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Abstract. Micro-expression (ME) is a form of reflexive behaviour and indirect 
communication in which an individual expresses their emotions via facial muscle 
movements. Due to the nature of ME that only appears for a fraction of a second, and even a 
trained individual will have a hard time detecting and recognizing it. In order to avoid 
human error and achieve better results, an automatic ME recognition system is introduced. 
In this work, a transfer learning approach is utilized to recognize the static facial micro-
expression images. Six pre-trained convolutional neural network (CNN) models, including 
the AlexNet, SqueezeNet, GoogleNet, EfficientNet-b0, ResNet 50, and MobileNet-v2 are 
employed and evaluated on the improved version of the Chinese Academy of Sciences 
Micro-expression (CASME II) database. The pre-trained CNN models are compared to each 
other by their accuracies. We conducted the experiments under three different settings, in 
Setting 1 the parameter of entire learnable layers are unaltered, setting 2 is by freezing the 
first 20% of the learnable layers and Setting 3 the first 50% of the learnable layers are frozen. 
AlexNet obtained higher accuracy of 99.84% in Setting 3. The freezing learnable layer 
approach is able to improve a pre-trained model’s accuracy and accelerate training time by 
not altering the parameters of the frozen layers. This research not only benefits the 
psychology field, but it also benefits the marketing field, security purposes, and other 
applicable fields. 

Keywords: Micro-Expression, convolutional neural network, pre-trained, transfer learning, 
AlexNet, SqueezeNet, GoogleNet, ResNet50, EfficientNet-b0, MobileNet-v2 
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1. Introduction 
A micro-expression (ME) is an unintentional, momentary facial expression. It is a non-verbal 
communication that occurs through the facial muscle’s movement underneath the facial skin. ME was 
first discovered and spotted by researchers while trying to search for non-verbal cues in a recorded 
interview between a doctor and a patient (CASME Database, n.d.). It tends to appear unconsciously 
while a person is trying to mask their genuine feelings. Without conscious awareness, it shows a 
person's genuine feelings. Unlike the macro-expression, MEs are hard to notice by human eyes and it 
is often missed due to that it only appears in a fraction of seconds with subtle facial movement. The 
Facial Action Coding (FACS) System was commonly adopted to study and taxonomize the ME by 
examining facial muscles movements that appear on the face (Chernykh & Prikhodko, 2017). The 
FACS can train a person to recognize and classify ME manually. However, considering humans make 
mistakes, accuracy is considerably low.  There are still some concerns regards to the accuracy of 
recognizing MEs with the naked eyes. On the other side, a highly precise categorization is essential 
for security and mental health diagnosis in order to avert any negative incidence. Therefore, an 
automatic computer-based system is highly in demand as it has fewer errors and provides better 
accuracy than trained individuals. 

Before the spontaneous database was publicly available, the earlier ME recognition studies were 
conducted using the posed ME database (Fan et al., 2016) (Gan et al., 2017). Posed databases are 
databases which contain a series of voluntary expressions that obtained from participants, which is not 
the genuine feeling of the participants. Spontaneous databases are databases which contain a series of 
involuntary expressions. It appears without the participant’s consciousness and reveals their true 
feeling. The expressions in the posed database are not genuine and it is irrelevant due to not being 
elicited spontaneously and lacking the characteristics of a genuine expression. One of the challenges 
of ME recognition that has yet to be solved is the lack of samples. The research of ME in the field of 
computer vision is still relatively new, which causes the lack of samples compared to other domains 
such as palmprint recognition, which has been researched longer and has sufficient samples. In this 
study, a transfer learning strategy is employed for ME recognition to get over the issue of not having 
enough samples. The major objective of this study is to categorize emotions such as disgust, fear, 
happiness, repression, sadness, and surprise using a variety of pre-trained CNN models. The 
experiments were conducted using six pre-trained CNN models without any preprocessing on the ME 
samples. The models' performance was assessed using the CASME II (CASME Database, n.d.) 
micro-expression database. Then, the performance of the pre-trained CNN models will be compared 
to each other and also compare them with other authors’ models. 

The rest of the paper is organized as follows. Section 3 describes the feature extraction method 
and preprocessing method of the dataset, and the models used in this research. Section 4 describes the 
experimental setup and the dataset used in this research. Section 5 describes the settings used and also 
discussed the model’s performance in this work. Section 6 concludes the findings of this work and 
suggests some ideas for the future work. 

