework enables the dynamic, adaptive provisioning of 

resources according to application-defined policies to guarantee performance while minimizing 

monetary costs. To adapt to variations in workload, replicas are added during periods of high demand 

and removed when the load decreases, ensuring the continuous optimization of expenditure. 

Limam et al. (2019) proposed a Dynamic Replication strategy, DRAPP (dynamic replication 

strategy for Availability, Performance, and Profit), which aims to meet the availability and performance 

requirements of cloud systems for databases while considering tenant budget and vendor profit. This 

approach triggers the creation of replicas when there is an SLA violation, particularly in the response 

time, and the cost of replication does not exceed the initial threshold budget. 

Zhao et al (2015) propose a framework-based approach for optimized cost management via 

dynamic, intelligent resource provisioning based on application SLA requirements. This framework 

adjusts resources in real time and optimizes the use of database replicas to minimize costs while 

guaranteeing optimal performance. It relies on virtualization-based replication mechanisms, facilitating 

more efficient allocation of cloud resources. Database replicas are deployed on virtual machines (VMs) 

located in different geographical zones, enabling us to: (i) reduce costs by exploiting cost-effective 

cloud instances depending on the region and (ii) avoid over-provisioning costs by dynamically adjusting 

the number of replicas according to demand. 

In this context, TCDRM is viewed as a tenant-oriented strategy. This approach triggers data 

replication only when the budget allocated by the tenant to a given query is exceeded. In this way, 

tenants' financial resources are preserved and access to data is guaranteed in line with their needs. 

However, most replication strategies mentioned were designed for single-cloud environments. 

These approaches generally fail to consider the diversity of pricing options and configurations available 

in a multi-cloud environment, thereby limiting their ability to fully exploit the economic and technical 

advantages offered by a distributed infrastructure. 

A limited number of studies have looked at how tenants' budgets are considered in a multi-cloud 

context. These include the contributions of Chang et al. (2012) and Abu-Libdeh et al. (2010) and 

Bessani et al. (2011, 2013), Chen et al. (2014) and Wu et al. (2013), Abouzamazem and Ezhilchelvan 
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(2013), Grozev and Buyya (2015), Liu and Shen (2017), Mansouri and Buyya (2019). These studies 

explore mechanisms for taking advantage of pricing differences and technical specificities between 

multiple cloud providers while respecting tenants' budget constraints. 

TCDRM is viewed as a tenant-oriented strategy. This approach triggers data replication only when 

the budget allocated by the tenant to a given query is exceeded. In this way, tenants' financial resources 

are preserved and access to data is guaranteed in line with their needs. 

Chang et al (2012) propose a dynamic programming algorithm to optimize data replication across 

multi-cloud, in order to improve cloud storage availability. Their approach is based on the selection of 

providers according to two main criteria: the cost and probability of failure. Using optimization 

algorithms, they maximized data durability within a predefined budget. Assuming that supplier failures 

are independent, this method guarantees users continued access to their data, even in the event of 

supplier failure, while optimizing the management of replication costs. By diversifying suppliers and 

prioritizing those offering the best cost-availability ratio, users can minimize their expenses while 

ensuring the security and accessibility of their data. 

Liu and Shen (2017) propose DAR (Data Storage and Request Allocation and Resource Reservation) 

to optimize cloud storage, a system that enables tenants to minimize their costs while respecting SLOs 

in a multi-cloud environment. DAR is based on two heuristic solutions. First, the dominant cost 

allocation algorithm identifies the dominant cost (storage, Get, or Put) for each data element and 

allocates it to the data center offering the lowest unit price for this dominant cost. The aim is to reduce 

costs within a “pay-as-you-go” framework. On the other hand, the optimal resource reservation 

algorithm maximizes the savings achieved through advance reservations compared to pay-as-you-go. 

This avoids both overestimation (overbooking) and underestimation (underbooking). 

Wang et al, (2020) propose an adaptive data placement architecture, called ADP (Adaptive Data 

Placement Architecture) designed for mutli-cloudenvironments. This approach aims to minimize the 

total costs and maximize data availability by dynamically adjusting the data placement scheme 

according to the frequency of data access, which varies over time. ADPA combines an access frequency 

prediction module based on LSTM to anticipate future needs, and a placement optimization module 

based on reinforcement learning (Q-learning) to determine the best storage strategy. 

