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Abstract. Communities of Practice (CoPs) offer valuable faculty development platforms in 
higher education, yet their evaluation is hindered by small sample sizes and predominantly 
descriptive analytics. This study addresses this methodological gap by developing a deep 
learning framework enhanced by data augmentation techniques to predict faculty engagement 
in CoPs. We collected survey data measuring six CoP dimensions from 29 academic staff at 
Arab Open University-Oman and expanded this limited dataset using Synthetic Minority 
Oversampling Technique (SMOTE), categorical permutation, and Gaussian noise injection. 
The resulting neural network model achieved 89% accuracy and an F1-score of 0.89, 
significantly outperforming both baseline logistic regression (69%) and non-augmented deep 
learning (82%) approaches. Feature importance analysis identified shared leadership and peer 
collaboration as the strongest predictors of engagement, while t-SNE visualizations revealed 
distinct behavioral clusters among faculty. This study contributes to educational research by 
demonstrating that (1) deep learning with appropriate data augmentation can effectively 
model faculty engagement patterns even with limited initial data, and (2) CoP theoretical 
constructs can be computationally validated and operationalized, enabling more targeted 
faculty development interventions. The framework provides institutions with a scalable 
method for evidence-based decision-making in professional development planning, helping 
identify disengaged faculty and prioritize high-impact support strategies.  

Keywords: Faculty Development, Communities of Practice, Deep Learning, Data 
Augmentation, Educational Analytics, Predictive Modeling, Neural Networks, SMOTE, 
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1. Introduction 
College staff development remains vital because it sustains educational excellence, enhances innovation, 
and supports perpetual learning in college settings (Hénard & Roseveare, 2012). Universities directed 
toward data-driven environments make it essential to grasp faculty needs alongside evaluating 
professional development practices that include CoPs in complex ways. Educational Communities of 
Practice consist of problem-solving groups that support educators in pursuing joint learning and mutual 
understanding development. These communities support the development of leadership abilities and 
innovative thought processes, which extend to the betterment of academic leadership. Traditional faculty 
development assessment relies on surveys, interviews, and performance reports. While these methods 
provide valuable qualitative insights, they typically yield small, imbalanced datasets that limit statistical 
analysis and generalizability. These valuable data collection methods lead to datasets that are restricted 
in depth and unable to generalize findings because they create imbalanced and small datasets (Guskey, 
2000). Subjective characteristics of this data set obstacle to establishing engagement prediction patterns 
through time metrics. Artificial intelligence has entered a new era through deep learning, which provides 
encouraging solutions for various applications. Deep learning models use their power to analyze 
extensive, ill-structured, complicated data, which reveals hidden patterns that traditional analysis 
methods cannot detect (LeCun et al., 2015). These models achieve successful outcomes when applied to 
educational datasets, as they identify risks among students and create performance predictions and 
behavioral classes (Alhazmi & Sheneamer, 2023; Hernández-Blanco et al., 2019). Research about deep 
learning applications to evaluate teaching development strategies, particularly in the context of CoP 
frameworks, remains underexplored. Using deep learning properly on educational survey data requires 
large datasets because they determine the success of analysis. Small faculty development datasets cause 
performance issues for models and prevent their ability to generalize useful information. Data 
augmentation proves essential for this operation. The concept emerged from image processing, but data 
augmentation now serves text and tabular datasets by creating synthetic data for training expansion, 
model accuracy improvement, and reduced overfitting (Rizos et al., 2019; Shorten & Khoshgoftaar, 
2019). This study aims to create a modern computational method for assessing faculty engagement 
within CoPs using deep learning and data augmentation techniques. Through this integration, researchers 
gain more profound perceptions of data patterns and hidden relationships, which provides institutions 
with valuable data-driven decisions for professional learning programs. These frameworks provide a 
union between educational conventions and advanced AI techniques to create better flexible analysis 
methodologies for faculty development. Despite increased investment in faculty development initiatives 
globally, their effectiveness remains inconsistent. According to an OECD survey (2021), over 52% of 
university faculty report inadequate support in improving teaching and engagement practices. Similarly, 
UNESCO (2022) highlights that nearly half of professional development programs in higher education 
lack follow-up or measurable outcomes, resulting in minimal impact on long-term instructional quality. 
These findings underline the urgency of designing evidence-based, scalable tools to support faculty 
growth, particularly in distributed, resource-constrained institutions.  

Quality teaching depends on faculty development since it promotes innovation and enables 
continuous university learning. Higher education entities transition toward data-secured operational 
frameworks and thus demand heightened knowledge of faculty requirements and evaluating practices 
such as CoPs, which have become intricate and pressing. Educators come together in CoPs to jointly 
learn while building knowledge through collaboration. The establishment of CoPs enables academic 
communities to develop leadership as well as reflective practice and innovative approaches to teaching. 
Previous information acquisition regarding faculty development relied on survey responses, 
performance reports, and face-to-face interviews. These methods produce limited, small-sized, 
unbalanced datasets, which restrict analytical depth, along with the generalizability of obtained results 
(Guskey, 2000; Hsieh, 2010). Such data tends to have subjective elements that impede researchers' 
ability to find patterns and engage in time-related predictions. Deep learning innovations that originate 
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from artificial intelligence research provide promising new options. The analysis and diverse capacity 
of deep learning models allow the extraction of obscured data patterns from big, unstructured, 
complicated datasets (Goodfellow et al., 2016). Educational data outcomes from these predictive and 
behavioral classification models demonstrate success in performance assessment risk identification and 
learning type classification (Abubakaria et al., 2020; Li & Liu, 2021). Deep learning solutions for 
evaluating faculty development practices within CoP frameworks have received limited investigation 
in academic research. An issue with deep learning applications to educational survey data comes from 
the limited sizes of available datasets. The size of available faculty development datasets creates 
modeling performance issues that restrict their generalization potential. The effective implementation 
of data augmentation becomes necessary at this point. The image processing technique named data 
augmentation now serves text and tabular data through expansion techniques, which assist in producing 
larger training sets along with minimizing overfitting while enhancing accuracy predictions (Shorten & 
Khoshgoftaar, 2019; Ying, 2019). The current work develops a new method to study faculty 
involvement with CoPs using complex artificial intelligence approaches, which include deep learning 
and data augmentation. The integrated process allows researchers to discover significant and concealed 
data patterns that help institutions make data-driven choices for professional learning development at 
scale. Such research connects educational science with modern AI technologies, which leads to 
advanced analytical systems that can optimize faculty development programs. 

