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Abstract. Reconstructing a 3D structure from 2D images is a hot research 

topic in computer vision, and many approaches have been proposed to solve 

this problem in recent years. The structure from motion (SfM) algorithm has 

the potential to successfully reconstruct geometry from an image set, but the 

execution of the SfM algorithm on a single computer is only possible with 

small image sets. If an image set is large, the reconstruction speed decreases 

and it may even be too slow to complete 3D reconstruction. With the advent of 

cloud computing platforms, increasingly complex algorithms are being applied 

via cloud computing. Thus, the algorithm calculation speed for 3D 

reconstruction may be improved by taking advantage of the computational 

power of computer clusters. In this paper, we propose an algorithm for realizing 

3D reconstruction from sequence images on the Hadoop cluster. Our test 

results reveal that, using Hadoop, we can achieve fast 3D reconstruction. 

Keywords: 3D reconstruction, Structure from motion, Hadoop, HIPI, 

Bundler adjustment. 

1. Introduction

Computer vision is a simulation of human vision. The real world is three-

dimensional (3D); however, the images obtained using a camera are two-

dimensional (2D). Therefore, obtaining a three-dimensional model from an image 

is a hot topic in computer vision. Inspired by how the human eyes obtain 

information, researchers have proposed a multi-view-based 3D reconstruction 

algorithm (Hartley and Andrew 2003). Image-based 3D reconstruction generally 

refers to obtaining the 2D image information of a scene or object at different 

perspectives. First an image is obtained using a camera. Then, the image is 

analyzed and processed to restore the spatial geometry of the original 3D scene 
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or object. Compared to traditional geometry-based modeling, multi-view 3D 

reconstruction is a low cost, user-friendly operation, and a strong sense of reality. 

In recent years, multi-view 3D reconstruction has become a hot research topic in 

the fields of computer vision and computer graphics. Researchers have also 

proposed a large number of multi-view-based 3D reconstruction algorithms, such 

as contour-based methods, texture-based methods, and structure from motion 

(SfM) (Wang and Whangbo 2019; Snavely 2008). In this paper, we use SfM for 

3D reconstruction. In SfM, reconstruction is achieved by the following sequence 

of steps. First, the feature points from the image sequence are detected. Then, the 

feature points are matched. Subsequently, the parameters of the camera model are 

calculated using the multi-view geometric constraint relationship. Finally, the 

camera parameters are reconstructed to form the 3D model of the scene. The 

advantage of SfM is that the reconstruction process depends only on the feature 

point matching between the views and no additional equipment is needed. For 

this reason, many researchers are using SfM for 3D reconstruction. However, 

with an increasing number of images, huge amounts of time are required to realize 

3D reconstruction on a single computer, meaning requests for fast reconstructions 

cannot be fulfilled. Numerous research efforts have been made to boost computer 

performance and utilize GPUs to extract feature points to improve calculation 

speed. However, the improvements realized by these methods are marginal at best 

because of the complexity of the SfM algorithm. 

The powerful computing abilities of the Hadoop computing platform (Chang, 

et al., 2008) have made it a popular tool for researchers. A number of complex 

algorithms have been successfully implemented on Hadoop for performing 

calculations. We were motivated to try to improve the algorithm calculation speed 

for 3D reconstruction using the computing power of the Hadoop computer cluster, 

which serves as a platform in which a number of computers can perform 

computations concurrently, resulting in improved efficiency. In this study, we 

implemented the SfM 3D reconstruction algorithm on the Hadoop cluster and 

confirmed that its utilization can contribute to fast 3D reconstruction. 

In section 2, we review related works on SfM and Hadoop. In section 3, we 

describe the implementation of the SfM 3D reconstruction algorithm on Hadoop 

to improve feature matching and calculation speed. We describe our experimental 

process and evaluate the reconstruction results in section 4. Finally, in section 5 

we present our conclusions and discuss future plans. 