Aldailamy et al. (2024) propose two online algorithms: DTS (Deterministic Time Slot) and RTS 

(Randomized Time Slot) to dynamically optimize data replication and object placement in a multi-cloud 

environment, specifically targeting Online Social Networks (OSNs). These algorithms rely on real-time 

analysis of object popularity based on regional access and engagement rates (likes, comments, shares). 

Their goal is to guarantee access latency below a 250 ms threshold while minimizing inter-cloud 

bandwidth, storage, and replication costs. Although effective, these algorithms do not consider the 

variability of pricing policies across cloud providers, which may limit the economic benefits for tenants 

in a multi-cloud context. 

These multi-cloud approaches thus offer increased flexibility and cost optimization while meeting 

data performance and availability requirements. However, most existing strategies have not been 

designed specifically for database management. To the best of our knowledge, no work has yet proposed 

tenant-oriented data replication strategies for databases in a multi-cloud environment. 

3. The Proposed TCDRM Strategy  

The proposed TCDRM strategy aims to ensure SLA satisfaction by meeting the response-time 

objectives while maintaining the tenant's budget. To achieve this, our strategy addressed four key 

questions related to data replication, each associated with a specific decision-making module within the 

system: (i) When and what to replicate? This module determines the optimal timing for replication and 

identifies the data to be replicated based on its popularity and cost. (ii) Where to replicate? handled by 

the placement algorithm, which selects providers based on trade-offs between cost and response time, 
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and (iii) replica deletion managed by the deletion algorithm, which continuously monitors replica 

popularity to avoid unnecessary storage costs for tenants. These interconnected components form a 

coherent and adaptive system capable of balancing performance with cost efficiency. In addition, we 

introduce an economic model that estimates the query execution costs (CPU, I/O, and bandwidth), 

enabling the dynamic calculation of a budget threshold for replication. This cost-aware model guides 

replication decisions to meet financial constraints, while ensuring system responsiveness. 

3.1. Architecture overview 

We consider that data sources are distributed across multiple clouds connected to the Internet, which is 

a network characterized by low bandwidth and high latency. The architecture we adopt is based on 

middleware (Fig. 1), which serves as an interface between the user and several cloud service providers. 

When a query is issued, the middleware collects information from the various clouds and selects the 

best option for the tenant. Furthermore, each provider adopted its own pricing policy. For tenants, 

communication costs are often higher than storage costs. Additionally, the communication charges 

between different regions are higher than those within the same region, which in turn are higher than 

the costs of communication within the same data center. 

In a multi-cloud system, each cloud provider (CP) has multiple data centers (DC) distributed across 

various geographic regions (RG).  

Let CP = {CP1, …, CPj, …,CPr} be a set of r providers connected via the internet to the user 

through middleware.  

Let RGp = {RGp1, …, RGpi, …, RGpq} be a set of q regions, of provider p, geographical regions 

connected via the internet without direct links between them. Each region includes heterogeneous data 

centers.  

Denote DC = {DCpi1, …, DCpij, …, DCpin} to designate a set of n DCs in a region RGpi of a 

provider p. The bandwidth between these DCs is more abundant and cheaper compared to the first level. 

In these data centers, virtual machines are offered to tenants to provide storage, computing, and 

bandwidth services. 

 

3.2. Which data to replicate and when? 

In the proposed strategy, the creation of a new replica depends on three main criteria: the actual query 

response time, economic cost associated with query execution, and popularity of the accessed data. 

A new replica creation is considered only if (i) the query response time (tQ) exceeds a predefined 

SLA threshold (TSLA), or (ii) the monetary cost of the query (cQ) (Algorithm 1, line 4), which we present 

later, exceeds the threshold budget (CSLA). Additionally, the creation of replicas is conditioned by the 

popularity of the accessed data, which must exceed a fixed popularity threshold (PSLA). 

We used the data popularity metric proposed by Chettaoui and Ben Charrada (2012) to estimate the 

average request rate of a dataset over its actual usage period, starting from the time of its first access. It 

is defined as: 

Fig.1: Considered architecture 
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pdi =   (#𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠)/(𝑇_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −  𝑇_(𝑓𝑖𝑟𝑠𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ) +  1) (Equation 1) 

 Where: 

• #Requests is the total number of requests received from the dataset. 

• T_current is the current timestamp (i.e., the time at which popularity is evaluated). 