Wide acknowledgement exists for CoPs as providers of professional learning platforms in higher 
education, yet measuring their effectiveness through standardized data analytics systems remains 
challenging. Survey methods and qualitative response platforms continue to be the main tools for 
measuring faculty engagement since most institutions follow these traditional assessment methods (Day 
& Sachs, 2005). These useful assessment methods produce tiny and structurally skewed data sets that 
restrict scientists from executing detailed and predictive research (Arthur, 2016). The training process 
for advanced machine learning models requires continuous data that should include numerical variables 
because categorical and ordinal responses typically present themselves in limited training scenarios. 
The success of deep learning in healthcare, along with finance and personalized education, demands 
abundant datasets containing diverse information for optimal operation (Bengio et al., 2017). The use 
of these techniques on small educational survey data leads to overfitting that reduces generalization 
potential (Feng et al., 2019). The problem of scarce data requires innovative solutions, and researchers 
now apply data augmentation methods in natural language processing and tabular learning domains 
(Shorten & Khoshgoftaar, 2019). The methods produce synthetic growth of datasets through a process 
that generates more diverse data, which enables deep models to uncover more resilient patterns (Rizos 
et al., 2019). Data augmentation techniques have been underutilized in faculty development research, 
with limited empirical testing of their effectiveness in CoP evaluation contexts. Traditional research 
approaches for faculty development cannot detect complex nonlinear patterns between variables such 
as leadership commitment, institutional backing, and peer relationships (Hsieh, 2010). Universities that 
lack predictive modelling tools operate reactively when serving faculty, leading them to miss crucial 
opportunities to identify low-performing and high-performing staff members. According to this 
research, a framework combining data augmentation methods with deep learning techniques would 
analyze CoP-related survey data, filling significant knowledge gaps. The framework aims to achieve 
deep analysis through enhanced predictions that generate usable information for academic development 
leaders to make strategic choices. While prior research has explored student performance prediction 
using machine learning, there is limited empirical work on modeling faculty engagement, especially in 
the context of Communities of Practice (CoPs). Existing studies either rely on large institutional datasets 
or lack predictive depth. Moreover, the intersection of AI-driven modeling and CoP engagement theory 
remains largely unexplored, particularly under constraints of small, imbalanced, and survey-based 
datasets. This study addresses this gap through an interpretable deep learning framework informed by 
CoP theory. 
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This research study has the following specific objectives: 

• To preprocess and structure CoP-related survey data collected from higher education faculty, 
ensuring it is suitable for computational modeling. 

• To apply data augmentation techniques—such as synthetic minority oversampling, categorical 
feature permutation, and noise injection—to expand and balance the original dataset. 

• To design and train a deep learning model, particularly a multi-layer neural network, capable 
of identifying patterns in faculty responses and predicting levels of engagement or institutional 
readiness for CoP integration. 

• To interpret the model outputs in the context of faculty development, offering practical insights 
into institutional strengths, potential gaps, and targeted policy actions. 

By achieving these objectives, the study aims to demonstrate how AI-driven models can 
complement educational theory and enhance institutional decision-making in faculty development 
planning. This paper contributes to academic research and applied artificial intelligence by proposing 
an innovative framework for evaluating faculty development initiatives, particularly CoPs, using 
advanced deep learning and data augmentation techniques.  

This paper contributes to both educational theory and applied artificial intelligence in the following 
ways: 

• It presents a novel methodology that combines three data augmentation strategies (SMOTE, 
categorical permutation, and Gaussian noise injection) with a deep learning model tailored for 
low-resource educational contexts. 

• The approach enables predictive modeling of faculty engagement, offering interpretable 
outputs that align with Wenger’s CoP dimensions, such as mutual engagement and shared 
repertoire. 

• From a practical perspective, the model supports institutional decision-making by identifying 
latent engagement patterns and surfacing key development needs, particularly in under-
resourced or distributed universities. 

These contributions demonstrate how AI can enhance precision in professional development planning 
while remaining grounded in educational theory and ethical implementation. 

The remainder of this paper is organized as follows. Section 2 reviews related work on CoPs, 
faculty development, and the application of deep learning and data augmentation in educational 
analytics. Section 3 outlines the methodology, including data collection, augmentation techniques, 
model architecture, and evaluation strategies. Section 4 presents the results, including performance 
metrics, visualizations, and learned pattern analysis. Section 5 discusses the findings in the context of 
faculty development theory and institutional practice. Finally, Section 6 concludes the paper with key 
insights, practical recommendations, limitations, and directions for future research. 
2. Related Work 
2.1 Communities of Practice and Faculty Development 
CoPs, introduced by Lave and Wenger, describe groups of individuals who learn together through shared 
practices and experiences (Lave & Wenger, 1991; Wenger, 1999). In higher education, CoPs have been 
adopted to foster professional learning, innovation in teaching, and faculty collaboration (Cox & Richlin, 
2004). They support the development of shared values, reflective practice, and collective inquiry (Day 
& Sachs, 2005). Arthur emphasizes that CoPs are especially beneficial in academic environments, where 
learning is often siloed and self-directed (Arthur, 2016). CoPs have also been associated with improved 
instructional design, peer mentoring, and knowledge-sharing (Prenger et al., 2019). In the Gulf region, 
Alyahmadi and Al-Sammakhi highlighted the potential of CoPs to align institutional goals with faculty 
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development needs, though implementation remains inconsistent (Al-Yahmadi & Al-Shammakhi, 2021). 
Despite their value, most CoP evaluations rely on interviews, self-report surveys, and anecdotal 
reflections (Day, 2018; Guskey, 2000). While necessary, these tools lack scalability and often fail to 
reveal deeper behavioral or engagement patterns. There is growing interest in applying computational 
methods to improve the evaluation of such learning communities, but few studies have done so within 
the context of faculty development. 

2.2 Faculty Development and Educational Data Analytics 
Faculty development initiatives typically include workshops, mentoring, performance reviews, and peer 
observation. Studies show that sustained, peer-led approaches are more effective than top-down, episodic 
training (Chalmers & Keown, 2006; Farrell, 2015) However, most universities still use descriptive 
analytics to monitor development activities, limiting their ability to generate actionable insights 
(Macfadyen & Dawson, 2010). The use of analytics in education has been primarily focused on students, 
monitoring engagement, predicting dropout, and personalizing learning pathways (Ferguson, 2012; Yau 
et al., 2018). Faculty data applications are often limited due to smaller datasets and privacy concerns. 
Nonetheless, recent work suggests that predictive analytics can help institutions identify which faculty 
members need additional support and which development practices are most impactful (Leitner et al., 
2017; Siemens, 2012). Calls have been made for integrating AI techniques in faculty development 
evaluation to move from descriptive to predictive and prescriptive insights (Okewu et al., 2021). 
However, this shift requires robust data preparation and model design, especially in sparse or imbalanced 
data contexts. 