2. Literature Review 
Madupu et al. (Madupu et al., 2020) introduced an automated facial emotion classification system 
based on the Convolution Neural Network (CNN) and the extracted features of the Speeded Up 
Robust Features (SURF). The remaining noise from the photos was removed using the high Boost 
filtering approach. The characteristics from the image were then extracted using SURF features 
extraction in this study. The extracted images that included different expressions were fed into CNN 
for training. In order to train and test the classifiers, Back Propagation Neural Network (BPNN) and 
CNN were utilized. The performances were reported to achieve 91% and 88% accuracies for both 
CNN and BPNN, respectively. Jain et al. (D. K. Jain et al., 2019) suggested a Deep Convolution 
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Neural Networks (DNNs) on the facial emotion recognition. In the work, two databases, named 
Japanese Female Facial Expression (JAFFE) and Extended Cohn-Kanade (CK+) were adopted to train 
the model. The proposed DNN managed to achieve as high as 95% accuracy, and it outperformed the 
other six different models that proposed by Lopes et al. (Lopes et al., 2017), Khorrami et al. 
(Khorrami et al., 2016), Jain et al. (N. Jain et al., 2018), Krestinskaya & James (Krestinskaya & James, 
2017), Chernykh et al. (Chernykh & Prikhodko, 2017), and Zhang et al. (Zhang et al., 2019). 

Nasri et al.’s (Nasri et al., 2020) proposed a facial emotion recognition system by adopting 
Xception CNN paired with a K-fold cross-validation technique for the static expression images. The 
Xception CNN model was trained in two different methods, one from scratch and the other b acial 
emotion recognition system was developed by combining the Xception CNN with the K-fold cross-
validation method for images of static expressions using the fine-tuning method. Then, Empathic, 
AffectNet and CK+ databases were used to test the proposed model. The fine-tuning technique 
achieved 98.2% accuracy on the CK+ database. The authors also experimented on more complex 
datasets where the AffectNet and Empathic datasets were combined, the proposed model could also 
achieve a promising result of 91.2% accuracy. Lasri et al. (Lasri et al., 2019) proposed a study to 
identify students' moods based on their facial expressions. In this work, the model was trained, 
validated, and tested using data from the FER 2013 facial expression database. The database consists 
of 32298 gray-scaled facial images which contain seven different facial expressions such as angry, 
disgust, fear, happy, sad, surprise and neutral. In addition, all the images were cropped and 
normalized into a 48×48 pixels resolution. For categorizing those seven emotion classes, a CNN 
model comprising four convolutional layers, four pooling layers to extract features, two fully 
connected layers, and a SoftMax layer was proposed. The proposed model achieved a 70% accuracy. 
Pranav et al. (Pranav et al., 2020) employed a 2-dimensional (2D) CNN to identify the facial emotion. 
A self-collected facial emotion database which contains five emotions including angry, happy, neutral, 
sad, and surprise were used. The proposed 2D-CNN model achieved an accuracy of 78.04% on its 
self-collected database. With the use of the Hybrid Convolution-Recurrent Neural Network (CNN-
RNN) technology, Jain et al. (N. Jain et al., 2018) developed recognizing facial emotions. MMI Facial 
Expression Database and JAFFE were employed. Firstly, a CNN model was used to extract the 
features of the facial images. RNN was then employed to classify facial expressions. In this work, a 
few CNN architectures were proposed. The first architecture includes ReLU layer, and it reached an 
overall accuracy of 94.46% while the second architecture involves 150 hidden units and achieved 
94.21% accuracy. The third architecture which is the hybrid of CNN-RNN with six hidden layers. It 
slightly surpassed the formers architectures which obtained the accuracy of 94.91%. The proposed 
model outperforms the other four models proposed by Khorrami et al. (Khorrami et al., 2016), Zhang 
et al. (Zhang et al., 2019),  Fan et al. (Fan et al., 2016) and Chernykh et al. (Chernykh & Prikhodko, 
2017). 

A Venturi Architecture for CNN was proposed by Verma et al. (Verma et al., 2019). The Venturi 
architecture contains 6 hidden layers and one output layer to classify seven facial emotions. Due to the 
structure of the hidden layers, which resembles a Venturi tube, this architecture received its name 
Both the training and testing of the models employed the Karolinska Directed Emotional Faces 
(KDEF) dataset. Proposed Venturi Architecture CNN was benchmarked with the Rectangular and 
Modified Triangular models in which the Rectangular architecture contains six hidden layers, and it 
was named as the number of nodes in each hidden layer is equal, which looks like a rectangle. On the 
other hand, the Modified triangular architecture proposed by Haque et al. (Haque et al., 2018). It is a 
CNN architecture that contains 7 hidden layers which were built up by ReLU. It contains 256 nodes in 
the first hidden layer and 512 nodes in the second layer. From the third to the seventh layer, there 
were fewer triangle-shaped nodes, giving the entire design the appearance of a modified triangle. As 
for the performance, the best result was obtained by Venturi Architecture, whose accuracy was 
86.78%, while the Rectangular model and Modified Triangular model earned an accuracy of 79.61% 
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and 82.70%, respectively. Gan et al. (Gan et al., 2017) utilized the Latent Regression Bayesian 
Networks (LRBN) to explicit the model spatial patterns embedded in posed and spontaneous 
expressions, respectively. In this work, SPOS database and NVIE database were used to train the 
LRBN model, separately. The stochastic approximation procedure (SAP) framework was used to 
learn the LRBN during the training process. All the samples from the databases were classified in 
binary classes, either a posed expression or spontaneous expression. As a result reported, it obtained 
higher accuracy of 98.94% on NVIE database than SPOS database with accuracy of 76.07%.  

