
205

ISSN 1816-6075 (Print), 1818-0523 (Online)

Journal of System and Management Sciences

Vol. 13 (2023) No. 3, pp. 205-218

DOI:10.33168/JSMS.2023.0314

Implementations of Microservice on Self-service Application Using

Service Oriented Modelling and Architecture: A Case Study

Hestu Widyo Hutomo, Abba Suganda Girsang

Computer Scient Department, Binus Graduate Program, Bina Nusantara University, Jakarta, Indonesia

11530

hestuwidyo@gmail.com, agirsang@binus.edu

Abstract. The impact of the pandemic has accelerated the pace of digital transformation, one of the

sectors affected is self-service technology (SST), which allows the company's business activities to continue

and can be accessed by customers without time and place restrictions. The increasing number of SST users,

this is the basis for making applications that have good performance by comparing application development

methods based on Monolithic Architecture (MA) with Microservice Architecture (MSA) using three

Quality Attributes (QAs) based on the basic principles of Service Oriented Architecture (SOA) with the

Service Oriented Modeling and Architecture (SOMA) method, namely scalability, performance, and

availability. The scalability factor of the application becomes a reference because the application of MA

has drawbacks in terms of scaling which requires quite a long time. Due to these deficiencies of MA, the

application of MSA is a solution, especially by using containerization with Kubernetes as an orchestration

platform that is deployed on a public cloud. Testing was carried out on QAs using Apache JMeter. From

the test results, it can be concluded that MSA has high flexibility, able to accommodate large user requests.

Moreover, it has good availability and agile development that can follow business needs.

Keywords: Digital Transformation, self-service technology, Monolithic Architecture, Microservice

Architecture, Quality Attributes, Kubernetes, SOA, SOMA

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

206

1. Introduction

The pandemic that hit the world in early 2020 had impacted all economic activities, according to

(Nousopoulou et al., 2022) business sectors affected by the pandemic have realized the importance of

implementing digital transformation into their businesses. Digital transformation consists of at least two

dimensions (Katsamakas, 2022) namely the application of digital technology and the level of transformation

that focuses on products, business processes and business models. The application of self-service

technology (SST) can improve operational efficiency and reduce labor costs (Hsu et al., 2021). The

development of SST can also act as a channel that can be accessed without time restrictions by customers,

making SST a new revenue channel for companies.

Fig. 1: Total downloaded user on Google Play.

Based on the graph in Fig. 1, users of applications obtained from the Google Play Store experienced a

significant spike. Accordingly, the need for applications that have high availability becomes important, to

satisfy the potential users of these applications. Previous application developments using MA encountered

the following problems:

• Application scalability is less flexible, because the characteristic of MA does not support

scalability.

• The use of large infrastructure resources, which to support business needs, a number of servers is

added to support services.

• Application performance is not optimal due to the limited number of services that can process

requests.

• The application development takes a longer time, due to complexity increase in business and service

requirements, which must be developed in a single and comprehensive service.

Evolved from the above problems, flexible scalability is needed to meet the growing needs of users. In the

application of MA, scalability is very difficult to do considering the basic concept of MA which is based

on a single code, it is required to make a complete single code replication to perform scalability. This will

have an impact on inefficient allocation of infrastructure resources. According to (Georgios et al., 2021)

many enterprises decide to use a hybrid scheme in resource use to get good efficiency, as well as guaranteed

infrastructure availability. The performance of the application is also one of the important parameters for

the reliability of a service that is made to meet dynamic business needs. Based on the literature study

conducted(Li et al., 2021), identified six Quality Attributes (QAs) that are most considered in the

development of MSA, namely: scalability, performance, availability, monitorability, security, and

testability.

 -

 5,000,000
 10,000,000

 15,000,000

Installed device

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

207

Fig. 2: QAs on microservices architecture.

The results of the load test using Apache JMeter and K6.io software on one of the purchasing services made

based on MA, obtained the following information:

Fig. 3: Result load test.

Source: Researcher’s Processed Data, 2022

The tests carried out as shown in Fig. 3 are based on testing using a simulation of 6,000 users, with the

following test results:

• Total transaction per second (TPS) = 1117 TPS

• Average success rate (SR) = 88% SR

• Average response time = 1,11 second

By applying the MSA concept to the self-care application development, it is expected to increase

availability, scalability, and improve performance based on SOA principles using the Service Oriented

Modelling and Architecture (SOMA) method that focuses on Modularity and granularity with a relatively

shorter development time. With limitations on the development of SST applications development with MA-

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

208

based applications within the scope of XYZ companies engaged in the telecommunications sector.

2. Related Works

2.1. Self Service Technology

Self-service applications have recently become increasingly popular along with rapid technological

advances. In companies engaged in public service providers, it is an obligation to provide service help

centers or physical outlets that are devoted to handling problems with the services provided to customers.