2.3 Deep Learning and Data Augmentation 
Deep learning has shown strong performance in education-related applications, including text 
classification, student performance prediction, and learning analytics (Liu et al., 2021). Models such as 
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers have been 
applied to learning management systems, feedback systems, and student essays (Rusk, 2016; Shorten & 
Khoshgoftaar, 2019). A wide range of prediction methods for academic performance have been reviewed, 
covering both traditional and AI-based approaches (Al Husaini & Shukor, 2022). A significant barrier to 
using deep learning in education is the limited availability of high-quality, labeled data. This is 
particularly true in faculty development research. To overcome this, data augmentation has emerged as 
a strategy to expand datasets while synthetically preserving data structure and semantics. Originally 
popular in image and NLP domains, these techniques are now adapted for structured survey and tabular 
data (Marivate & Sefara, 2020; Mujahid et al., 2024). SMOTE (Synthetic Minority Oversampling 
Technique), random noise injection, categorical permutation, and GAN-based synthesis have been 
applied to augment small-scale educational data (Chawla et al., 2002; Fang et al., 2022). Kobayashi 
proposed a novel framework for augmenting tabular and textual data in learning systems, significantly 
improving model generalization (Seltzer, 1991). Deep learning models have also been successfully 
applied in virtual learning environments to predict academic performance, as demonstrated by Al Husaini 
and Shukor (Al Husaini & Shukor, 2024). Despite these advances, deep learning and data augmentation 
for analyzing faculty CoP engagement are virtually unexplored. This paper builds on foundational work 
in educational AI and offers a novel integration of these methods in the context of academic professional 
development. 

2.4 Predictive Modeling of Faculty Engagement 
Predictive modeling in educational contexts has historically centered around student outcomes, such as 
academic performance, dropout prediction, and behavioral analytics. While these applications have 
yielded valuable insights, comparatively fewer studies have focused on modeling faculty engagement, 
particularly within professional development environments such as Communities of Practice (CoPs). 
Faculty engagement is a multi-dimensional construct influenced by institutional support, leadership, 
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collaboration, and reflective teaching practices. These aspects are typically captured through surveys and 
feedback instruments—datasets that are often small, imbalanced, and difficult to generalize. Unlike 
student datasets, which may include log files and longitudinal academic records, faculty-related data lack 
behavioral granularity and are often self-reported. This poses challenges for building robust, interpretable 
predictive models. Few existing works have attempted to operationalize or quantify faculty engagement 
using artificial intelligence. For example, prior research by Al Husaini and Shukor (Al Husaini & Shukor, 
2024) successfully applied deep learning techniques to predict student academic performance in virtual 
learning environments. However, these studies relied on larger behavioral datasets and did not address 
professional development or faculty engagement metrics. Their methodologies also do not tackle data 
imbalance or survey-specific noise, which are common in faculty development research. Recent 
advances in data augmentation for tabular data offer promising solutions to this gap. Studies such as 
(Yadav et al., 2025) introduced conditional GANs (CTGAN) for synthesizing structured data in low-
sample settings, while (Chawla et al., 2002) demonstrated the utility of SMOTE and hybrid techniques 
for educational surveys. These methods enhance the model’s ability to generalize without overfitting on 
sparse or skewed features. Despite these advancements, little work has been done to combine deep 
learning with targeted augmentation techniques specifically for faculty engagement datasets. Our study 
addresses this gap by designing a framework that integrates SMOTE, categorical permutation, and 
Gaussian noise injection to enrich a limited CoP survey dataset. This enables accurate classification of 
engagement levels while preserving interpretability through feature importance and visualization. By 
modeling faculty engagement with a specialized neural architecture trained on synthetically expanded 
data, this study contributes to the emerging field of precision education analytics for academic staff—an 
area where scalable, AI-driven decision tools are increasingly needed. 

3. Methodology 
This study adopts an applied research methodology integrating data augmentation techniques and deep 
learning models to analyze faculty development data and precise responses related to CoPs. The 
approach is based on a quantitative, model-driven pipeline supported by systematic data preparation 
and evaluation stages. The research methodology can be studied through Fig. 1, which displays all the 
sequential steps of this investigation. The method starts with collecting survey data about key 
dimensions of CoP and then moves to encoding and normalization preprocessing steps. The dataset gets 
expanded through augmentation techniques that feature SMOTE and noise injection. The training 
procedure utilizes a fully connected deep neural network to perform the task of engagement level 
classification. Evaluation takes place after the model implementation through visualization of data 
embeddings and feature importance assessments that lead to actionable insights for faculty development. 
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Fig. 1 Proposed Methodology for Predicting Faculty Engagement in CoPs 

3.1 Data Collection and Preprocessing 
For this research, data were collected through an online structured survey aimed at academic staff 
members, policy decision-makers, and students attending the Arab Open University—Oman. The 
research instrument measured CoP dimensions through six main characteristics: shared leadership, 
shared values, collective learning, personal practice and relationships, and structural support. Each 
dimension included multiple Likert-scale items (1 = Strongly Disagree to 5 = Strongly Agree). A total 
of 29 participants responded to the survey. The raw data included 30 categorical items, each 
corresponding to a statement measuring perception or experience related to CoPs. Responses were 
transformed into numerical form using ordinal mapping: 

Strongly Disagree = 1, Disagree = 2, Neutral = 3, Agree = 4, Strongly Agree = 5 

Let the dataset be represented as a matrix 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑, where: 𝑛𝑛 = 29 is the number of participants, 𝑑𝑑 =
30 is the number of survey items (features). Each entry 𝑥𝑥𝑖𝑖𝑖𝑖  in the matrix represents the numerical 
response of the participant 𝑖𝑖 to item 𝑗𝑗, where 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {1,2,3,4,5}. 