Zhi et al. (Zhi et al., 2019) also a study using a 3D CNN and transfer learning to recognize facial 
micro-expression. In this work, the proposed 3D-CNN models were pre-trained by using Oulu-
CASIA database in a supervised learning condition and evaluated by using CASME II and SMIC. The 
images in the databases were pre-processed by using a 3D spline interpolation to normalize the length 
of the input facial image sequences. Data augmentation was also carried out by flipping every image 
horizontally to increase the image by seven times. The methods were compared with Local Binary 
Patterns with three orthogonal planes (LBP-TOP) paired with extreme learning machine (ELMtg) and 
LBP-TOP paired with Nearest Neighbor in CASME II and SMIC databases, respectively. By 
incorporating the transfer learning technique, the 3D-CNN model achieved 97.6% accuracy and 
achieved 97.4% accuracy in the SMIC database in a five-folded cross-validation. Wang et al. (Wang 
et al., 2018) adopted Transferring Long-term Convolutional Neural Network (TLCNN) model to 
recognize micro-expression (ME) with a tiny sample size. The transferring could be done in a two-
step method. The knowledge is first transferred from expression data. In order for ME to obtain the 
temporal sequence knowledge, a single frame of micro-expression video clips is transmitted and fed 
into the Long Short-Term Memory (LSTM). The pre-trained model was developed implementing the 
Radboud Faces Database, MMI Facial Expression Database, Taiwanese Facial Expression Image 
Database, and Karolinska Directed Emotional Faces. The proposed TLCNN model was evaluated 
against 3D-CNN, Directional Mean Optical Flow Feature (MDMO), LBP-TOP, STLBP-IP, 
Spatiotemporal Completed Local Quantization Patterns (STCLQP), and Facial Dynamics Map (FDM). 
All the models were evaluated by using SMIC, CASME and CASME II databases. Among the 
techniques, the TLCNN model outperformed others by achieving a mean accuracy of 71.2% in a 
video clip of 32 frames and 69.1% in a video clip of 64 frames. Sun et al. (Sun et al., 2020) adopted 
Knowledge Distillation in recognizing a dynamic Micro-Expression. The author proposed a residual 
network with a multi-task, multi-label network. The deep pre-trained teacher neural network was 
composed of the two final fully connected layers. The deep teacher neural network was pre-trained 
using the FERA2017 dataset, and its distilled knowledge was then transferred to and utilized to direct 
the training of the shallow student neural network. To get the final results, SVM was applied as the 
classifier.  SAMM, SMIC2, CASME, and CASME II databases were employed to assess the model. 
On the SMIC2, CASME, CASME II, and SAMM databases, respectively, average accuracy was 
found to be 76.1%, 81.8%, 72.6%, and 86.7%. 

3. Methodology 

3.1.  Convolutional Neural Network (CNN) Model 

The convolutional neural network (CNN), which can evaluate input like pictures or numerical data, is 
an example of a neural network that is used to evaluate input. CNN does not require much 
preprocessing. The architecture design of CNN is inspired by biological neural networks. The three 
primary types of layers that comprise CNN are dense layer, pooling layer, and fully connected layer 
(FC). The CNN model's structure is shown in Figure 1. The following sections provide an overview of 
each layer: 
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Fig. 1: Structural components of the CNN model 

 

3.1.1.  Convolution Layer 

A convolutional layer, which is where most of the processing is done, and it is a crucial part of CNN. 
Input data, a filter, and a feature map are among the things it requires. The input data is processed 
using convolutional techniques to extract important characteristics and capture spatial correlations. In 
the convolution procedure, kernel is slid over the input data. The outcome of convolving the filter 
with a corresponding local area of the input is then denoted by every segment of the feature map, 
which is formed by applying the filter to specific local sections of the input. 

3.1.2.  Pooling Layer 

A pooling layer is typically included in the construction of CNN used for deep learning tasks. Its 
objective is to maintain the most important features while shrinking the spatial dimensions of the 
input tensor. There are two types of pooling layers: Average pooling and Max pooling. The types of 
pooling layers are illustrated in Figure 2. 
 

 

Fig. 2: Illustration of Average pooling and Max-pooling (Yani et al., 2019) 

3.1.3.  Fully Connected Layer (FC Layer) 

Occasionally, a thick layer in CNN is used to refer to a FC layer. It usually appears at the end of a 
neural network architecture. Each node in the FC layer's output layer has a direct connection to a node 
in the pooling layer above. Then, the output will be sent to a corresponding layer for image 
classification. 
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3.2.  Transfer Learning 

A previously trained convolutional neural network (CNN) will be utilized as the starting point on the 
new job is employed in the machine learning methodology known as transfer learning. By using data 
from a previously trained model for a new job, this technique avoids the requirement of training a 
CNN model from ground up. It cuts down on the time and resources required for training a model 
from the ground up, which involves a large amount of data in order to reach maximum performance. 
Up to date, several popular CNN models, for instance, AlexNet, SqueezeNet, GoogleNet, ResNet, etc 
are available and have been pre-trained with the large-scale databases, e.g., ImageNet, and the trained 
parameters could be transferred to other target domains without retraining the model from scratch, to 
achieve computational efficiency. The concept of transfer learning is shown in Figure 3. A huge 
number of input photos from a source domain, such as ImageNet, are used to train Network A 
completely from scratch in the beginning. After a network has been thoroughly trained, the 
parameters (knowledge) from Network A may be entirely or partially transferred to Network B (also 
known as a pre-trained CNN model) to address our target domain problem without the use of massive 
input photos or expensive computing resources. Usually, the last fully connected and classification 
layers are to be replaced to suit the number of classes of our problem domain.  
 