2. Related Work 

2.1. Structure fron motion 

The SfM algorithm, which was proposed by Longuet-Higgins, has been a 
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research hotspot in various fields since its inception. Early SfM technology was 

based on photogrammetry, which required camera calibration during 

reconstruction to obtain the internal parameters of the camera and confirming 

camera position and direction. A 3D structure can only be reconstructed when the 

internal and external parameters are equal. In order to achieve more accurate 

results, bundle adjustment optimization is typically performed on the initial 

reconstruction results. Bundle adjustment has become an important part of SfM. 

SfM methods can be divided into two classes: sequential and global. Sequential 

SfM pipelines start with a minimal reconstruction based on two or three views 

and incrementally add new views into a merged representation. This class of SfM 

algorithm uses the following procedure: 

• Feature detection and matching: the first step is feature point extraction 

and matching. Feature point extraction is the basis of 3D reconstruction. 

We must calculate the positional relationship of the camera by matching 

feature points. Therefore, the effect of feature point matching directly 

determines the success or failure of 3D reconstruction. Common feature 

point extraction algorithms include SIFT, SURF, and Harris. After 

extracting the feature points, we must match the feature points. 

• Computation of the fundamental matrix and essential matrix: The second 

step is the computation of the fundamental matrix and essential matrix. 

After feature point matching, we must calculate the fundamental matrix 

according to the matched feature points. The basic matrix is a 3 x 3 

matrix. This matrix represents the correspondence between two 

matching feature points. Then, the camera internal parameters are used 

to solve the essential matrix. The camera internal parameters are the 

values obtained by camera calibration. The essential matrix contains the 

relative rotation of the camera and the matrix of the translation. After 

obtaining the rotation matrix R and the translation matrix T by SVD 

decomposition to find the external parameters of the camera. 

• Calculated camera position and 3D point: The third step is the 

calculation of 3D points based on camera position. Using the camera 

model, we can calculate the 3D points based on the principle of the 

pinhole camera. We then apply trigonometry to solve the 3D point. 

• Bundle Adjustment: Finally, we use the Bundle Adjustment algorithm 

to optimize and output the result of 3D reconstruction. 

(1) Feature detection and matching 

In the SfM algorithm, the starting points of reconstruction are the extraction 

and matching of feature points. From among the common feature detection 

algorithms, including scale invariant feature transform (SIFT) (Lowe, 2004), 
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SURF, Harris, etc., we chose improved SIFT to ensure high accuracy of feature 

matching. 

David Lowe first proposed the SIFT algorithm in 1999. It is still used to 

detect and describe local features in images. The SIFT algorithm is characterized 

by invariance to rotation, scale scaling, and brightness variation. Furthermore, it 

maintains a certain degree of stability against viewing angle changes, affine 

transformation, and noise. It has unique, multi-volume, high-speed, and scalable 

properties. Therefore, the SIFT algorithm can address issues, such as rotation, 

scaling, translation of the target, image affine transformation, projection 

transformation, illumination influence, target occlusion, debris scene, noise. The 

essence of the SIFT algorithm is to find key points (feature points) in different 

scale spaces and calculate the direction of the key points. The key points that SIFT 

finds are outstanding and do not change due to factors such as illumination, affine 

transformation and noise. For example, corner points, edge points, bright spots in 

dark areas, and dark spots in bright areas. Therefore, the SIFT algorithm is an 

effective feature point extraction algorithm. The SIFT algorithm is composed of 

four main stages of computation for generating a set of image features. 

The first stage is scale-space extrema detection. In this stage, the algorithm 

searches for images in all scale spaces and identifies potential scales and 

invariable points of interest through Gaussian differential functions. To detect 

stable key points in scale space, Lowe proposed the detection of local extremum 

points in Gaussian difference scale space as the key point. The DoG operator is 

defined as the difference between the Gaussian kernels of two different scales. 