This requires a large amount of money if not managed properly. Digital transformation (DT), which is

currently developing, changes the conventional organizational design into a digital business ecosystem. The

application of self-service technology (SST) within the company is expected to have a large impact on

company expenses and customer satisfaction, as said (Hsu et al., 2021) that SST provides benefits to

companies by increasing operational cost efficiency and reducing the number of workers, as well as

reducing errors due to manual processes.

2.2.Monolithic Architecture

Monolithic architecture (MA) is a single software architecture in its implementation, which usually

generally has three parts in its development, namely:

• Presentation: which is the top layer of an application, both the interface of the software and the

response API.

• Business logic: In this layer all application logic is stored and executed according to application

routines.

• Database: data storage layer or configuration of the application.

Usually, software built using this architecture has advantages in terms of development, because it only

involves internal processes in communicating and managing data, either storing, changing, or deleting

which is commonly called Create-Read-Update and Delete (CRUD). According to (Lauretis, 2019) MA is

very easy to develop, test and deploy. However, when software becomes more complex, MA will tend to

be more complicated in its development and operation.

2.3. Microservices Architecture

The application of the SOA concept in MSA design is very suitable for use in medium to large companies,

because MSA can support complex software development. According to (Razzaq, 2020) MSA is at the

heart of the internet of things (IoT) as an independent service. In the development of the concept of making

a software framework, previously known as monolithic, which is commonly encountered in the application

of software frameworks. Nowadays, it is increasingly being abandoned along with the development of the

concept of a software development framework using the concept of microservices. In the application of the

MSA concept (Rosen et al., 2008) the special characteristics of SOA consist of:

• Modularity and granularity.

• Encapsulation.

• loose coupling.

• Isolation of responsibility.

• Autonomy.

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

209

• Reuse.

• Dynamic discovery and binding.

• Stateless.

• Self-describing.

• Composable.

• Govern by policy.

• Independent of location, language, and protocol.

2.4.Virtualization

To support MSA, choosing the platform on which the application runs is important, especially the concept

of MSA is more often referred to as containerization. Containerization is the development of OpenStack

technology or virtualization of an operating system with minimal specifications only to be able to run

software that has been made to be accessed individually. Containers and microservices are very closely

related, nowadays almost every software development design uses the concept of microservices using

containerization to run it. According to (Kim et al., 2021) Kubernetes is a container orchestration platform

that is widely used in cloud computing, besides the open-source licence makes Kubernetes very popular.

Fig. 4: Difference architecture between VM and containers.

Fig. 4 describes the architectural differences between Virtual Machine (VM) based virtualization and

containers, the containers architecture shares each other at the operating system (OS) level while the VM

architecture has its own OS in each application. One of the main innovations that can create scalability in

the use of resource computing is cluster autoscaler (Tamiru et al., 2020) .Cluster autoscaler can allocate

resource computing, fluctuating based on the workload of the active user number.

2.5.Service Oriented Modelling Architecture

SOMA was first published by IBM in 2008 through the IBM Systems Journal. SOMA is a software

development lifecycle (SDLC) method developed by IBM for SOA-based software design. The SOMA

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

210

method focuses on how an application is made based on the running business side. Broadly speaking,

SOMA (Arsanjani et al., 2008) consists of seven main phases as shown in Figure 4. depicting a patterned

successive iteration process. However, SOMA phases are not linear, each phase is implemented in a risk-

based, iterative, and gradually.

Fig. 5: SOMA fractal model of software development.

From Fig. 5, the seven main phases of the SOMA method are explained in detail which include: business

modelling and transformation, solution management, identification phase, specification phase, realization

phase, implementation phase, and deployment.

Fig. 6: SOMA lifecycle.

Fig. 6 explain in detail the seven main phases of the SOMA method which include: business modelling and

transformation, solution management, identification phase, specification phase, realization phase,

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

211

implementation phase, and deployment.

3. Research Methodology

This research is divided into three phases, which are: planning or identification, specification or preparation,

and development. First phase is to identify the problems, define the purposes and the scope of the research.

Next is to comprehend the architecture and current service development methods in the scope of enterprise

using SOA concept and MSA architecture design approach, focusing on six points of QAs as evaluation

matrix to achieve satisfying results. Then, to prepare the needs for the research before doing the experiment.

After preparation is the implementation phase of the methods related to this research in which some tests

or experiments are executed to measure the performance and scalability of the services. Finally, it is time

to make a conclusion and recommendations at the end of the research.

Fig. 7: Research Methodology.

3.1. Quality Attributes, Performance and Scalability

To be able to compare between the two architectures, QAs are needed to be able to describe the comparison

between the two architectures (Blinowski et al., 2022) using three QAs specifications: scalability,

performance, and availability.