 

Fig. 3: Concept of Transfer Learning 

3.3.  Proposed Models 

In this research, the pre-trained CNN models that used Chinese Academy of Sciences Micro-
expression (CASME II) database in this research work include AlexNet, SqueezeNet, GoogleNet, 
EfficientNet-b0, ResNet 50 and MobileNet-v2. Besides, all the pre-trained models will be utilized for 
transfer learning. These pre-trained models are modified at the output layers to classify seven facial 
ME classes, including Disgust, Fear, Happiness, Repression, Sadness, Surprise and Others. 

3.3.1.  AlexNet 

The entire AlexNet design consists of eight convolutional layers. There are five convolutional layers 
with max-pooling and three fully connected layers. Every convolutional layer has different kernel 
sizes and some filters. This input layer is fitted with the image with dimensions of 227×227×3. 
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Following the first convolutional layer, which has a cross channel normalization layer and a Max-
pooling layer, is the first convolutional layer, which has a kernel size of 11×11, 96 filters, and strides 
of 4. This convolution layer makes use of the ReLU activation layer. This layer's output feature map 
is 27×27 pixels. The 128 filters in the second convolution layer each have a 5×5 kernel and a stride of 
1. It has an output feature map with 13×13. The third convolution layer comes next, which has a 3×3 
kernel size, 384 filters, and a stride of 1 with an output feature map of 13×13. A 3×3 kernel with 192 
filters makes up the fourth layer, followed by a 13×13 output feature map. The fifth layer has a 128-
filter construction, a 3-layer kernel, and a 13-layer feature map as its output. Between the fifth 
convolution layer and the first fully connected layer is a 3×3 Max-pooling layer with a 6×6 output 
feature map. 4096 neurons with 50% dropout and ReLU activation are coupled to the first fully 
connected layer (FC6) and second fully connected layer (FC7). The classifications are carried out in 
the eighth layer, which is the last fully connected layer using the Softmax activation function. The 
AlexNet architecture is depicted in Figure 4. 

In order to fit the 7 classes of the CASME II dataset, the last fully connected layer is changed for 
a new fully connected layer with an output size of 7 during the implementation phase. The training 
settings employ the Stochastic Gradient Descent with Momentum (SGDM) function, and the learning 
rate is set at 0.0001. The batch size is set at 20 and the model is run for 50 epochs. 
 

 

Fig. 4: Architecture of AlexNet 

3.3.2.  SqueezeNet 

Figure 5 depicts the SqueezeNet architecture. SqueezeNet requires image input with 227×227×3 
pixels. SqueezeNet has a convolutional layer, eight fire modules, and a final convolutional layer. The 
first layer of SqueezeNet is a convolution layer with 64 filters, each with a 3 by 3 kernel and a 2-stride. 
This was followed by the addition of a Max-pooling and a ReLU activation function. The second fire 
module is started with a convolution with 16 filters and 1 by 1 kernel and continues with a 3 by 3 
kernel sizes with 64 filters and a 1 by 1 kernel size with 64 filters expansion convolution layers. 
Before moving on to the third fire module, the output of these first two layers will be sent to a depth 
concatenation function. For the third fire module, it begins with 16 filters with 1 by 1 kernel and 
followed by 64 filters with 1 by 1 kernel and 64 filters with 1 by 1 kernel. A 3 by 3 Max-pooling layer 
is included at the end of Fire Module 3. The fourth fire module starts out with 32 filters with a 1 by 1 
kernel and expands to 128 filters with a 1 by 1 kernel and 128 filters with a 3 by 3 kernel. The fifth 
fire module starts with a 32 filter with a 1 by 1 kernel, then moves on to 128 filters with a 3 by 3 
kernel, and 128 filters with a 1 by 1 kernel. Before moving on to the sixth fire module, the fifth fire 
module adds a Max-pooling layer. The sixth fire module has 48 filters with 1 by 1 kernel and split 
into 192 filters with 1 by 1 and 192 filters with 3 by 3 kernel. The seventh fire module also has the 
same structure as the sixth fire module. The eighth fire module has 64 filters with 1 by 1 kernels at the 
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beginning, 256 filters with 3 by 3 kernels, and 256 filters with 1 by 1 kernels at the end. The ninth fire 
module starts off with 64 filters that are 1 by 1 kernel, then grows to 256 filters that are 1 by 1 kernel, 
then to 256 filters that are 3 by 3 kernel. A dropout function is applied before continuing to the tenth 
convolution layer. The tenth convolution layer has 1000 nodes with 1 by 1 kernel size. A ReLU 
activation function and a Max-pooling layer are then added after that. SoftMax function is applied at 
the end of SqueezeNet for classification. 