• T_first_request is the timestamp for the first recorded access to the dataset. 

This approach avoids the bias introduced by inactive periods before the first use of the dataset and 

provides a more realistic representation of its popularity during its active lifetime. 

When a query Q is submitted, it is executed immediately according to the execution plan provided by 

the DBMS. Let us assume that this Query Execution Plan is provided for each tenant query at the end 

of execution. The query's response time and monetary cost, calculated based on the resources used, 

were then compared with the thresholds specified in the SLA. We relied on the strategy of Tos et al. 

(2016) to estimate the response time (Algorithm 1, line 2). If any of these thresholds are exceeded, a 

detailed analysis of the query is performed by examining all data necessary for its execution. If the 

popularity of the data (PSLA) exceeds a predefined threshold in the SLA (Algorithm 1, Line 7), the 

creation of replicas is considered. 
  

Algorithm 1: Replica Creation.  
 

INPUTS:  

     Q:     Query to be executed,  

     TSLA: Response Time Threshold,  

     CSLA: Monetary Cost Threshold,  

     D:     Set of data items,  

     PSLA: Data Popularity Threshold 

VARIABLE:  

     tQ: Response Time of query Q,  

     cQ: Monetary Cost of query Q,  

     pdi: Popularity of data item di 

OUTPUT: 

  RD:  List of data items to replicate (initialilly empty) 

BEGIN 

1. Execute Q 

2. tQ ← responseTime(Q)  // Calculate response time of Q 

3. cQ ← monetaryCost(Q)  // Calculate monetary cost of Q 

4. IF (tq > TSLA OR cq > CSLA) THEN 

5.    FOR each data di in D DO 

6.       pdi ← dataPopularity(di)  // Compute  popularity of data item 

7.       IF (pdi > PSLA) THEN 

8.             Add di to RD  //Mark for replication 

9.       END IF 

10.    END FOR 

11. END IF 

END 

3.3.  Where to replicate? 

TCDRM is a heuristic-based algorithm for replica placement designed to reduce the search space and 

minimize the time required to identify suitable providers for hosting new replicas. The search is 

constrained to providers offering hosting rates below the tenant’s predefined budget threshold (CSLA) 

while also ensuring that the expected response time remains within the SLA-defined limit (TSLA). 
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Upon the execution of query Q and identification of the relevant data (RD) for replication, the 

placement algorithm (Algorithm 2, lines 1–2) evaluates candidate providers using simulation. For each 

provider, we simulated query execution over the RD dataset to estimate two key metrics: (i) the 

monetary cost of query execution encompassing CPU, storage, and bandwidth usage, and (ii) the 

estimated response time based on the current load and resource availability. These simulations are 

crucial for assessing the provider suitability. 

To reduce the search space, the algorithm first filters out providers whose estimated costs exceed 

the CSLA (Algorithm 2, line 5). From the remaining candidates, it selects the first provider that meets 

the TSLA response time threshold (Algorithm 2, line 7). This two-step filtering process effectively 

narrows the search space to providers that meet both economic and performance requirements, thereby 

improving the overall efficiency of the replica placement strategy. 

  

Algorithm 1: Replica placement heuristic. 
 

INPUTS: 

  RD:   A list of data items identified for replication, 

  P:      A list of available cloud providers, 

  Q:     A query that triggered the replication decision, 

  TSLA: The response time threshold defined in the SLA,  

  CSLA: The maximum monetary cost allowed for query execution, based on the tenant's budget 

 

OUTPUT: 

The final replica placement decision, i.e., the selected provider(s) for each data item. 

 

BEGIN 

1. FOR each data_to_replicate rk in RD DO 

2.     pi ← firstProvider(P) 

3.     WHILE pi AND (eMci > CSLA OR eRespTi > TSLA) DO 

4.            eMci ← estimatedMonetaryCost(Q, rk, pi) 

5.            IF (eMci < CSLA) THEN 

6.                 eRespTi ← estimatedResponseTime(Q, rk, pi)  

7.                 IF (eRespTi< TSLA) THEN 

8.                      PLACE(rk, pi) 

9.                 END IF 

10.            END IF 

11.            pi ← nextProvider(P) 

12.     END WHILE 

13. END FOR 

END 

3.4. Replica Deletion 

To avoid unnecessary storage costs for tenants and maintain an economically sustainable replication 

strategy, the TCDRM framework integrates a replica deletion module. We regularly monitor the 

popularity of the data on servers hosting replicas. If a replica becomes less popular, meaning its usage 

falls below the PSLA threshold for a certain time interval deltaT, it is deleted. deltaT represents a 

configurable observation window expressed in evaluation periods (e.g., hours or scheduling intervals). 