3.2.Scalability

In general, scalability testing determines the maximum number of users that can be handled by the

application. This is related to cost (Cheng et al., 2022), the application of hybrid cloud can increase

efficiency in resource use to support applications. MSA deployments make it possible to deploy multi

clouds. Because recently the need for business is increasingly dynamic, a reliable design for software

development is expected to meet these needs. Therefore, these aspects must be planned and implemented

thoroughly. Seeing the predecessors in software development using the MA method, it is very difficult to

create reliable software, because monolithic concepts are usually implemented in a virtual machine or

hardware separately, making it difficult to configure and add instances to be able to serve unexpected

increasing requests.

3.2.1. Performance

Performance in MSA is a measure of the system's ability to meet time requirements in response to a request.

Implementataion

construct services unit test deployment

Specification

specify services analys subsystem specify components
refactor and rationalize

services

Identification

identification service
model

analyz existing assets decompose
refactor and rationalize

services

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

212

Performance measurement of a service can be calculated based on the time unit parameter in a request, this

can be applied both in MA and MSA. (De, 2017) Application programmable interfaces (APIs) are no longer

seen as mere integration mechanisms but have become the main route for the delivery of data and services

to users through various digital channels. In testing the performance of a service, there are several types of

tests that are often used, including:

• Baseline testing.

• Load testing.

• Stress testing.

• Soak testing.

• Automation testing.

In accordance with (Akbulut & Perros, 2019) Business interest in MSA is increasing since the MSA brings

a lightweight, independent, reuse-oriented, and fast service deployment approach that minimizes

infrastructural risks. Automation tests become better and more efficient and can provide convenience in

carrying out a series of tests, especially tests that are often carried out to ensure changes do not affect other

services. This will reduce the duration of testing, and the tester of the application only needs to focus on

the new changes.

Several applications that can be used in testing MA and MSA based on SOA that are often used in testing,

includes:

• Apache JMeter.

• K6.io

• SoapUI.

• Vegeta load testing.

• Blaze Meter.

3.2.2. Availability

Calculation of availability called Success Rate (SR) is generally displayed in percentage units (%). How to

measure SR can be done in the same way as in equality 1:

𝑆𝑅 =
𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛
 𝑥 100% (Eq. 1)

4. Results and Discussion

After implementing the SOA concept with SDLC method using SOMA in designing new systems,

comparisons between the old and the new methods are needed to get an accurate and systematic analysis

result. If there is any assumption-based analysis, it only applies for synchronous services only. The

specification of a large target user application should be designed carefully since it might bring impact to

the next architecture and development. MSA system provides more convenience during the system design

and development.

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

213

4.1.Performance Test

Performance testing has a vital role (Németh & Sótér, 2021), doing the test during the system specification

has been challenging (Hossain, 2018) as it needs more efforts during the time. In spite of additional

resources, cost is also an important factor during specification (Baransel et al., 2021) because of the use of

resources to execute the testing. It brings a good impact to the specification and development. In this case,

testing load provides information of capacity which can be processed at one time to the system. As the

result of the testing that has been done to the system, Fig. 8 shows the performance test of the new system.

Fig. 8: Result Performance Test.

4.1.1. Stress Testing

The result of load test as shown at Fig. 9 shows the system capability to receive the ideal number of traffic

at one time before a system failure happens.

Fig. 9: Result Stress Test.

4.1.2. Soak Testing

There is also a longer period of testing that is executed to test (Khurshid et al., 2021) the system ability in

handling real traffic assuming the number of active users. This test is also known as soak test due to the

long duration of the test.

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

214

Fig. 10: Result Soak Test.

Based on a 14-hour soak test, the result is shown in Fig. 10, in which a pattern of increasing errors can be

shown on overall testing. It can be a reference to create a system scale to avoid another system error in the

future.

4.1.3. Automation Testing

During a system development, the testing on the system should be adequate to make sure the system runs

well. In the research (Zafar et al., 2022) concluded that the implementation of a combinatorial testing

between manual and automation testing improves the efficiency of the test suite which brings such a good

impact like shorter testing execution time and faster validation process of the features developed in the

system.

4.2.Scalability

Scalability is a measurement of a system's ability to add resources used to handle some amount of requests

in a system. In this way, scalability plays an important role in a system. One of them is horizontal scalability

which can help reduce the operational costs (Perri et al., 2022) and guarantees high fault tolerance and the

ability to scale its computational power according to the number of incoming requests from users.

4.3.Cost Base Analysis

A good specification of a system should enclose the total cost ownership (TCO). TCO can be used by a

developer as a report to the high-level management. The technique to a more efficient offloading is as

explained by (Ali & