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Abstract. Based on the characteristics of perishable goods, we extend the 
location-routing problem with distance constraints by adopting chance 
constrained goal programming approach to solve the uncertainty and to 
express the different priority levels of decisions. The random of depot 
construction costs and vehicle routing travel time is taken into account. 
Meanwhile, a two-stage genetic algorithm incorporated with stochastic 
simulation is employed to solve the model. Computational experience is 
presented to illustrate the effectiveness of the solution procedure. 
Keywords: Location Routing, Perishable Goods, Stochastic Programming, 
Two-stage Genetic Algorithm 

 

1.  Introduction 

The purpose of this paper is to address the reliable location-routing problem for 
perishable goods. Examples of perishable goods involve food products, 
vegetables, flowers, living animals and ready-mix concrete etc (Chen et al., 
2009). 

After extensive field observations, we chose to focus on two aspects that 
seem important to perishable goods supply chain design: the depot facility 
location and vehicle routing. Besides, the location of depots and the routing of 
vehicles cannot be treated separately. Baldacci et al.(2011),Salhi and Rand(1989) 
evaluate the effect of ignoring routing when locating facilities and clearly show 
that separating facility location from vehicle routing may lead to suboptimal 
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decisions. This interdependence between the depots location and the vehicle 
routing leads to Location-Routing Problems (LRP)(Toyoglu et al.,2012). Due to 
its significant practical consequence and theoretical value, the LRP has been 
extensively studied in the past few decades. Detailed reviews of the literature of 
LRP are given in Nagy and Salhi(2007),Lopes et al.(2013). 

For perishable goods, the particular characteristic is that the vehicle routes are 
constrained to be short and the vehicle does not have to return to the original 
depot within the time window. Berger et al.(2007) formulate a location-routing 
problem with distance constraints (LRP-DC), a variant of a fixed-charge facility 
location problem (FLP), which is a special and uncomplicated formulation of 
LRPs. 

Uncertainty is the basic issue which should be taken into account in designing 
reliable LRP problem. Two essential elements, the construction costs of depot 
facilities and the travel time of vehicles, are hard to predict exactly in advance. 
Classical location-routing models treat data as though they were known and 
deterministic, yet ignoring data uncertainty can result in highly sub-optimal 
solutions. Snyder(2006) reviews the uncertainty modelling method in facility 
location problem. There are two principal approaches can be used to formulate 
reliable mathematical models which are able to describe uncertain conditions: (a) 
robust optimization (RO), (b) stochastic programming (SP). Robust 
optimization approach often attempts to optimize the worst-case performance of 
the system (Hong et al.,2012). Stochastic programming models are similar in 
style but try to take advantage of the fact that probability distributions 
governing the data are known or can be estimated(Shapiro et al.,2009). The 
chance constrained programming(CCP) relaxes the constraints in deterministic 
mathematical programming and replaces them with probabilistic constraints, 
where some or all data elements are random and the constraints are required to 
hold with at least some level of reliability(Liu,2009). 

To the authors’ best knowledge, reliability analysis with multi-objectives in 
conflict has received little attention in the study of location-routing problem for 
perishable goods in spite of its importance in the past. This paper focuses on 
LRP in uncertainties by adopting chance constrained goal programming 
framework and the development of a two-stage genetic algorithm incorporated 
with stochastic simulation for solving the stochastic LRP models. 
Computational result demonstrates the validity of the proposed method. 

The remainder of this paper is organized as follows: in the next section, the 
model for location-routing problem with chance constrained goal programming 
framework is presented and analyzed. These are followed by a hybrid intelligent 
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algorithm used in the problem. Following these, the heuristic method is tested 
using computational experimental data. We finish with some conclusion 
remarks in Section 5. 