A replica is deleted only if its popularity remains consistently below the threshold for the entire duration 

of the deltaT. This approach avoids frequent creation and deletion of replicas, thereby limiting 

unnecessary costs. 

The minimum number of replicas required to ensure availability is not addressed in this proposal, 

because our strategy is tenant-oriented. 
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Algorithm 3: Deletion of low-popularity replicas. 
 

INPUTS: 

   PR:    A predefined observation period during which access patterns are evaluated, 

   DR:   The set of currently replicated data items, 

   PSLA: The popularity threshold defined in the SLA 

 

OUTPUT: 

   Deletion of low-popularity replicas 

 

BEGIN 

1. FOR each Period p in PR 

2.        FOR EACH ReplicatedData rd in DR 

3.              popularity ←  calculatePopularity(rd) 

4.              IF popularity < PSLA during deltaT  THEN 

5.                 deleteReplica(rd)  //Replica is deleted only if it is less popular than the threshold 

6.              ENDIF 

7.         END FOR 

8. END FOR  

END 

 

3.5. Economic Model 

In a multi-cloud environment, the economic model plays a central role in the design of data management 

strategies. Unlike traditional pre-cloud approaches, where resources were statically provisioned, cloud 

providers charge for access to services (storage, bandwidth, compute) based on a pay-as-you-go model 

(Foster et al., 2008). Some replication strategies in multi-cloud environments incorporate economic 

aspects (Liu and Shen,2017; Aldailamy et al., 2024) by aiming to reduce monetary costs. However, they 

do not explicitly consider the tenant's budget constraint as a central parameter in their decision-making 

mechanisms. The proposed TCDRM in this paper fully embraces this economic logic by placing tenant 

budget constraints at the core of its decision-making mechanisms. The proposed replication strategy 

thus aims to ensure the required performance levels while controlling the costs borne by the tenant, 

leveraging the pricing diversity across multi-cloud providers. The economic model therefore becomes 

a structuring parameter both a constraint and an opportunity in optimizing placement decisions. 

Thus, for each query submitted by the tenant, the total cost (CQ)  is calculated using the 

following formula: 

CQ  = CCPU  +CIO  +Cbandwidth  (Equation 2) 

Each component reflects a critical aspect of cloud resource usage. 

• CCPU: Cost associated with the CPU time used during query execution. The CPU cost is 

commonly measured in vCPU-seconds, with typical pricing ranging from $0.000011 to 

$0.000060 per vCPU-second, depending on the provider and region. 

• CIO: Represents the cost of storage I/O operations, including reading from and writing to 

disks and the cost of creating new replicas. Providers such as AWS and Azure charge per 

1,000 operations or per GB transferred to or from storage. 

• Cbandwidth: Refers to the cost of transferring data across regions or clouds. This is a 

significant factor in mutli-cloud environments. For example, the outbound data transfer 

may range from $0.01 to $0.12 per GB. 

These cost parameters were not arbitrarily chosen. These are based on publicly available pricing 

from major cloud providers (e.g., AWS, Azure, and Google Cloud), which are periodically updated. 

Our model uses configurable parameters that can be adapted to reflect the current pricing and tenant 

preferences. 
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To enforce tenant cost control, we introduce a Monetary Cost Threshold (CSLA) that defines the 

maximum acceptable cost for executing a query. When a tenant submits query Q, TCDRM selects the 

provider whose estimated cost is within the CSLA limit. If multiple providers qualify, the provider 

offering the lowest level is chosen. This decision mechanism abstracts the provider operations as a 

"black box" and focuses entirely on optimizing tenant-side cost efficiency. 

4. Experimental Analysis 

In this section, we evaluate the proposed TCDRM strategy. First, we present the simulation tool and the 

various experiments conducted, including the generation of queries. Then, we compare the performance 

of TCDRM against NoRepLc (No-Replication-Less cost), a baseline strategy without replication that 

integrates a basic cost-aware mechanism by selecting the cheapest provider for each query in a multi-

cloud environment. Finally, we conclude with an analysis of the results. 