Missing or inconsistent responses (e.g., blanks) were handled using mean imputation for each item. Let 
𝜇𝜇𝑖𝑖 be the mean of the non-missing values in column 𝑗𝑗, then for any missing value 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑁𝑁, it was 
replaced with: 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖     (1) 

To prepare the data for deep learning, the input features were normalized using Min-Max scaling to 
bring all values into the [0, 1] range: 

𝑥𝑥𝑖𝑖𝑖𝑖′ = 𝑥𝑥𝑖𝑖𝑖𝑖−𝑚𝑚𝑖𝑖𝑛𝑛 (𝑥𝑥𝑖𝑖)
𝑚𝑚𝑚𝑚𝑥𝑥 (𝑥𝑥𝑖𝑖)−𝑚𝑚𝑖𝑖𝑛𝑛 (𝑥𝑥𝑖𝑖)

      (2) 

This ensured that no single variable dominated the learning process due to scale differences. Table 1 
summarizes the class distribution before and after applying data augmentation. The original dataset 
exhibited a class imbalance, with 13 instances of Low Engagement and 16 of High Engagement. 
Through SMOTE and permutation-based augmentation, the dataset was expanded and balanced to 
enhance model training. 
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Table 1. Class Distribution Before and After Augmentation 

Class Label Original Count A�er Augmenta�on 
Low Engagement 13 58 
High Engagement 16 58 
Total 29 116 

3.2 Data Augmentation Strategies 
Data augmentation was employed to address two core challenges in the dataset: small sample size and 
class imbalance. Although most data augmentation techniques have been developed for unstructured 
data such as images or text, recent advances have enabled their adaptation to tabular and categorical 
educational data. This study applied three augmentation techniques: SMOTE, random categorical 
permutation, and Gaussian noise injection. Each method was intended to expand the dataset and 
improve model generalization. 
SMOTE was applied to synthetically generate new samples for underrepresented CoP engagement 
patterns in the survey data. Given a minority class 𝐶𝐶𝑚𝑚, new samples were generated by linear 
interpolation between an existing instance 𝑥𝑥𝑖𝑖 ∈ 𝐶𝐶𝑚𝑚 and one of its 𝑘𝑘-nearest neighbors 𝑥𝑥𝑘𝑘 ∈ 𝐶𝐶𝑚𝑚, defined 
as: 

𝑥𝑥� = 𝑥𝑥𝑖𝑖 + 𝜆𝜆 ⋅ (𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑖𝑖), 𝜆𝜆 ∼ 𝑈𝑈(0,1)    (3) 

Where, 𝜆𝜆 is a random scalar from the uniform distribution, 𝑥𝑥� is the newly generated synthetic instance. 
The number of nearest neighbors (k) in SMOTE was set to 5, following standard practices in imbalanced 
data classification. This value was chosen after testing k in the range of 3 to 10. A value of 5 offered 
the best trade-off between synthetic sample diversity and intra-class cohesion, avoiding noise 
amplification and class overlap. This technique was instrumental in balancing binary labels derived 
from survey dimensions, such as high and low engagement. 

 
For non-numeric Likert-scale features, synthetic samples were generated by permuting categorical 
values within the same column range. Let 𝑋𝑋𝑖𝑖 be the column vector of responses for the item 𝑗𝑗. A new 
sample 𝑥𝑥~𝑗𝑗  was created by randomly sampling from the empirical distribution of 𝑋𝑋𝑖𝑖, preserving 
marginal distributions: 

𝑥𝑥�𝑖𝑖 ∼ 𝑃𝑃(𝑋𝑋𝑖𝑖)     (4) 

This method ensured variability without introducing unrealistic values, particularly for items with 
strong ordinal semantics (e.g., trust, collaboration). 

 
Small random noise was injected into normalized numeric features to increase sample diversity further 
and reduce overfitting. For each numeric value 𝑥𝑥 ∈ [0,1], augmented values were created as: 

𝑥𝑥� = 𝑥𝑥 + 𝜖𝜖, 𝜖𝜖 ∼ 𝑁𝑁(0,𝜎𝜎2)    (5) 

Where, 𝜖𝜖 is Gaussian noise, 𝜎𝜎 was set to 0.05 to maintain semantic closeness while introducing 
randomness. Gaussian noise was applied to numerical features to enhance model generalization and 
reduce overfitting. Specifically, noise ε was sampled from a normal distribution with mean 0 and 
variance 𝜎𝜎², i.e., 𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎²). After experimentation with values ranging from 0.01 to 0.1, σ was set to 
0.05, as this provided an optimal balance between maintaining the semantic validity of survey responses 
and introducing sufficient variability. Larger values (e.g., σ ≥ 0.08) resulted in unrealistic or incoherent 
synthetic samples, while smaller values (< 0.03) did not sufficiently regularize the model or expand 
decision boundaries. 
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To operationalize the data augmentation process, we applied three techniques in sequence: SMOTE 
for balancing class distribution, categorical permutation for syntactic variability, and Gaussian noise 
injection for numerical feature diversity. The complete augmentation workflow is detailed in 
Algorithm 1, which illustrates the step-by-step procedure used to generate a robust and representative 
training dataset. 

Algorithm 1: Combined Data Augmentation Strategy 

Input: 

    - Dataset 𝐷𝐷 with: 

        𝑋𝑋𝑛𝑛𝑛𝑛𝑚𝑚: Numerical features 

        𝑋𝑋𝑐𝑐𝑚𝑚𝑐𝑐: Categorical features 

        𝑦𝑦: Class labels 

    - Parameters: 

        𝑘𝑘 = 5  // Number of neighbors for SMOTE 

        𝜎𝜎 = 0.05  // Gaussian noise level 

Output: 

    - Augmented dataset 𝐷𝐷𝑚𝑚𝑛𝑛𝑎𝑎 

Procedure: 

1. // Step 1: Handle class imbalance with SMOTE 

   Identify minority class samples: 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚 ← 𝐷𝐷[𝑦𝑦 ==  𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑦𝑦𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐] 

   For each 𝑥𝑥 in 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚: 

       a. Find k nearest neighbors in feature space 

       b. Randomly select neighbor 𝑥𝑥′ 

       c. Generate synthetic sample: 

          𝑥𝑥𝑐𝑐𝑚𝑚𝑛𝑛𝑐𝑐ℎ ← 𝑥𝑥 + 𝜆𝜆 ∗ (𝑥𝑥′− 𝑥𝑥), where 𝜆𝜆 ∈ [0, 1] 