2.  Proposed chance-constrained goal programming 
model 

2.1. Notation 

Sets 
I =the set of demand locations 
J =the set of candidate facility locations 

( , )G N A =the graph 
N I J  =the set of nodes 

A N N  =the set of arcs 

jP
=the set of all feasible routes associated with facility ,j j J   

L =the set of goals 
Parameters 

ijd
=the distance between node i  and j , ( , )i j A   

k =the feasible route associated with facility j  

1 if route  associated with facility  visits customer , , ,

0 otherwises

j

ijk

k j i i I j J k P
a

     
 


 

jkc
=cost of route k associated with facility ,j j J   

jf
=fixed construction cost associated with selecting facility ,j j J   

 =objective weighting factor 

0ld   =the positive deviation from the target of goal l  

0ld   =the negative deviation from the target of goal l  

j =the stochastic construction cost variable associated with selecting 

facility ,j j J   
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jk
=the stochastic cost of route k associated with facility ,j j J   

Decision Variables 

1 if facility  is selected, 

0 otherwisej

j j J
X

 
 
  
1 if route  associated with facility  is selected, , ,

0 otherwises

j

jk

k j i I j J k P
Y

     
 


 

2.2. Chance-constrained goal programming formulation 

Liu(2009) integrates Chance-Constrained Programming(CCP) with Goal 
program- ming(GP), which is called Chance-Constraint Goal 
Programming(CCGP), to deal with the stochastic constraints with multi-
objectives in conflict. 

The location-routing model with CCGP can be formulated as follows: 

 1 2
lexmin 0, 0d d  

                                     (1) 
Subject to: 

1Pr j j
j J

X B d  



  
 
 
 


                              (2) 

  2
Pr , ,

jk jk j
Y T d j J k P        

                    (3) 

j

j J

X P



                                            (4) 

1,
j

ijk jk

j J k P

a Y i I
 

  
                                   (5) 

0, ,
j jk j

X Y j J k P     
                            (6) 

 0,1 ,
j

X j J  
                                     (7) 

 0,1 , ,
jk j

Y j J k P    
                                (8) 

Lexmin in the objective function (1) represents lexicographically minimizing 
the objective vector, which includes the negative deviation from the two goals 
with priority level, the fixed depot facility location costs and the routing cots to 
the customers. Constraint (2) and (3) are the goal equations. Constraint (4) 

states that no more than P  facilities are to be located. Constraint (5) requires 



Liu/ Journal of Logistics, Informatics and Service Science Vol. 1 (2014) No.1 59-69 

 

63 
 

each demand node to be on one route. Constraint (6) imposes that a route can be 
assigned only to an open facility. Constraint (7) and (8) are standard binary 
restrictions on the variables. 

3.  Method of Solution 

In general, the LRP is NP-hard since they merge two NP-hard problems: depot 
facility location and vehicle routing. It is difficult to solve by traditional 
calculus-based optimization methods. Almost all surveys urge the use of 
heuristics due to the complexity of LRPs.  

In this problem, we design a solution procedure consisting of a two-stage 
genetic algorithm (GA) and Monte-Carlo simulation to handle the model. The 
upper level GA is employed to solve the location-routing problem, of which the 
fitness function is corresponding to the construction cost of the facilities and 
lower best fitness, while the lower level GA is used to solve the routing problem, 
of which the fitness is relative to total travel time. The lower level GA gives its 
feedback on the upper level GA. 

The Monte Carlo simulation is used to compute the uncertain functions in the 
model. The simulation is based on sampling random variables from probability 
distributions (Liu,2009). 

3.1. Computing optimal designs 

3.1.1. Representation of decision variables 

The representation of the decision variables in GA fashion, namely a 
chromosome, is an important aspect of applying GA. For the LRP studied here, 
the variables are codes as follows. 

Location variable: 

jx
 is coded as binary array, 1 for setting facility at node j  and 0 for 

otherwise. 
Routing variable: 
We note that the operational plan is fully determined by the decision 

vectors a,b,c .  