In the implementation phase, the SGDM serves as the optimizer and the last convolution layer 
(Conv10) is swapped out with a new convolution layer with an output size of 7. With a batch size of 
20, the model is trained for 50 epochs with a learning rate of 0.0001. 
 

 

Fig. 5: SqueezeNet Architecture 

3.3.3.  GoogLeNet 

The 22-layer deep CNN known as GoogleNet was created by Google and trained on the ImageNet 
database. GoogleNet requires input with 224×224×3 in dimensions. In GoogleNet, there are multiple 
types of filter sizes contained in the inception modules. The first convolution layer, which has 64 
filters and a 3×3 kernel, comes first. Following the first convolution layer, there is a 3×3 Max-pooling 
layer and a ReLU activation function. The second convolution layer, which has 192 filters, and 33 
kernel sizes, comes next. After the second convolution layer, a ReLU, cross channel normalization, 
and a 3×3 Max-pooling layer are added. After then, it moves on to the blocks of the inception module. 
Every inception block includes inception modules with 1×1, 3×3 and 5×5 kernel. The 3×3 Max-
pooling is performed at the input and output of these inception module blocks to generate the final 
output. An average pooling layer, a dropout layer, a fully connected layer, and the SoftMax function 
are all included in the classification phase. The GoogleNet architecture is depicted in Figure 6. 

A new fully connected layer with an output size of 7 is used to substitute the last fully connected 
layer in order to accommodate the CASME II dataset. This model is equipped with a SGDM 
optimizer and learning rate of 0.001. It is trained for 15 epochs with a batch size of 20. 

 

 

Fig. 6: GoogleNet Architecture 
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3.3.4.  EfficientNet-B0 

EfficientNet-B0 is the baseline network in the EfficientNet variant. The image input size for 
GoogleNet is 224×224×3 in dimensions. It aims to make deep learning on embedded and mobile 
devices more practical. EfficientNet-B0 has a total of 237 layers of convolution layers. A 
convolutional stem layer in the network initially processes the input image. A specific number of 
output channels are used to perform a 3×3 convolution. Each of the several blocks that make up 
EfficientNet-B0 has a set of operations. Following batch normalization and a non-linear activation 
function, each block has a depthwise separable convolution. Over the blocks, both the number of 
filters and the input feature maps' resolution steadily rise. In order to enhance the trade-offs between 
model size, accuracy, and computational cost, EfficientNet-b0 incorporates width, depth, and 
resolution scaling. The implementation of global average pooling on the feature maps results in a 
reduction of the spatial dimensions to a fixed size at the end of the network. The pooled features are 
flattened and fed following a SoftMax activation function and a fully connected layer for categorizing 
the classes. The architecture of EfficientNet-b0 is depicted in Figure 7. 

The SGDM is utilized for this model during the implementation phase. The learning rate is set to 
0.001. A new fully connected layer with an output size of 7 takes the place of the last fully connected 
layer. The model is run for 10 epochs and the batch size is set to 20. 
 

 

Fig. 7: EfficientNet-b0 Architecture 

3.3.5.  ResNet-50 

ResNet-50 is a 50-layer deep convolution neural network which is based on ResNet-34 architecture, 
but they have a major difference in the building block. The building block of ResNet-50 was modified 
into a bottleneck design to overcome the time taken for the training of the layers. It has a SoftMax 
activation function for classification, a ReLU activation function, a fully connected layer, and five 
convolution layers that generate various feature maps. The 64 kernels with a 2-stride and the 3×3 
max-pooling layer with a 2-stride are merged to form the massive 7×7 kernel convolution that makes 
up the input component of ResNet-50. The image input is required to be 224×224×3 in dimensions. 
The second convolution block consists of three repeating convolution layers: 1 by 1 with 64 filters, 3 
by 3 with 64 filters, and 1 by 1 with 256 filters. Convolution layers of 128 filters with 1 by 1 kernel, 
128 filters with 3 by 3 kernel, and 512 filters with 1 by 1 kernel make up the third convolution block. 
In the third convolution block, all these convolution layers are repeated four times. The following 
convolution block consists of three duplicated kernels: 256 filters with 1 by 1 filters, 256 filters with 3 
by 3 filters, and 1024 filters with 1 by 1 filters. The fifth convolution block consists of 2048 filters 1 
by 1 kernel, 512 filters 1 by 1 kernel, and 512 filters 3 by 3 kernel. There are three repetitions of all 
three layers. The SoftMax activation function and a fully connected layer with 1000 nodes are used 
for classification after the sixth convolution block. Figure 8 shows the architecture of ResNet-50 
model. 
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SGDM is applied as the optimizer for ResNet-50 in this experiment. Instead of using the last fully 
connected layer, another fully connected layer with output size of 7 is added. The model is then 
trained for 10 epochs with 20 batch sizes and a learning rate of 0.0001. 
 

 

Fig. 8: ResNet-50 Architecture 

3.3.6.  MobileNet-v2 

MobileNet-v2 is a 53 layers deep CNN. It requires image input with 224×224×3 in dimensions. 
Convolutional layers make up the structure of MobileNet-v2, which come after a fully connected 
layer and a layer of global average pooling. It consists of many inverted residual blocks. Each 
inverted residual block contains a linear bottleneck layer, a depthwise convolution layer, and a 
pointwise convolution layer. The depth-wise convolution layer conducts spatial filtering after the 
linear bottleneck layer decreases the amount of input sources. Finally, the pointwise convolution layer 
aggregates the spatial information across all channels. There are two types of blocks in MobileNet-v2 
model, one is linear bottlenecks and another one is inverted residuals. By using linear transformations 
in place of conventional bottlenecks, computing costs are reduced while accuracy is raised. The 
addition of skip connections reduces the impact of depthwise convolutions on feature representation 
in the inverted residuals. The concept of the MobileNet-v2 is shown in Figure 9. 

During the implementation, the MobileNet-v2 has a learning rate of 0.0001 and the optimizer 
utilized is SGDM. The epoch for this model is set to 10 times with the batch size of 20. 

 

Fig. 9: MobileNet-v2 Architecture 
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4. Analysis 

4.1.  Experimental Setup 

The models were trained on the Intel Core i7-11800H CPU running at 2.30GHz and the NVIDIA 
GEFORCE RTX 3060 GPU with 6 GB of dedicated graphic memory. The working environment is 
MATLAB 2021a. 

4.2.  Dataset 

In this work, CASME II (CASME Database, n.d.) was used to train and evaluate the proposed transfer 
learning models. An enhanced spontaneous micro-expression database called CASME II was created 
by Yan et al. (Yan et al., 2014). There are 225 videos obtained from 26 participants in this database. 
There are a few types of facial expressions labelled in this database: happiness, sadness, disgust, 
repression, fear, surprise, and others. The samples are collected in a controlled environment laboratory. 
During the sample collection, each participant was required to watch a short video clip in order to 
help them elicit their micro-expression. The participants’ micro-expressions were taken using a high-
speed camera. The camera was set up and faced directly to the participant’s face. All the participants’ 
micro-expression samples were recorded at 200 frames per second with a resolution of 280×340 
pixels. There are 247 micro-expressions with action units, and emotions labelled were selected from 
the 3000 facial movements for the database. The dataset has a total of 17124 static images in seven 
different facial expressions. This dataset includes seven categories of facial expression, which include 
Happiness, Sadness, Surprise, Disgust, Fear, Repression, and others. The distribution of the number of 
images of every facial expression was represented in Table 1. Figure 10 shows the sample from the 
CASME II (CASME Database, n.d.) database. 
 

 

Fig. 10: Sample from CASME II Database (Yan et al., 2014) 

 
Table 1: Distribution of Number of Images 

Type of Expression Number of Images 
Happiness 2360 
Sadness 150 
Surprise 1729 
Disgust 4204 

Fear 127 
Repression 2187 

Others 6367 
Total 17124 
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5. Result and Discussion 

5.1.  Experimental Settings 

The images were divided into two different sets and resized into various sizes, which are 224×224 
pixels for GoogleNet, EfficientNet-b0, ResNet 50 and MobileNet-v2. Then, the images were resized 
into 227×227 pixels for both AlexNet and SqueezeNet. After the resizing, the images will be split into 
70% for training the models and 30% for evaluating the models. 

5.2.  Experimental Analysis and Discussions 

This experiment consists of three settings: Transfer learning without freezing any layers, transfer 
learning by freezing 20% of layers and transfer learning by freezing 50% of layers. The aims of 
having three different experiment settings are to investigate how much a pre-trained model can 
improve its performance with configuration fine-tuning. The settings are described as follows: 

• Setting 1: Transfer learning without freezing any layers. 
• Setting 2: Transfer learning by freezing 20% of layers. The first 20% of the learnable layers 

including the pre-trained models of AlexNet, SqueezeNet, GoogleNet, EfficientNet-b0, 
ResNet 50 and MobileNet-v2 are frozen with the rest of the layers are trained with the training 
dataset. The number of classes at the output layers will be set to 7. 

• Setting 3: Transfer learning by freezing 50% of layers. The first 50% of the learnable layers 
including the pre-trained models of AlexNet, SqueezeNet, GoogleNet, EfficientNet-b0, 
ResNet 50 and MobileNet-v2 are frozen with the rest of the layers trained with the training 
dataset. The number of classes at the output layers will be set to 7. 

The pre-processed and cropped version of the ME are used to conduct the experiment. Each 
experiment setting is implemented for 5 trials and the performances of all trials are averaged to obtain 
a final performance measurement.  