The fundamental assumptions of our simulation were as follows: 

• The TCDRM strategy is tenant-centric. Cloud service providers are treated as black boxes. In 

other words, we do not consider intra-DC or inter-DC communication within a single provider. 

Instead, we focus on the interactions between different regions (interRegion) to ensure the 

validity of the experiment. 

•  For each query, we consider the submission region, relationships necessary for processing, and 

selection of virtual machines (VMs) responsible for execution. 

• During the execution of each query, we always selected the least expensive virtual machine, 

including in the experiments conducted with NoRepLc. 

4.1. Simulation Environment 

To evaluate the proposed TCDRM strategy, we used CloudSim (Calheiros et al., 2011), a widely 

adopted simulator in cloud computing research. However, since CloudSim was originally designed for 

single-cloud scenarios, it lacked support for data replication, distributed database query processing, and 

cost-aware multi-cloud environments. Therefore, we implemented several significant extensions to 

meet these specific requirements. 

First, CloudSim was extended to simulate a realistic multi-cloud ecosystem comprising multiple 

providers such as AWS, Google Cloud, and Microsoft Azure. Each provider is modeled with its own 

data centers, virtual machine types, pricing schemes, and performance parameters. The data centers are 

geographically distributed across Europe, the United States, and Asia. Each provider can be configured 

independently, enabling the simulation of heterogeneous environments in terms of resource availability, 

cost structures, and service quality. 

Second, the default cloudlet model was enhanced to support interdependent task execution, which 

is essential for accurately simulating complex database queries composed of multiple related operations 

distributed across providers. 

Third, a hierarchical network latency model was introduced, covering various levels of 

communication: intra-VM, intra-datacenter, inter-datacenter (within the same provider), and inter-cloud 

(between different providers). Bandwidth between nodes is also configurable, affecting both execution 

time and data transfer costs. 

Fourth, an economic model was integrated to capture resource usage costs, including CPU, I/O, and 

bandwidth (as detailed in Section 4.4), as well as intra- and inter-provider data transfer expenses. This 

module relies on realistic pricing models inspired by major cloud providers (cf Tab. 1), enabling cost-

sensitive simulations and supporting budget-aware replication strategies. 

Finally, a series of simulations was conducted using 1,000 queries, each involving three to six 

relationships distributed across multiple providers. Additionally, 20 relationships were placed in each 

region per provider to represent a realistic multi-cloud data distribution scenario. 
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4.2. Definition of queries 

We considered queries of varying complexity, based on the number of joins and placement of relations: 

simple queries and complex queries. 

Simple queries perform joins by associating one relationship with each of the three regions. 

However, complex queries execute joins between relationships located across all three regions, with 

at least two relationships per region. 

The region of origin for the queries was selected randomly at the time of submission. 

Table 1: Configuration parameters. 

 

We distributed the relationships across various providers and executed the same query 1,000 times 

analyze the impact of our method. 

4.3. Simulation Results 

To validate the proposed strategy, several metrics were measured during the simulation. We focused on 

the following aspects: 

(i) The replication factor, 

(ii) The impact on response time, and 

(iii) Impact on costs. 

4.3.1. Replica Factor 

The goal of TCDRM is to create new replicas, when necessary, to reduce client costs. Although the 

creation of these replicas incurs additional costs, they should be viewed as long-term investment. Fig. 

2 shows the variation in the number of replicas as a function of the number of queries. During different 

experiments, we set the data popularity threshold (PSLA) to 200, representing the frequency of access 

to the relationship. As such, the number of replicas gradually increases from the threshold onward, as 

replica creation is conditioned by data popularity and other predefined thresholds in the SLA, such as 

the response time and the maximum allowable query cost. 

Fig. 2: Replica Factor: Number of replicas created as a function of the number of executed queries. 
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Fig. 2 shows the number of replicas generated as a function of the number of queries. We observe 

an increase in the number of replicas as a function of the query complexity. The maximum number of 

replicas differs for each type of query because the number of joins and the placement of each 

relationship vary depending on the query type. TCDRM generates replicas in a manner tailored to needs 

by analyzing each query.  

 
Fig. 3: Impact on Response Time: Average response time as a function of the number of queries, comparing 

simple and complex query workloads. 