Vector 
 1 2, , , na a aa 

: integer decision vector representing n  

customers with 11 a n   and i ja a
for all , , 1, 2, ,i j i j n   . 
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Vector 
 1 2 1, , , vb b b b 

: integer decision vector with  

0 1 2 10 vb b b b       vn b  , v  for number of vehicles. 

Vector  1 2 1, , , pc c c c 
: integer decision vector with 

0 1 2 10 p pc c c c v c      
, p  for number of facilities. 

If 1(1 1)l lb b l m    , then vehicle l  is not used, and if 1l lb b   then 
thk  vehicle l  is used. 

When 
thk  vehicle used, if qk c

, then the route of vehicle (1 1)k k v   : 

facility 1 11 2(1 1)
k k kq b b b qc q p a a a c
         

,and if ql c
,then 

compare l  and 1qc  . 

 

Fig. 1: An Example of representation of decision variables 

For example, there are 4 customers, 3 vehicles, and 2 facilities. The routing 
variables are displayed in Fig.1.In this Figure, Route 1: 

Facility 1 21 a a   Facility 1, Route 2: Facility 32 a  Facility 2, 

Route 3: Facility 42 a  Facility 2. 

3.1.2. Main framework of the optimal algorithm 

The main view of the algorithm is described as follows: 
Step1: Initialization. Coding location variables with binary array, and 

generating the upper initial population, and set iteration counter 0i  . 
Step2: Fitness calculation. Calculating the fitness of each upper chromosome. 
Step2.1: Initialization. Coding routing variables with integer number array, 

and generating the lower initial population, and set iteration counter 0j  . 
Step2.2: Fitness calculation. Calculating the fitness of each lower 

chromosome. 
Step2.3: Genetic Operations. Crossover and mutation. 

Step2.4: Convergence check. If iteration counter j  is equal to generations 
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limit, output best result, else 1j j  , go to Step 2.2. 
Step3: Genetic Operations. Crossover and mutation. 
Step4: Convergence check. If iteration counter is equal to generations limit, 

output best result, else 1i i  , go to Step 2. 
The flow diagram for a stochastic simulation-based GA for LRP is shown in 

Fig.2. 

 

Fig. 2: An Example of representation of decision variables 

4.  Numerical Example 

In this section, we use a case study to evaluate the performance of presented 
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model and algorithm. The network, given by Daskin(1995), is depicted in Fig.3. 
The network consists of 12 nodes, 18 links. 

 

Fig. 3: Sample network and its optimal locations 

 

Fig. 4: Convergence curve of best objective 

The algorithm described above is implemented in C# language. Console 
output allows users to monitor the iteration process. In this example, we set 

0.5, 0.5   , working as present constant variables. The CPU searching 
time, on Intel (R) Core (TM) 2 Duo T6400 2.0GHz, RAM 2GB, is 288 seconds. 
When we set number limit of facilities = 3, number limit of routes =5, the 
optimal depot facility location solution is {B, E, I}, and the final best fitness is 
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638. The convergence curve of best objective and total objective are shown in 
Fig.4. and Fig.5. 

 

Fig. 5: Convergence curve of total objective 

5.  Conclusion 

This paper is concerned with the reliable location-routing problem for 
perishable goods. According to the characteristic of perishable goods, we 
formulate a Chance-Constrained Goal Programming framework to optimize 
depot locations and vehicle routing. The deterministic parameters are replaced 
by the probability one. And the hierarchical multi-objective is addressed by goal 
programming. Through CCGP, the priority goal can be directly calculated into 
the optimization process and uncertainties in the model’s coefficients which are 
expressed as stochastic variables, greatly enhancing the robustness of the 
optimization system. The model is then applied to a case study and solved 
through a two-step genetic algorithm incorporating Monte-Carlo simulation. 
Results from the experiment suggest that the proposed LRP- CCGP model is 
applicable to perishable goods supply chain design problems that are associated 
with uncertainties. 
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