The DoG equation is as follows: 

D(x, y, σ) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ I(x, y) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎)     (1) 

where G (x, y, σ ) is a Gaussian kernel function,  is a scale space factor, 

which is the standard deviation of the Gaussian distribution. It reflects the degree 

to which the image is blurred. The larger the value of σ, the more blurred the 

image, and the larger the corresponding scale becomes. 

The second stage is key point localization. Given that the DoG value is 

sensitive to noise and edges, and its positioning accuracy is not high, to enhance 

the stability of the feature and improve the positioning accuracy, SIFT performs 

curve fitting through the scale space DoG function to remove feature points that 

do not meet the requirements. There are two main feature points that do not meet 

the requirements. The first is a low-contrast feature point, and the other is the 

corresponding point on the edge. Once these steps are complete, the feature points 

are detected. For the image to become rotation invariant, it is necessary to 

calculate the direction of the feature points. According to the gradient direction 
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distribution feature of the neighborhood pixel of the feature point, a direction can 

be specified for each feature point. This can make the operator rotation invariant. 

Let (x, y) be a neighboring pixel of a feature point, then the modulus of the 

gradient at (x, y) pixels, m(x, y), and the direction θ(x,y) are calculated as follows: 

m(x, y) = √[𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)]2 + [𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)]2       (2) 

θ(x, y) = arctan
𝐿(𝑥,𝑦+1)−𝐿(𝑥,𝑦−1)

𝐿(𝑥+1,𝑦)−𝐿(𝑥−1,𝑦)
                        (3) 

The third step is orientation assignment. After calculating the gradient 

direction, the histogram is used to calculate the gradient direction and amplitude 

corresponding to the pixels in the neighborhood of the feature points. The 

gradient histogram changes from 0 to 360 degrees. At each 45 degrees is a column; 

thus, a total of eight columns exist between 0 and 360 degrees. The peak of the 

histogram indicates the main direction of the neighborhood gradient at the current 

feature point, which is the direction of the feature point. 

The final stage is the key point description. First, the coordinate axis is 

rotated to be consistent with the main direction of the feature point such that 

rotation invariance is ensured. Then, a 16 x 16 window is selected, centering on 

the feature point, and then divided into 16 4 x 4 squares and calculated in the eight 

directions gradient histogram. Thus, each feature point can generate 128 data 

samples, which is the 128-dimensional feature vector of SIFT. After generating 

the SIFT feature vector, we can establish the correspondence between the feature 

vectors using a similarity measure such as the Euclidean distance between two 

feature points for matching (Matthew Brown, et al), using the SIFT algorithm for 

feature point detection and matching. The result is shown in Fig.1. 

 

 

Fig. 1:  Feature detection and matching results using SIFT 

(2) Computation of the fundamental matrix and essential matrix 

In the two images, the relative position of the matched feature points is 
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constrained by the geometric relationship of the two image planes, which is called 

the polar geometry in computer vision. The fundamental matrix is an algebraic 

representation of epipolar geometry (Dubey and Tomar, 2017). It is a 3×3 matrix 

of rank two. If a point in 3-space X is imaged as x in the first view and x’ in the 

second view, then the image points satisfy the relationship: 

x' F x = 0                                                       (4) 

where x' and x are the corresponding feature points in the two images. At least 

eight corresponding points are required to calculate the fundamental matrix F, 

which is a 3×3 matrix of rank two. 

The essential matrix E (Hartley, 1992) is a specialization of the fundamental 

matrix for the case of normalized image coordinates. Considering a pair of 

normalized camera matrices P=[I|0] and P’=[R|t], the fundamental matrix 

corresponding to the pair of normalized cameras is customarily called the 

essential matrix and has the form: 

E = [𝑡]𝑥  𝑅                                                       (5) 

In equation 5, t represents the relative translation of the two cameras and R is 

a rotation matrix. Thus, E contains the relative positions of the two cameras. The 

relationship between F and E is: 

E = 𝐾′𝑇  𝐹 𝐾                                                  (6) 

In the equation 6, K’ and K are the internal parameters of the two cameras. 