Based on Figure 11, the SqueezeNet outperforms AlexNet, GoogleNet, EfficientNet-b0, ResNet 
50 and MobileNet-v2. In this experiment, the SqueezeNet obtained an accuracy of 99.79%. Its 
accuracy is higher than AlexNet by 0.03%, GoogleNet by 0.43%, EfficientNet-b0 by 0.18%, ResNet 
50 by 0.91% and MobileNet-v2 by 1.9%. The reason SqueezeNet achieved such great performance 
due to the fire modules in this model. The expansion of the fire module into two sections allows the 
features to be trained evenly by every learnable layers. Hence, it can fully learn the features. The 
results obtained from the experiments for Setting 1 are recorded in Table 2. 

Based on the illustration in Figure 12, GoogleNet outperforms AlexNet, SqueezeNet, 
EfficientNet-b0, ResNet 50 and MobileNet-v2. In this experiment, GoogleNet obtained an accuracy of 
99.31%. Its accuracy is higher than AlexNet by 0.1%, SqueezeNet by 0.2%, EfficientNet-b0 by 0.16%, 
ResNet 50 by 0.94% and MobileNet-v2 by 1.8%. GoogleNet still managed to outperform other 
models although 20% of the learnable layers have been frozen due to the complexity of its structure. 
Since GoogleNet is mostly made up of inception modules that contain many convolution layers for 
learning, the inception modules are able to learn most of the features. Hence, the 20% freezing work 
just slightly decreases its efficiency. Table 3 has tabulated the results obtained from the experiments 
for Setting 2. 
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Fig. 11: Comparison of the Models for Setting 1 

Table 2: Performance of the Pre-trained Models in Setting 1 

Model AlexNet SqueezeNet GoogleNet EfficientNet-
b0 ResNet 50 MobileNet-

v2 

Validating 1 99.92% 99.67% 99.42% 99.73% 98.70% 98.11% 

Validating 2 99.88% 99.98% 99.40% 99.75% 98.95% 97.59% 

Validating 3 99.49% 99.82% 99.38% 99.42% 98.95% 98.07% 

Validating 4 99.86% 99.81% 99.36% 99.59% 98.81% 97.55% 

Validating 5 99.65% 99.65% 99.22% 99.55% 98.97% 98.15% 

Average 
Accuracy 99.76% 99.79% 99.36% 99.61% 98.88% 97.89% 

 
 

 

Fig. 12: Comparison of the Models for Setting 2 
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Table 3: Performance of the Pre-trained Models in Setting 2 

Model AlexNet SqueezeNet GoogleNet EfficientNet-
b0 ResNet 50 MobileNet-

v2 

Validating 1 98.92% 99.86% 98.44% 99.45% 98.09% 97.49% 

Validating 2 99.49% 99.49% 99.51% 99.51% 98.73% 96.96% 

Validating 3 99.28% 99.16% 99.57% 98.85% 98.48% 97.72% 

Validating 4 99.77% 99.26% 99.61% 99.63% 98.48% 97.86% 

Validating 5 98.58% 97.78% 99.44% 98.31% 98.05% 97.53% 

Average 
Accuracy 99.21% 99.11% 99.31% 99.15% 98.37% 97.51% 

 

Figure 13 shows AlexNet outperforms SqueezeNet, GoogleNet, EfficientNet-b0, ResNet 50 and 
MobileNet-v2. In this experiment, AlexNet obtained an accuracy of 99.84%. Its accuracy is higher 
than SqueezeNet by 0.52%, GoogleNet by 0.53%, EfficientNet-b0 by 0.93%, ResNet 50 by 1.3% and 
MobileNet-v2 by 2.5%. AlexNet has the best performance in this experiment setting because the 
feature learning of AlexNet mostly occurs in its fully connected layers unlike other proposed models 
in this experiment. Thus, it still managed to maintain the learnability although 50% of its learnable 
layers have been frozen. The results obtained from the experiments for Setting 3 are documented in 
Table 4. 
 

 

Fig. 13: Comparison of the Models for Setting 3 
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Table 4: Performance of the Pre-trained Models in Setting 3 

Model AlexNet SqueezeNet GoogleNet EfficientNet-
b0 ResNet 50 MobileNet-

v2 
Validating 

1 99.77% 98.33% 98.13% 98.17% 98.19% 97.88% 

Validating 
2 99.82% 99.69% 99.71% 99.16% 98.72% 97.16% 

Validating 
3 99.81% 99.63% 98.72% 99.07% 97.31% 96.77% 

Validating 
4 99.88% 99.42% 99.38% 99.38% 99.59% 97.10% 

Validating 
5 98.92% 99.53% 99.18% 98.79% 98.89% 97.78% 

Average 
Accuracy 99.84% 99.32% 99.02% 98.91% 98.54% 97.34% 

 

