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Abstract: By dividing customers into different segments according to origin-

destination (O-D) pairs, we consider a network capacity control problem 

where each customer chooses the open product within the segment he belongs 

to. Starting with a Markov decision process (MDP) formulation, we 

approximate the value function with an affine function of the state vector and 

develop our model based on the O-D demands. The affine function 

approximation results in a linear program (LP). We give a column generation 

procedure for solving the dual problem of the LP and provide the numerical 

results. 
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1. Introduction 

In most of capacity control models of network revenue management, uncertain 

demands are considered for each product (each product for a specific fare class). 

However, the exploration of models based on stochastic demands between O-D 

pairs will probably become increasingly important as opportunities for code-

sharing within strategic partnerships increases the breadth of choice in 
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customers itinerary selections. Motivated by this consideration, Liu et al. (2011) 

provided an independent demand model which is developed with O-D demands. 

This paper will focus on extending the model of Liu et al. (2011) to the 

customer choice setting. 

The remainder of the paper is organized as follows. Section 2 provides a brief 

overview of the related literature. Section 3 gives a Markov decision process 

formulation. Section 4 considers the affine functional approximation and the 

resulting problem, derives the LP model from it. Section 5 gives a column 

generation algorithm. We provide numerical results in Section 6. Summary is 

presented in the final section. 

2. Brief Review of Literature 

Belobaba and Hopperstad (1999) demonstrate the significant impact of 

passenger choice behavior on the performance of revenue management systems. 

Van Ryzin and Vulcano (2008) propose a simulation-based optimization 

approach to network capacity control problem under a general choice scheme. 

Gallego et al. (2004) provide a choice-based deterministic linear programming 

(CDLP) model. Motivated by the work of Gallego et al. (2004), Liu and van 

Ryzin (2008) study a linear programming formulation and provide a column 

generation algorithm to solve the problem for the multinomial logit (MNL) 

choice model with disjoint consideration segments. Bront et al. (2009) focus on 

the MNL choice model with overlapping consideration sets. They also provide a 

column generation algorithm to solve it. 

3. Problem Formulation  

We begin with a flight network, which is comprised of m  flight legs, indexed by 

the set 1,...,i I m 
. The network has l O-D pairs. The set of O-D pairs in the 

entire network is denoted by 1,...,n N l 
. Flight legs can be combined to create 

routes which serve various O-D pairs in the network. Typically, there are 

multiple routes that can serve a given O-D pair. The firm sells k products. The 

set of products is denoted by 1,...,j J k  . Let nJ J be the set of products which 
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belong to O-D pair n , then n N nJ J . Furthermore, we have 'n nJ J   for 'n n . 

The fare for product j is jf
. 

Define the incidence matrix ,[ ]i jA a , where , 1i ja  if product j uses leg i and 

, 0i ja  otherwise; the j th column of A , denoted
jA , is the incidence vector for 

product j . We let
jA denote the set of legs used by product j .   

Time is discrete, there areT periods, and the index t represents an arbitrary 

time. Within each time period t , at most one customer arrives. The probability 

of having an arrival in each time period is denoted by .  

Let S J be the set of the total available products which are offered by the 

firm. Given the set S , let  njP S denote the probability that a segment- n customer 

chooses the product nj J S  . To determine the purchase probability  njP S , define 

a preference vector 0nv  , which indicates the customer “preference weight” for 

each product contained in nJ , and the no-purchase preference value 0nv . Then

   0 .
n

nj nj nj nj J S
P S v v v

 
   

If nj J S  or nj J , then
0njv 

. Let  jP S
be the probability that the product j S

is chosen by an arriving customer. Noting that the seller ex ante cannot 

distinguish which segment each arriving customer belongs to, then

   .j n njn N
P S p P S


  

The state of the network is described by a vector  1,..., mx x x
of remaining 

leg capacities; the initial state is denoted by vector  1,..., mc c c
.If a single unit 

of product j S is sold, the state of the network changes to
jx A .  
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Let  tv x be the maximum total expected revenue over periods ,...,t T starting at 

state x at the beginning of period t . Then  tv x must satisfy the Bellman 

equations with the boundary condition  1 0 Tv x x   . 

          1 1 1
( )

max ,     ,     j

t n nj j t t t t
S J x

n N j S

v x P S f v x v x A v x t x X   


 

            
 

  (1) 

The set    : jJ x j J x A  
is the set of products that can be offered when the 

state is x . 

The value function at initial state c can be computed by the linear program 

(P0)   
 1min   

v
v c

   

            1 1 1s.t.   ,   , ,j

t n nj j t t t t

n N j S

v x P S f v x v x A v x t x X S J x   

 

        
  

 

with decision variables    ,tv x t x
. 