The camera internal parameters represent the projection relationship inside the 

ray machine. We usually use the camera calibration to find the camera internal 

parameters. Once we know the internal parameters of the two cameras, the 

essential matrix E can be calculated using equation 6. 

(3) Calculated camera position and 3d point 

The essential matrix includes the relative positions of the two cameras, which 

can be obtained by decomposing the essential matrix (Triggs, 1996). The essential 

matrix has a rank of two, which means exactly two of its singular values are non-

zero. In contrast to the fundamental matrix, the essential matrix satisfies the 

additional constraint that these two singular values are equal because of the 

invariant singular values of a matrix after the orthonormal transformation of that 

matrix. Thus, the singular value decomposition of E is: 

E =  𝑈 𝐷 𝑉𝑇                                              (7) 

where D=diag (k, k,0). Then, up to a certain scale factor, the factorization has 

one of the forms: 

S =  𝑉 𝑍 𝑉𝑇   R =  𝑈 𝑊 𝑉𝑇  or  𝑈 𝑊𝑇 𝑉𝑇                      (8) 
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Where： 

W = [
0 1 0

−1 0 0
0 0 1

]         Z = [
0 −1 0
1 0 0
0 0 0

]                               (9) 

In equation 8, R and S are the rotation and translation matrices, respectively. 

The origin of the world coordinate system can be set as the optical center of the 

camera of the first image, meaning the camera projection matrix for the first 

image can be expressed as: 

P = 𝐾 [ 𝐼 | 0 ]                                              (10) 

Where I is a 3×3 identity matrix. Then, R is the rotation matrix and t is a 

translation vector for the camera of the second image. The camera projection 

matrix for this camera can be represented as: 

P2 = 𝐾 [ 𝑅 | 𝑡 ]                                                  (11) 

After the camera model is obtained, the 3D coordinates of the corresponding 

feature points can be computed via triangulation. The triangulation model is 

shown in Fig. 2. 

 

 

Fig. 2:  Feature detection and matching results using SIFT 

In Fig. 2, images A and B are images taken by cameras at different positions. 

After finding the corresponding points on the image, we can derive the 3D 

coordinates of the feature points based on the camera model. In the ideal case, 

rays A and B should intersect. However, because the two lines do not intersect 

because of errors, we typically use the center point with the shortest distance 

between the two rays as the 3D coordinate to reduce the error. 

(4) Bundle adjustment 

After calculating the 3D point, we use the bundle adjustment (S. Agarwal et 

al, 2010) method to reduce error. The bundle adjustment method takes the image 
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point coordinates of undetermined pixels as observations and uses minimum 

reprojection error as the objective function to solve for the camera external 

parameters and space coordinates of undetermined pixels using the least squares 

principle. It belongs to the class of nonlinear minimization algorithms. The 

bundle adjustment process can be expressed as: 

g(C, X) = ∑ ∑ 𝜔𝑖𝑗(𝑞𝑖𝑗 − 𝑃(𝐶𝑖 , 𝑋𝑗)2𝑚
𝑗=1

𝑛
𝑖=1                              (12) 

where 𝑃(𝐶𝑖, 𝑋𝑗) is the reprojection value and q_ij is the observed 2D location of 

point j in image i. The goal of bundle adjustment is to minimize the value of the 

objective function g (C, X). 

2.2. Hadoop 

Apache Hadoop is an open-source software framework for distributed storage 

and distributed processing of very large data sets on computer clusters built from 

consumer hardware. It is designed to scale up from single servers to thousands of 

machines, each offering local computation and storage. Hadoop consists of two 

important frameworks: The Hadoop distributed file system (HDFS) (Ghazi, et al) 

and mapreduce.  Featuring high fault tolerance and scalability, HDFS allows 

users to deploy Hadoop on cheap hardware for constructing distributed systems. 

HDFS supports streaming forms to access data. MapReduce is applied to massive 

data analysis problems. Combining MapReduce and HDFS, the big data can first 

be divided, and then parallel calculation can be performed on the divided data. 

The output of the previous stage is used as the input of the next stage. Thus, the 

data can be processed efficiently in the distributed cluster. The distributed 

computing framework of MapReduce allows users to develop applications 

without any special knowledge regarding distributed systems. Distributed 

applications utilize large-scale computing resources to solve big-data problem 

that cannot be solved using traditional computers. 

  

 

Fig. 3: The structure of Hadoop system 

(1) Mapreduce 

MapReduce adopts a structure similar to that of HDFS and includes 
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JobTracker and TaskTracker. The function of JobTracker is to manage the jobs 

in Hadoop. The function of TaskTracker is to perform specific job tasks. The core 

processes of MapReduce is mapping and reducing. The map process processes 

the data block and outputs the result in the form of key value pairs. The system 

sorts the results according to the map key as an input to the reduce process. A 

MapReduce job is divided into the following steps: 

• Submit homework. 

• Assign and execute Map tasks. 

• Assign and execute reduce tasks. 

• Output the result. 

 

 

Fig. 4: The mapreduce structure 

(2) Hadoop image processing interface 

In order to process images on Hadoop, the University of Virginia Computer 

Graphics Lab proposed the Hadoop image processing interface (HIPI) (Sweeney 

and Arietta, 2011). The HIPI is an image processing library designed to be used 

with the Apache Hadoop MapReduce parallel programming framework. It 

provides a solution for storing large collections of images on the HDFS and makes 

them available for efficient distributed processing. The HIPI also provides 

integration with OpenCV, which is a popular open-source library that contains 

many computer vision algorithms. The organization of a typical HIPI program is 

illustrated in Fig. 5. 
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Fig. 5 : Organization of a typical HIPI program 

3. Proposed Algorithm 

As described in section 2.1, the SfM computing process is complex and requires 

a huge amount of time to perform 3D reconstruction when there are many images. 

For example, approximately 10 minutes are required for the 3D reconstruction of 

100 images on a single computer. Several days may be required for 3D 

reconstruction when using large-scale image sets (e.g. numbers of images greater 

than 10,000). This makes it impossible to satisfy requests for fast reconstruction. 

 With the advent of the Hadoop computing platform, a growing number of 

complex algorithms (Yan and Huang, 2014; Chandrika, 2018) have been applied 

to the Hadoop platform to achieve reduced run time. In this study, in order to 

improve the efficiency of 3D reconstruction, we implemented a 3D point cloud 

reconstruction algorithm using SfM with sequence images in Hadoop. 

Because Hadoop is a distributed system composed of mapper and reducer 

phases (He, et al, 2008) the following changes are required for the implementation 

of our algorithm: 

• First, image formats must be converted into those that can be identified 

by Hadoop. In this study, we converted the images using the HIPI image 

bundle because we used the HIPI library. 

• In the mapper phase, we performed feature extraction using the 

improved SIFT algorithm and changed to the key value format. 

• In the reducer phase, after matching the extracted feature points, we 

calculate the fundamental matrix F and essential matrix E by matching 

pairs of feature points. The then obtained the relative camera positions 

by factorizing the essential matrix. Finally, we utilized the camera 

position information to calculate 3D points. Because errors occur during 

the reconstruction of 3D points because of noise, we performed bundle 

adjustment to for error reduction. Fig. 6 presents a diagram of the system 

composition. 
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Fig. 6: System composition diagram 

3.1. Image imput and conerdion format 

Hadoop was designed for traditional large-text-file processing utilities in which 

each line is a record. Because images are not text files, they cannot be directly 

analyzed by Hadoop. Therefore, we first converted the image files into a format 

identifiable by Hadoop in order to make them compatible with the platform. We 

used the HibImport format conversion tool from the HIPI library. From a folder 

of images on a user’s local file system, HibImport creates a Hipi Image Bundle 

(HIB) as the main input file for the HIPI framework. A HIPI Image Bundle 

consists of two files: a data file containing concatenated images and an index file 

containing information regarding the offsets of images in the data file. This setup 

allows for easy access to images anywhere in the bundle without having to read 

every image. 

3.2. Mapper phase 

In the mapper phase, the first step is to get the Hib images and then convert them 

to the Mat image format. Given that the extraction of the feature points is a key 

part of the 3D reconstruction, and is thus directly related to the success or failure 

of the 3D reconstruction, we apply the SIFT algorithm to detect the feature points 

of an image in this study. Which causes each feature point to generate a 128 

dimensional feature point descriptor. Since all data stores in the Hadoop file 

system are in key value format, we need to store the feature point 

descriptors in the form of key values. The value of key takes the name of the 
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image plus the index value of the feature point, and the value of value includes 

the position of the feature point, the RGB value of the feature point, and the 

descriptor of the feature point. The format of the key value of the extracted feature 

points is as follows: 

 

 
Fig. 7: Convert the feature point descriptor to the output value of the key value. The first 

two digits represent the position of the feature points, the next three digits represent the 

RGB values of the feature points, the last digit is the description vector of the feature 

points, and each feature point has a 128-dimensional description vector. 

The final mapping output is a key-value pair. Next we will enter the Reducer 

phase and perform feature point matching. 

3.3. Reducer phase 

In the reducer phase, the feature points of the image must be matched after 

extracting the feature points of all the images in the mapper stage. Given that the 

sequence image is used, we only need to match (Kim and Manjusha, 2017) the 

two adjacent images. When matching, we use the RANSAC algorithm to improve 

the matching accuracy. The matching of adjacent images is in fig. 8: 

 

 

Fig. 8:  Matching of two sequence images 

After the feature points matching, we use the matched feature points to 

calculate fundamental matrix and essential matrix, Because the Essential matrix 
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contains camera external parameters, we use SVD decomposition to calculate the 

camera model. and use factorization to obtain an initial camera model. We then 

use triangulation to obtain the 3D points that form the 3D reconstruction of two 

images. 

 

 

Fig. 9:  Calculation process in the reduce phase 

After reconstructing the feature points of the two images, we'll add more 3D 

points in the image, we use a sequential method to perform 3D reconstruction for 

more than two images. Sequential SfM pipelines begin with a minimal 

reconstruction based on two views. New views are then incrementally added into 

a merged representation. The sequential SfM algorithm follows the steps shown 

in in figure 10. 

 

 

Fig. 10: Sequential SfM algorithm for 3D reconstruction 

Figure 8 illustrates the process of point cloud integration. In the beginning, 

we utilize the initial two images to the first point clouds. The rest of the images 
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are then reconstructed one by one, followed by adding the new point from every 

image into the point cloud until all of the images are completely reconstructed. 

Because errors occur in the reconstructed 3D points because of noise. We use 

the bundle adjustment method to reduce the reconstruction error. The bundle 

adjustment method optimizes the back projection error between the actual 

detected and predicted image points, which can be expressed as the sum of the 

squares of the nonlinear real-valued functions, so the minimum can be obtained 

by nonlinear least squares. We use the Levenberg-Marquardt algorithm to 

minimize the error. 

4. Experimental Results and Evaluation 

To evaluate the performance of the proposed algorithm, we implemented it on a 

single computer and on the Hadoop platform using the OpenCV library. The 

Hadoop platform is a Hadoop cluster composed of five computers. We utilized 

the following libraries in this experiment: 

• Linux version Ubuntu 16.04 

• OpenCV version 2.4.11  

• Hadoop version 2.7.2 

• HIPI version 2.1.0 

Because the SfM algorithm output is data based on 3D point cloud and 

camera positions, to visualize the reconstruction results, we displayed the 

reconstructed 3D point cloud using the Point Cloud Library (PCL) (Rusu and 

Cousins, 2011). 