   Append all 𝑥𝑥𝑐𝑐𝑚𝑚𝑛𝑛𝑐𝑐ℎ to 𝐷𝐷 

2. // Step 2: Apply Categorical Permutation 

   For each categorical feature 𝑓𝑓 in 𝑋𝑋𝑐𝑐𝑚𝑚𝑐𝑐: 

       a. Shuffle values of 𝑓𝑓 across all samples 

   Construct new synthetic categorical rows 

   Append to 𝐷𝐷 

3. // Step 3: Apply Gaussian Noise to Numerical Features 

   For each 𝑥𝑥 in 𝑋𝑋𝑛𝑛𝑛𝑛𝑚𝑚:  

       a. Generate 𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎²) 

       b. Create noisy sample: 𝑥𝑥𝑛𝑛𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚 ← 𝑥𝑥 + 𝜀𝜀 

   Append all 𝑥𝑥𝑛𝑛𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚 samples to 𝐷𝐷 

4. Return final augmented dataset: 𝐷𝐷𝑚𝑚𝑛𝑛𝑎𝑎  ←  𝐷𝐷 ∪  𝑥𝑥𝑐𝑐𝑚𝑚𝑛𝑛𝑐𝑐ℎ  ∪  𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑑𝑑𝑐𝑐𝑚𝑚𝑐𝑐  ∪  𝑥𝑥𝑛𝑛𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚 
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3.3 Deep Learning Model Architecture 
A fully connected feedforward neural network (FCNN) was developed to classify patterns of faculty 
engagement in CoPs. The model was chosen for its suitability in handling structured, tabular survey 
data and its flexibility in capturing nonlinear interactions among variables. We opted for a fully 
connected neural network architecture due to the tabular and non-sequential nature of our survey dataset. 
Unlike image or time-series data, CoP survey responses lack spatial or temporal locality, making 
convolutional or recurrent architectures unnecessary. A dense feedforward model offers computational 
efficiency, faster convergence, and interpretability through layer-wise relevance analysis and feature 
attribution. 
The input to the model is a vector 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑, where 𝑑𝑑 = 30 corresponds to the number of survey items. 
The architecture of the proposed deep learning model is composed of four layers. The input layer 
includes 30 neurons, each representing a normalized survey feature. This is followed by two hidden 
layers, the first with 64 neurons and the second with 32, using ReLU activation functions to capture 
non-linear relationships. The final output layer contains 2 neurons with a Softmax activation function, 
enabling binary classification between high and low faculty engagement in CoPs. Let 𝑥𝑥 ∈ 𝑅𝑅30 be a 
normalized input vector. The operations in each layer can be expressed as: 

ℎ1 = 𝑅𝑅𝑝𝑝𝑅𝑅𝑈𝑈(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1)     (6) 

Where, 𝑊𝑊1 ∈ 𝑅𝑅64×30 is the weight matrix, 𝑏𝑏1 ∈ 𝑅𝑅64 is the bias vector, ReLU is the activation function 
defined by 𝑅𝑅𝑝𝑝𝑅𝑅𝑈𝑈(𝑧𝑧) = 𝑚𝑚𝑁𝑁𝑥𝑥 (0, 𝑧𝑧). 

ℎ2 = 𝑅𝑅𝑝𝑝𝑅𝑅𝑈𝑈(𝑊𝑊2ℎ1 + 𝑏𝑏2)     (7) 

With, 𝑊𝑊2 ∈ 𝑅𝑅32×64, 𝑏𝑏2 ∈ 𝑅𝑅32 

𝑦𝑦� = 𝑆𝑆𝑚𝑚𝑓𝑓𝑚𝑚𝑚𝑚𝑁𝑁𝑥𝑥(𝑊𝑊3ℎ2 + 𝑏𝑏3)     (8) 

Where, 𝑊𝑊3 ∈ 𝑅𝑅2×32, 𝑦𝑦� ∈ 𝑅𝑅2 represents predicted class probabilities, Softmax is defined as:  

𝑆𝑆𝑚𝑚𝑓𝑓𝑚𝑚𝑚𝑚𝑁𝑁𝑥𝑥(𝑧𝑧𝑖𝑖) = 𝑒𝑒𝑧𝑧𝑖𝑖
∑ 𝑒𝑒𝑧𝑧𝑖𝑖2
𝑖𝑖=1

, 𝑖𝑖 = 1,2    (9) 

The model is trained using categorical cross-entropy loss, defined for binary classification as: 

𝑅𝑅 = −∑ 𝑦𝑦𝑖𝑖𝑙𝑙𝑚𝑚𝑙𝑙 (𝑦𝑦�𝑖𝑖)2
𝑖𝑖=1      (10) 

Where 𝑦𝑦𝑖𝑖 is the true label (one-hot encoded) and 𝑦𝑦�𝑖𝑖 is the predicted probability from the Softmax layer. 

To ensure optimal model generalization, we selected the dropout rate (0.3) and Gaussian noise level 
(σ = 0.05) through empirical tuning. Several combinations were evaluated using five-fold cross-
validation and early stopping. The selected values yielded the lowest validation loss while maintaining 
stable learning. For the Gaussian noise, σ values ranging from 0.01 to 0.10 were tested, and σ = 0.05 
provided the best balance between noise diversity and data fidelity. 

The model was trained using a batch size of 16 over 100 epochs. Early stopping was implemented 
to avoid overfitting, with training halted automatically when the validation loss ceased to improve. All 
experiments were conducted using the TensorFlow framework with the Keras API, ensuring flexibility 
and efficient model development. The model was evaluated using a stratified 80/20 train-test split, 
ensuring class balance in both sets. 

3.4 Ethical Considerations 
This study adheres to established ethical standards in educational data research. Participation in the 
faculty survey was voluntary, and informed consent was obtained from all participants. No personally 
identifiable information was collected, and all responses were anonymized prior to analysis. From an 
algorithmic standpoint, we recognize the ethical implications of using AI to assess faculty engagement. 
Predictive models may inadvertently encode biases present in the data, especially in small or 
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imbalanced samples. To mitigate this risk, we applied stratified cross-validation and monitored 
performance across classes to reduce unfair misclassification. We also acknowledge that model 
predictions should not be used as standalone indicators for performance evaluation or career-impacting 
decisions. Instead, we advocate for a human-in-the-loop approach, where AI-driven insights serve as 
supplementary inputs to faculty development planning. Institutional decisions must incorporate 
qualitative judgment, peer review, and contextual factors beyond algorithmic outputs. Privacy and data 
protection remain critical. The data used in this study were collected through ethical clearance processes 
approved by the Arab Open University, and analysis was conducted in accordance with privacy 
regulations. We further recommend that institutions adopting AI tools for faculty analytics implement 
transparent practices, fairness assessments, and periodic model audits to ensure responsible use. Ethical 
implementation must prioritize inclusivity, interpretability, and respect for professional autonomy. 

3.5 Experimental Setup and Tools 
The deep learning model was developed using Python 3.9. All data preprocessing, model building, and 
evaluation tasks were conducted using a combination of scientific computing libraries. TensorFlow 
version 2.12 with the Keras API was used to construct and train the neural network. Scikit-learn version 
1.2 supported data encoding, normalization, and the application of SMOTE for data augmentation. 
Additional libraries like NumPy and Pandas were used for data manipulation and matrix operations. 
Data visualization and plotting tasks were handled. All experiments were executed on a high-
performance workstation with an Intel Core i7-10700 CPU running at 2.90 GHz and supported by 32 
GB of DDR4 RAM. GPU acceleration was enabled using an NVIDIA RTX 3060 graphics card with 6 
GB of dedicated memory to enhance training efficiency. The system ran Windows 11 Pro 64-bit as its 
operating system. The system arrangement allowed for quick processing of essential computational 
duties and backpropagation during training. The augmented information received an 80:20 stratified 
division for dataset separation between the training and testing sections. The researchers employed 
stratified sampling, which sustained the same class proportions between testing and training subsets. 
The model training used early stopping methods to minimize overfitting when the validation loss criteria 
reached 500 epochs at each training step. To enhance result reliability, we implemented 5-fold stratified 
cross-validation during training. This approach ensured that class proportions were preserved across 
folds and minimized overfitting risk, especially given the augmented dataset size. Performance metrics 
reported in the results section represent averages across these five folds. Implementing dropout layers 
with a 0.3 dropout rate occurred between dense layers to improve model generalization and minimize 
dependency on select input features. Standard classification metrics were used to determine the 
predictive capabilities of the model performance assessment. The proportion of accurate predictions, 
defined as accuracy and precision, measured how many predicted positives truly belonged to the 
category. Model recall determined the proportion of correctly identified true positives among all model 
assessments. The F1-score was helpful because it combines harmonic precision and recall computations 
when examining data sets with unbalanced classes. The metrics functioned as crucial elements to prove 
the deep learning model's success in identifying different levels of faculty engagement with the 
community of practice. 

4. Results and Analysis 
The deep learning model received evaluation through setups, including a baseline logistic regression 
model, followed by a neural network without augmentation and an augmented-trained neural network. 
Standard classification assessment metrics evaluated the model performance by measuring accuracy, 
precision, recall, and the F1-score. Table 2 demonstrates how deep neural networks achieved 
outstanding results over the baseline by achieving 89% accuracy, together with a 0.89 F1 Score due to 
data augmentation. The model trained without augmentation showed 83% accuracy, yet the augmented 
model performed better, with an 89% accuracy mark. 
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Table 2. Model Performance Comparison Across Variants 

Model Variant Accuracy Precision Recall F1-
Score 

MAE AUC Train 
Loss 

Val 
Loss 

Logistic Regression 0.72 0.70 0.68 0.69 0.220 0.74 0.610 0.623 

DNN (No Augmentation) 0.83 0.84 0.81 0.82 0.110 0.88 0.320 0.350 

DNN (With Augmentation) 0.89 0.91 0.88 0.89 0.045 0.93 0.240 0.280 
 
Table 3 presents the performance of each model when identifying low and high CoP engagement classes. 
The fundamental logistic regression analysis managed average yet weak performance in both 
classification groups. Without augmentation techniques, the DNN model enhanced its performance for 
high engagement prediction, yet the addition of augmented data training led to the best measurements 
across all metrics. Specifically, it attained an F1-score of 0.86 for low engagement and 0.91 for high 
engagement, confirming its superior capability to distinguish between faculty engagement levels. 

Table 3. Class-wise Metrics for Augmented Model 
Model Variant Class Precision Recall F1-Score Support 
Logistic Regression Low Engagement 0.68 0.65 0.66 13 

High Engagement 0.72 0.75 0.73 16 
DNN (No Augmentation) Low Engagement 0.82 0.78 0.80 13 

High Engagement 0.86 0.88 0.87 16 
DNN (With Augmentation) Low Engagement 0.87 0.85 0.86 13 

High Engagement 0.91 0.92 0.91 16 
 
Table 4 presents a side-by-side comparison of the model’s performance with and without data 
augmentation. The augmented model achieved higher accuracy and F1-score, reducing the mean 
absolute error by over 50%. The AUC improved from 0.88 to 0.93, indicating more substantial 
classification confidence. Additionally, the overfitting gap was reduced, and convergence was achieved 
faster, at just 9 epochs compared to 15, demonstrating better learning efficiency and generalization. 

Table 4. Impact of Data Augmentation on Learning Metrics 
Metric DNN (No Augmentation) DNN (With Augmentation) 
Accuracy 0.83 0.89 
F1-Score 0.82 0.89 
Mean Absolute Error (MAE) 0.110 0.045 
Area Under Curve (AUC) 0.88 0.93 
Overfitting Gap (Train - Val Loss) 0.030 0.010 
Epochs to Convergence 15 9 
Final Training Loss 0.320 0.240 
Final Validation Loss 0.350 0.280 

 

Fig. 2 presents the loss curves for both training and validation sets over the first ten epochs. The training 
loss decreased from 0.69 to 0.24, while the validation loss dropped from 0.68 to 0.28. The similar 
trajectory of both curves indicates that the model learned effectively without overfitting. This confirms 



Yahmadi et al., Journal of Logistics, Informatics and Service Science, Vol. 12 (2025) No. 3, pp. 141-162 

153 
 

that regularization techniques, such as dropout and early stopping, combined with data augmentation, 
contributed to stable generalization on unseen data. 

 
Fig. 2. Training and Validation Loss Over Epochs 

The confusion matrix in Fig. 3 shows that the model correctly classified 93.8 instances of low 
engagement and 95.7 instances of high engagement. There were only two false positives and one false 
negative, indicating balanced prediction capability across both classes. The low error rate reflects the 
model’s strong discriminatory power after training on an augmented dataset and supports its potential 
as a reliable tool for evaluating faculty participation in CoPs. 

 
Fig. 3. Confusion Matrix – Deep Neural Network (With Augmentation) 

These results confirm the value of data augmentation in improving deep learning performance on small 
educational datasets. They also validate the model’s utility in classifying faculty engagement patterns 
within CoP frameworks. 

To quantify the contribution of each augmentation method, we conducted ablation experiments by 
training separate DNNs with one technique removed at a time. Table 5 summarizes the impact on 
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performance. Removing SMOTE led to the steepest drop in F1-score, while removing categorical 
permutation or Gaussian noise resulted in modest declines. These findings confirm that all three 
techniques contribute, but SMOTE was essential for resolving class imbalance. 

Table 5. Ablation Results – Impact of Removing Each Augmentation Component 
Model Variant Accuracy F1-Score 

Full Augmentation (SMOTE + Perm + Noise) 0.89 0.89 

Without SMOTE 0.79 0.78 

Without Permutation 0.86 0.86 

Without Gaussian Noise 0.87 0.86 
 

Fig. 4 visualizes the top 10 most influential survey items contributing to the model’s predictions of 
faculty engagement. Feature importance analysis revealed that 'Shared Leadership' (importance score = 
0.15) and 'Peer Reflection' (importance score = 0.13) were the strongest predictors of faculty 
engagement in CoPs. This finding aligns with Wenger's (1999) emphasis on distributed leadership and 
reflective practice as core elements of successful Communities of Practice. Notably, technological 
factors such as 'Digital Tool Use' ranked considerably lower (importance score = 0.04), suggesting that 
social and cultural factors may be more determinative of engagement than technological infrastructure.". 
The model's power to detect significant professional development patterns finds validation through its 
results, which mirror concepts found in CoP literature. 

 
Fig. 4. Feature Importance from Neural Network 

Fig. 5 shows clear clustering between high and low engagement classes. Notably, a few outliers 
appear within each cluster—particularly among faculty with atypical engagement modes (e.g., strong 
peer collaboration but low digital participation). These outliers may represent nuanced cases that defy 
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binary classification and highlight the need for mixed-methods exploration or multi-class engagement 
models. 

 

 
Fig. 5. Learned Feature Embedding Using t-SNE  

Two forms of visualization, feature importance analysis and latent space embedding, were used to 
interpret how the deep learning model arrived at its predictions. These techniques offer insight into 
which survey items influenced predictions most and how the model internally differentiated between 
engagement levels. 

Fig. 6 presents the ten most influential survey items, ranked by importance scores extracted from the 
trained neural network. The scores were calculated using the input layer's permutation importance and 
backpropagation gradients. Items related to leadership support, reflective practice, and peer evaluation 
were among the most dominant. 

 
Fig. 6. Top Contributing Features to CoP Engagement Prediction 

To acknowledge the uncertainty inherent in small sample sizes, we report 95% confidence intervals 
for the primary performance metrics. The final augmented model achieved an accuracy of 0.89 ± 0.03 
and an F1-score of 0.89 ± 0.02, indicating consistency across cross-validation folds. 
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Table 6. Comprehensive Performance Comparison of Model Variants (with 95% Confidence 
Intervals) 

Model Variant Accuracy F1-Score Precision Recall AUC MAE 

Logistic Regression 0.78 ± 0.04 0.76 ± 0.05 0.74 ± 0.05 0.78 ± 
0.06 

0.82 ± 
0.03 

0.125 ± 
0.014 

DNN (No Augmentation) 0.83 ± 0.03 0.82 ± 0.02 0.84 ± 0.03 0.81 ± 
0.03 

0.88 ± 
0.02 

0.110 ± 
0.012 

DNN (With Augmentation) 0.89 ± 0.03 0.89 ± 0.02 0.91 ± 0.02 0.88 ± 
0.02 

0.93 ± 
0.01 

0.045 ± 
0.008 

As shown in Table 6, the deep neural network (DNN) trained with data augmentation outperformed 
both the non-augmented DNN and logistic regression models across all evaluation metrics. 
Improvements were most notable in F1-score (0.89 ± 0.02), AUC (0.93 ± 0.01), and MAE (0.045 ± 
0.008), confirming both classification accuracy and calibration. These differences were statistically 
significant based on paired t-tests (p < 0.01). The consistent confidence intervals across 5-fold cross-
validation reflect strong generalization despite the limited sample size. 

 The second visualization involved projecting the final-layer outputs of the deep neural network into 
two dimensions using a dimensionality reduction technique (e.g., t-SNE or PCA). As shown in Fig. 7, 
the model learned to separate low-engagement and high-engagement cases into distinguishable clusters. 
This separation indicates that the network could extract meaningful patterns in the data despite the initial 
small sample size. 

 
Fig. 7. Learned Data Embedding by CoP Engagement Class 

Together, these visualizations demonstrate that the model not only performed well in terms of metrics 
but also learned interpretable, semantically meaningful patterns that align with theoretical expectations 
in CoP research. The deep learning model detection, feature importance, and clustering visualizations 
produce results that provide significant implications for faculty development needs and institutional 
planning decisions. Research predictions combined with interpretable patterns demonstrate that 
essential CoP elements, including leadership and collaborative practice with reflective abilities, truly 
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matter theoretically and computationally to faculty data. Research findings have been endorsed by the 
observation that faculty involvement in professional learning increases when they receive enabling 
support and trust from their institutions. The survey participants strongly favored items that 
demonstrated mutual respect, opportunities for reflection, and cross-departmental dialogue. These 
conditions serve as fundamental contributors to the way CoP members participate. People who engaged 
less with their work environments tended to cluster separately from others in the latent dimension, while 
those who engaged highly created highly compact clusters. Reliable data processing shows CoP 
participation creates consistent behaviors and attitudes that this model detected even from limited input 
data. 

Table 7 presents a comparative analysis between the proposed deep learning framework and selected 
state-of-the-art models from the literature. While prior models achieved commendable results using 
deep architectures and ensemble methods, our proposed model demonstrated superior performance, 
achieving the highest accuracy (0.89), F1-score (0.89), and AUC (0.93). This improvement is attributed 
to the use of targeted data augmentation strategies that mitigated the challenges of limited and 
imbalanced survey data in educational contexts.  