Comparison of performance of the pre-trained models in three different settings is shown in Table 
5. SqueezeNet outperformed the other five models in the Setting 1 with an accuracy of 99.79%. Its 
accuracy is higher than AlexNet by 0.03%, GoogleNet by 0.43%, EfficientNet-b0 by 0.18, ResNet 50 
by 0.91% and MobileNet-v2 by 1.9%. In Setting 2, GoogleNet obtained an accuracy of 99.31% and it 
outperformed SqueezeNet, GoogleNet, EfficientNet-b0, ResNet 50 and MobileNet-v2. Its accuracy is 
higher than AlexNet by 0.1%, SqueezeNet by 0.2%, EfficientNet-b0 by 0.18%, ResNet 50 by 0.94% 
and MobileNet-v2 by 1.8%. Then, AlexNet outperformed the other five models with an accuracy of 
99.84% in the Setting 2. The AlexNet in the Setting 3 shows the best result as compared to other 
models in other settings. Its accuracy is higher than SqueezeNet by 0.52%, GoogleNet by 0.53, 
EfficientNet-b0 by 0.93%, ResNet 50 by 1.3% and MobileNet-v2 by 2.5%. The difference of 
accuracy between Setting 1 and Setting 2 is 0.48%. Then, the difference of accuracy between Setting 
3 and Setting 1 is 0.05% and 0.53% for Setting 2. AlexNet in Setting 3 obtained a higher accuracy 
because it freezes 50% of the convolution layers. The freezing layer method freezes the extra layers 
and eliminates any unnecessary training; thus, it is more efficient than the without freezing method 
and able to achieve higher accuracy. 
 

Table 5: Comparison of Performance of the Pre-trained Models in three different settings 

Model Setting 1 Setting 2 Setting 3 

AlexNet 99.76% 99.21% 99.84% 

SqueezeNet 99.79% 99.11% 99.32% 

GoogleNet 99.36% 99.31% 99.31% 

EfficientNet-b0 99.61% 99.15% 98.91% 

ResNet 50 98.88% 98.37% 98.54% 

MobileNet-v2 97.89% 97.51% 97.34% 

 
The comparison of the pre-trained models used in this work and other model on CASME Ⅱ is 

illustrated in Figure 14 and presented in Table 6. Zhi et al. (Zhi et al., 2019) utilized a 3D-CNN model 
with Transfer Learning and Fivefold cross-validation. Then, Wang et al. (Wang et al., 2018) utilized 
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TLCNN in their work and Sun et al. (Sun et al., 2020) proposed a TS-AUCNN for feature extraction 
and utilized SVM for classification. As shown in the table, the AlexNet with 50% of freezing layers 
shows a significant performance of 99.84% accuracy as compared to the model proposed by Zhi et al. 
(97.6%), Wang et al. (71.2%), Sun et al. (81.8%), SqueezeNet without freezing layer (99.79%) and 
GoogleNet with 20% of freezing layer (99.31%). Its accuracy is higher than Zhi et al. by 2.24%, 
Wang et al. by 28.64%, Sun et al. by 18.04%, SqueezeNet without freezing layer by 0.05% and 
GoogleNet with 20% of freezing layer by 0.53%. 
 

 

Fig. 14: Comparison of Proposed Models and Other Models on CASME Ⅱ 

 

Table 6: Comparison of Proposed Models and Other Models on CASME Ⅱ 

Model Database Accuracy 

3D-CNN model with Transfer Learning and Fivefold 
cross-validation (Zhi et al., 2019) 

CASME Ⅱ 97.6% 

TLCNN (Wang et al., 2018)  CASME Ⅱ 71.2% 

TS-AUCNN+SVM (Sun et al., 2020)  CASME Ⅱ 81.8% 

Proposed SqueezeNet (TL Without Freezing Layer) CASME Ⅱ 99.79% 

Proposed GoogleNet (20% Freezing Layers) CASME Ⅱ 99.31% 

Proposed AlexNet (50% Freezing Layers) CASME Ⅱ 99.84% 

 

6. Conclusion 
In this paper, we presented micro-expressions (MEs) recognition based on the transfer learning of six 
different types of pre-trained CNN models. These pre-trained CNN models were utilized on the 
classification of seven different categories of MEs. The seven types MEs include: Disgust, Fear, 
Happiness, Repression, Sadness, Surprise and Others. The models utilized in this experiment are 
namely AlexNet, SqueezeNet, GoogleNet, EfficientNet-b0, ResNet 50 and MobileNet-v2. This 
research has included three different settings of experiment: transfer learning without freezing any 
layers, transfer learning by freezing 20% of layers and transfer learning by freezing 50% of layers. 
The experiments were carried out on the publicly available dataset, the Chinese Academy of Sciences 
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Micro-expression (CASME II) database. 
In conclusion, all the proposed pre-trained models managed to achieve state-of-the-art results in 

three different experiment settings. For the classification of MEs recognition in Setting 1, SqueezeNet 
surpassed the other five pre-trained models with a better accuracy of 99.79%. GoogleNet had 
achieved the highest accuracy of 99.31% in Setting 2 while AlexNet obtained higher accuracy of 
99.84% in Setting 3. Although this research showed promising results in the classification of MEs, it 
can be further explored in the future. The purpose of this research is to explore more benefits not only 
in psychology study but in other fields like marketing field, security purposes, and other applicable 
fields. Hence, the MEs recognition study should be strengthened by incorporating more micro-
expressions databases into the research to balance the number of image samples. The RNN approach 
can also be incorporated into the MEs recognition study to consider the sequential movement of the 
facial as well. 
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