First, we used 100 standard database photos taken by a single calibrated 

camera to perform 3D reconstruction. These photos were taken by Steve Seitz, 

James Diebel, Daniel Scharstein, Brian Curless, and Rick Szeliski Fig. 11 and 12 

present the input images and results, respectively. 
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Fig. 11: We used 100 input sequence images photographed from different positions to 

perform 3D reconstruction, 20 of which are illustrated here. 

 

Fig. 12: 3D reconstruction results using 100 input sequence images. The yellow area 

represents the 3D reconstructed points and the red points indicate the camera positions. 

Some red points overlapped because they were drawn large and tightly clustered. 

Next, we used 100 sequence images captured by a smartphone camera 

depicting the vision tower at Gachon University for 3D reconstruction. Figs. 13 

and 14 present the input images and results, respectively. 
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Fig. 13: Input images depicting the vision tower at Gachon University. 

 

Fig. 14: 3D reconstruction results using sequence images depicting the vision 

tower at Gachon University. 

For comparison, we performed the same 3D reconstruction on a single 

computer. Table 1 contains the elapsed times for the 3D reconstruction of these 

images. 
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Table 1: Comparison of time consumed for 3D reconstruction using 100 images 

Title 1 Single computer Hadoop 

standard database 

photos 
7 minutes and 43 seconds 3 minutes and 21 seconds 

vision tower images 9minutes and 32 seconds 4 minutes and 39 seconds 

 

As shown in Table 1, 3D feature points can be reconstructed on the Hadoop 

platform much faster than on a single computer. 

5. Conclusion 

Computer vision is an important research field and 3D reconstruction based on 

image sequences has significant research and application potential. Compared to 

traditional modeling methods, image-based 3D reconstruction has the advantages 

of being a simple and fast construction method, having no measurement 

requirements, and creating a strong sense of reality. It has garnered significant 

research interest in recent years. Using the SfM algorithm, we performed a 

number of experimental analysis tasks. 

First, to achieve 3D reconstruction from image sequences, it is necessary to 

determine the matching relationships between the image feature points. We used 

SIFT features in the matching algorithm to improve the matching accuracy of 

feature points. Owing to its rotation invariance, scale invariance, and strong 

stability to illumination and occlusion, SIFT is effective in feature extraction. By 

using the SIFT matching algorithm, the accuracy of the feature point extraction 

is significantly improved, and more relevant information regarding the feature 

points is obtained. This is then used for the next calculation step. 

For 3D reconstruction, we used the SfM algorithm to calculate the positional 

relationship of feature points between a series of sequence images, rotation, and 

so on. From the calculation of the fundamental matrix and the essential matrix, 

the SVD decomposition is performed to obtain the camera matrix, and R and t are 

obtained. Thereby, depth information between the images and 3D feature point 

information are calculated. Next to solve the issue of slow reconstruction or 

failure to complete reconstruction for large-scale image sets, we proposed 

implementing the 3D reconstruction algorithm on the Hadoop platform to 

enhance 3D reconstruction speed. Porting the 3D reconstruction method to 

Hadoop is a major innovation in our algorithm. Reconstruction by SFM algorithm 

has a good effect, but its calculation process requires a lot of time, which is a 
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problem in 3D reconstruction. Therefore, we propose to perform 3D 

reconstruction on the Hadoop platform. It turns out that our algorithm has greatly 

improved its speed while maintaining good reconstruction results. 

Although our proposal to perform 3D reconstruction on Hadoop was 

successful in some respects, there are various areas in need of improvement. First, 

although we improved feature point matching, errors still occurred during the 

matching process. Second, our final 3D reconstructions failed to reconstruct the 

actual dimensions of target objects. Therefore, in future research, we will focus 

on the improved matching of feature points and realization of superior Euclidean 

reconstruction. 
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