Fig. 3 shows the average response time as a function of the number of queries for both simple and 

complex queries. For both query types, we observed that the trends of the curves representing TCDRM 

and NoRepLc were similar up to a certain number of queries. However, the curve representing TCDRM 

did not follow a linear progression. A decrease was observed up to a certain point, followed by 

stabilization. Starting from the PSLA, we observe a decline in the curve for both query types as TCDRM 

begins to replicate, and the number of inter-provider exchanges gradually decreases until the maximum 

number of replicas is reached. 

With NoRepLc, each request requires data transfer between providers (inter-provider data transfer), 

which increases response times. Because the same query is repeated multiple times, an almost linear 

curve is created, as shown in Fig. 2. However, we still observed fluctuations in the NoRepLc curve for 

complex queries. This is because the origin of the query was random for each query. In addition to inter-

provider exchanges, these fluctuations represent exchanges between regions, as relationships may be 

located in different regions. 

In other words, the curves show a significant reduction in the response times for TCDRM. Although 

optimizing the response times is not the primary goal of our strategy, TCDRM significantly reduces the 

response time compared to NoRepLc. By utilizing the already created replicas, the bandwidth 

consumption is reduced, which in turn halves the response time. We expect these gains to become more 

significant as the number of providers increases. 

 

4.3.2. Effect on Bandwidth Consumption 
In this experiment, we evaluated the cost associated with the bandwidth consumption. Although each 

provider sets its own pricing structure, a common factor emerges: the high cost associated with data 

transfer between different providers (interProvider). Therefore, these transfers can have a significant 

impact on the final costs borne by tenants. 

Fig. 4 presents the bandwidth consumption between providers (interProvider) and between regions 

(interRegion) for both NoRepLc and TCDRM for both simple and complex queries. It is important to 

note that inter-region exchanges occur within the same provider. 
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Fig. 4: Bandwidth Consumption Comparison: Inter-rovider vs. interRegion bandwidth usage under TCDRM and 

NoRepLc. 

In Fig. 4, we observe a similarity in the behavior of the graphs, although their scales differ. In the case 

of NoRepLc, the bandwidth consumption between providers (inter-providers) is higher than internal 

consumption. This disparity is explained by the distribution of relationships across various providers, 

forcing the virtual machine to execute a query to retrieve these relationships. By contrast, TCDRM 

creates replicas of the relationships, favoring transfers primarily within the same provider once the 

replicas are created. As a result, replication eliminates inter-provider exchanges, and TCDRM 

effectively satisfies this requirement. 

Fig. 2 illustrates the cost of bandwidth consumption per query for both NoRepLc and the TCDRM. 

These results indicate that the bandwidth consumption cost of NoRepLc remains stable and high. 

However, the bandwidth consumption costs for TCDRM decrease over time. The number of replicas 

and their placements have a significant effect on bandwidth consumption. 

 

Fig. 3 : Bandwidth Cost per Query: Comparison of bandwidth consumption cost per query between NoRepLc 

and TCDRM for Simple and Complex Queries 

In the TCDRM curve, we observed an oscillation before this decline. This observation can be 

explained by the fact that replica creation occurs during these intervals, and their usage gradually 

increases, even when processing the same query. Additionally, as the curve reaches its lowest point, it 

does not follow a linear trajectory owing to the persistence of inter region exchanges. Indeed, the 

heuristic (cf., Section 4.2) seeks an optimal placement to reduce the search space, and the replicas of 

the relationships created may end up in regions different from the origin of the query. 

Fig. 6 shows the cumulative price of bandwidth usage obtained by experimenting with NoRepLc 

and TCDRM for simple and complex queries. 
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Fig. 6: Cumulative Bandwidth Cost: Cumulative cost as a function of the number of executed queries. 

It was observed that with NoRepLc, a stable trajectory was achieved, whereas with TCDRM, the 

trajectory gradually diverged over time. The constant curve of NoRepLc indicates continuous price 

stability without replication, whereas the increase is less significant for TCDRM. This highlights the 

clear advantage of TCDRM in terms of bandwidth costs for the tenant depending on the number of 

queries made. 

 

4.3.3. Effect on Total Price 
Fig. 7 illustrates the comparison of the total costs between NoRepLc and TCDRM for both simple and 

complex queries. This highlights the expenses associated with storage, bandwidth, and CPU. Overall, 

the bandwidth cost was significantly higher than those of the others. The CPU cost remained constant 

for all query types and strategies. The storage cost is nonexistent for NoRepLc and negligible for 

TCDRM.  
 