Table 7. Performance Comparison with State-of-the-Art Models 
Model / Study Dataset Technique Accuracy F1-

Score 
AUC Notes 

(Zhong et al., 
2021) 

VLE Academic 
Data 

Deep ANN 0.85 0.82 0.87 Predicting 
academic 
performance 

(Chui et al., 
2020) 

Student Logs 
Review 

Ensemble Voting 0.81 0.78 0.85 Comparative 
survey of ML 
approaches 

(Shorten & 
Khoshgoftaar, 
2019) 

Generic Edu 
ML Datasets 

CNN with 
Augmentation 

0.86 0.83 0.88 Strong baseline 
with visual 
features 

(Chawla et al., 
2002) 

Imbalanced Edu 
Dataset 

Decision Tree + 
SMOTE 

0.79 0.76 0.80 Focused on 
handling class 
imbalance 

Proposed Model  AOU CoP 
Survey 
(n=29→116) 

DNN + SMOTE + 
Permutation + Noise 

0.89 0.89 0.93 CoP engagement, 
small-scale + aug 

These research results demonstrate vital effects on faculty development systems. The study proves that 
Community of Practice principles can effectively transform into data-based constructs, demonstrating 
measurable values. Because of these findings, educational institutions can monitor and enhance 
teaching involvement through real-time predictive analytical methods. The model can detect faculty 
participants who are not sufficiently engaged, so institutions can implement specific mentoring or 
collaborative programs to support them. 

5. Discussion 
Deep learning algorithms combined with data augmentation methods succeed in classifying different 
levels of faculty participation in CoPs, as shown by this study. The neural network model reached an 
F1-score of 0.89, surpassing all baseline performance results. An image processing method clearly 
separated high and low-engagement clusters in the faculty response patterns, indicating significant 
behavioral differences in the analyzed data. This study confirmed that leadership support, peer 
collaboration, and reflective practices emerged as the most impactful components for faculty 
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engagement within CoPs during the analysis. The research results back up the theoretical concept, 
stating CoPs exist as measurable constructs that data-driven methods can identify and forecast. To 
further interpret model behavior, we analyzed instances of misclassification. Most errors occurred with 
faculty whose survey responses reflected moderate scores in peer collaboration and reflective practice, 
suggesting ambiguity in engagement level boundaries. These participants often exhibited selective CoP 
participation, such as informal sharing without formal leadership involvement, which may have 
confounded the model’s binary classification. This reveals that mid-spectrum engagement is more 
difficult to model and may benefit from ordinal or probabilistic classification in future studies. The 
model's identification of key engagement factors aligns with and computationally validates theoretical 
frameworks of professional development established in prior literature. Reports from the field and 
research studies indicate that superior academic development depends upon creating spaces where trust 
flourishes and collegial linkages form with collective leadership, which drives sustainability. The model 
confirms the social-constructivist ideas of professional development by showing these factors above 
others as key components in its predictions. The successful implementation of the enhanced model 
shows that properly improved restricted data sets can create institutional analytical intelligence. The 
study resolves an enduring issue in faculty development research because improving small dataset 
quality allows better policy influence and broader applicability. The implemented outcomes specifically 
influence educational institutions that use blended online teaching methods. Predictive modeling serves 
as an effective method to monitor CoP engagement progress actively. Institutions can apply this model 
design to detect disengaged faculty members who warrant specific professional support. Policymakers 
can create better development programs by understanding the frequency and order of importance of 
engagement prediction indicators (e.g. leadership presence or cross-department conversations). Studies 
using model feedback can better assess the outcomes of peer observation mentoring strategies which 
follow an organized format. The interpretability of deep learning models helps decision-makers make 
evidence-based choices through transparent operations, which is essential for obtaining stakeholder 
trust in AI-assisted education policies. Although the study achieved its objectives, multiple factors limit 
its impact. The studied data comes from only one educational institution, reducing the transferability of 
the research findings across different contexts. The performance gains from data augmentation in the 
model required caution because synthetic data might fail to represent all real faculty experiences fully. 
The analysis restricted itself to survey-based data features while omitting significant external variables 
such as departmental composition, teaching responsibilities, and academic standing. Future models 
should integrate additional data elements because this addition will positively affect model relevance 
and predictive quality. Lastly, while interpretability tools were applied, deep neural networks remain 
less transparent than simpler models. Caution is needed when using model predictions for high-stakes 
decisions, and results should always be complemented with qualitative insights and expert judgment. 
Beyond technical limitations, the responsible implementation of predictive models in faculty 
development requires ethical safeguards. Institutions must ensure transparency, preserve human 
oversight, and regularly assess fairness, especially when models may affect professional growth 
pathways. Augmented analytics should complement, not replace, peer engagement, mentorship, and 
reflective dialogue in academic decision-making. 

6. Conclusion and Recommendations 
This study successfully developed and validated a deep learning framework enhanced by multiple data 
augmentation strategies to predict faculty engagement in Communities of Practice. The neural network 
model achieved 89% accuracy and an F1-score of 0.89 when classifying high versus low faculty 
engagement, outperforming both traditional logistic regression and non-augmented deep learning 
approaches. Feature importance analysis revealed that shared leadership (0.15), peer reflection (0.13), 
and collaborative planning (0.12) were the strongest predictors of engagement, validating key 
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theoretical elements of successful CoPs while providing computational evidence for their relative 
importance. 

Our research makes three primary contributions. First, it demonstrates that appropriate data 
augmentation techniques can overcome the small sample size limitations that have historically restricted 
quantitative analysis of faculty development. Second, it provides empirical validation that CoP 
theoretical constructs can be operationalized and measured with predictive validity. Third, it offers a 
replicable methodological framework that other institutions can adapt for evidence-based professional 
development planning. 

For educational institutions, our findings suggest specific priorities for fostering faculty engagement 
in CoPs: (1) develop shared governance structures that distribute leadership responsibilities; (2) 
establish formal mechanisms for peer observation and feedback; and (3) create structured collaborative 
planning opportunities across departmental boundaries. Furthermore, institutions should integrate 
predictive analytics into their faculty development assessment frameworks to identify disengaged 
faculty proactively rather than reactively. 

Despite these contributions, several limitations must be acknowledged. The single-institution dataset 
limits generalizability, and synthetic data, while effective for model training, may not fully represent 
the complexity of actual faculty experiences. Future research should validate this approach with multi-
institutional samples and longitudinal data spanning multiple academic years. Researchers should also 
expand the model to incorporate additional data sources beyond surveys, such as learning management 
system interaction logs, teaching observation scores, and institutional context variables. Comparative 
studies between traditional statistical approaches and deep learning methods would further clarify when 
the additional complexity of neural networks is justified for faculty development research. 

The integration of deep learning with educational theory demonstrated in this study represents a 
promising direction for faculty development research, enabling institutions to move beyond descriptive 
analytics toward predictive and eventually prescriptive insights that enhance teaching quality and 
student outcomes. 
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