4. Functional Approximation 

In general, (1) and (P0) are intractable because of the enormous size of the state 

space. In this section, we first use a set of affine functions to approximate  tv  , 

and then give the resulting primal-dual formulations. 

Consider the affine functional approximation 

  , ,t t t i i

i I

v x x 


 
                        (2) 

where
t is a constant offset and

,t i estimates the marginal value of a seat on leg i

in period t . We assume
1 0T   and 1, 0,  T i i    . 

Plugging (2) into (P0) yields that 

(P1) 
1 1,

,
min i i

i I

c
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     1 , 1, ,s.t. ,  , , .t t t i i t i i n nj i j n nj j t

i I n N j S n N j S

x x P S a P S f t x X S J x      

    

  
         

   
    

 

The dual of (P1) is 

(D1)  
 

D1 , ,

, ,

max
t

n nj j t x S

t x X S J x n N j S

Z P S f


 
   

 
  

 
  

                          
(3) 

   
 1

, ,

, , 1, ,

,

   if 1,

s.t.  , ,  
.    2,..., ,    

t

t

i

i t x S

x X S J x i n nj i j t x S

x X S J x n N j S

c t

x i t
x P S a t T


 



  

   




  
   

 


  

   
(4)

 

 
 1

, ,
1, ,

,
,

1   if 1,

,     2,..., ,

     0.

t
t

t x S
t x S

x X S J x
x X S J x

t

t T 






 

 




   




 
                   (5) 

5. Column Generation Algorithm 

The program (D1) has a large number of variables but relatively few constraints, 

so we can solve it via column generation. Denote the reduced profit of , ,t x S
 by 

   , , , 1, , 1.t x S n nj j t i i t i i n nj i j t t

n N j S i I n N j S

P S f x x P S a       

    

  
       

   
    

 

Given a feasible solution to (D1), denoting the resulting prices by ,  , now 

solve 

   
   , , , 1, , 1, 1

, , , ,
max max .

t t

t x S n nj j i j t i t i t i i t t
t x X S J x t x X S J x

n N j S i I i I

P S f a x        
   

   

 
      

 
   

 

Let the binary vector  0,1
k

u be the characteristic vector of set S . It indicates 

which products are offered at any period, 1ju  if j S , and 0ju   otherwise. For 

fixed 1t  , this is equivalent to solving the following optimization problem: 

(S1)     
 

 
, 1,

, 1, 1
,

0

max n

n

j nj j i j t ij J i I

n t i t i i t t
x u

n N i Ij nj nj J

u v f a
x

u v v


    

 

 

 


   



 
 


 

 

 

, s.t.  ,       , ,

       0,1 ,       ,  

       0,..., ,  .

i j j i

j

i i

a u x i j

u j

x c i
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(S1) can be transformed into a mixed integer linear programming problem 

(see Bront et al. 2009) and solved by any mixed integer programming software 

package. If the optimal function value is nonpositive, then we have attained 

optimality; otherwise, we add the column to the existing set of columns for (D1). 

Let   *, * be the optimal solution for (P1). A control policy in period t and 

state x can be computed by solving 

  

 *

, 1,

0,1
0

max .n

j
j

n

j nj j i j t ij J i I

n
u x A j J n N j nj nj J

u v f a

u v v




 

     





 



              (6) 

We can solve (6) using simple ranking procedure (see Liu and Van Ryzin 

2008). 

6. Numerical Results 

Figure 1 illustrates a hypothetical airline network which consists of five legs, six 

O-D pairs and ten routes. Furthermore, two fare classes (Business and Leisure) 

are offered for each route. Business fares are drawn from the Poisson 

distribution with mean 200 and Leisure fares are drawn from the Poisson 

distribution with mean 100. For simplicity, we considered stationary demands 

with the probability 0.2 for having no customer arrival in a period. We 

generated problem instances with  20,50,100,200,500T  . For each instance, we 

set the initial capacity, c , to be the same for each leg. We solved (D1) and 

simulated each instance 100 times for each policy, using the same sequence of 

customer demands across different policies. The results are shown in Table1. 

 

Fig.1: Hypothetical airline network with five legs, six O-D pairs and ten routes. 

Table 1: Policy results 

    Capacity    Mean    Std.err. 

A 

C 

 

B 

 

D 
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T    per leg      

20      3     1456.40    135.21 

50      7     3468.40    302.75 

100     15     9132.80    608.42 

200     29    13480.00    985.34 

500     76    33208.00    1362.20 

7. Summary 

In this paper, we consider a network capacity control problem where customers 

choose the open product according to their O-D pair. Starting with a Markov 

decision process (MDP) formulation, we make an affine functional 

approximation to the optimal dynamic programming value function. Then, we 

derive the program (D1). We give a column generation procedure for solving 

(D1) and provide the numerical results. 
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