 

 

 
Fig. 7: Total Price: comparison of the total costs between NoRepLc and TCDRM 

Our strategy aims to adhere to the client’s initial budget by ensuring that the price paid by the tenant 

does not exceed a set threshold, while maintaining a reasonable response time. Fig. 7 shows that this 

objective was achieved by comparing the total cost obtained with the NoRepLc. Bandwidth cost plays 

a predominant role in the total cost. The high costs associated with data transfer have a significant 

impact on the total cost, while the cost of storing replicas remains negligible. 

 

4.4. Result Analysis 
The experimental results clearly support the original goal of TCDRM: to deliver a tenant-centric, 

budget-aware data replication framework tailored for complex multi-cloud environments. A key 

strength of TCDRM lies in its ability to strategically balance storage costs, data transfer overhead, and 

budgetary constraints, addressing cost dimensions that are often overlooked in conventional replication 

mechanisms. 
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In particular, the cost of creating new replicas includes both inter-provider data transfer and storage 

expenses. Based on average pricing from major cloud providers such as AWS, Azure, and GCP, 

standard storage is approximately $0.02/GB per month, while inter-cloud data transfer (egress) averages 

$0.10/GB. Thus, transfer costs can be five times higher than storage costs, emphasizing the importance 

of reducing unnecessary inter-cloud transfers an objective that TCDRM systematically pursues.  

The system was evaluated on a workload of 1,000 queries, a size chosen to strike a balance between 

realism and analytical clarity. While it does not simulate all real-world scales, this setup is sufficient to 

highlight key performance trends, illustrate cost amortization effects, and demonstrate consistent budget 

compliance across diverse access patterns. These experiments serve as a proof of concept, validating 

the soundness and benefits of TCDRM’s core principles. Future work will extend the evaluation to 

larger workloads to confirm long-term scalability and robustness. 

TCDRM further shows strong adaptability to different workload profiles. It performs especially 

well under repetitive or clustered access patterns, where the cost of replication is quickly amortized 

through repeated data reuse. Even in more irregular or unpredictable workloads, the framework 

continues to meet performance goals while remaining budget-compliant, underscoring its flexibility and 

practical value. 

 

5. Conclusion 

This paper introduces TCDRM, a novel tenant-centric data replication strategy specifically designed 

for multi-cloud environments. Unlike previous strategies that primarily optimize for provider profits or 

are limited to single-cloud scenarios, TCDRM prioritizes tenant budget constraints while maintaining 

acceptable performance levels. By dynamically analyzing query execution metrics against predefined 

SLA thresholds for response time, cost, and data popularity, our strategy creates strategically placed 

replicas that leverage the diverse pricing structures of multiple cloud providers.  

Our comprehensive evaluation through CloudSim simulations demonstrates that TCDRM 

significantly outperforms non-replicated approaches in both economic and performance dimensions. 

Specifically, TCDRM reduces bandwidth consumption costs by up to 78% for complex queries while 

simultaneously decreasing response times by an average of 51%. These improvements are achieved 

through intelligent replica placement that minimizes expensive inter- provider data transfers and 

leverages lower-cost intra-provider communication.  

The findings from this research have important implications for organizations deploying data-

intensive applications across multiple clouds. TCDRM provides a practical framework for balancing 

the cost-performance trade-off in these complex environments, particularly benefiting tenants with strict 

budget constraints. The threshold-based approach also offers flexibility in adapting to different 

workload characteristics and tenant requirements.  

A known limitation of the current approach is the reliance on static thresholds to guide replication 

decisions. In dynamic environments where query patterns, data popularity, and pricing may fluctuate—

fixed thresholds may lead to suboptimal decisions. To overcome this, we plan to incorporate machine 

learning techniques capable of dynamically adjusting these thresholds in real time, based on observed 

workload characteristics, data popularity trends, and evolving cost structures. 

Future work will focus on three key directions: (1) comparing TCDRM with other state-of-the-art 

replication strategies to further validate its advantages, (2) implementing and testing the approach in 

real multi-cloud environments to confirm the simulation results, and (3) extending the framework to 

address data consistency and security challenges that arise in multi-cloud replication scenarios. 

Additionally, we plan to investigate machine learning approaches for dynamically adjusting thresholds 

based on changing workload patterns, provider pricing structures and data popularity predictions.  
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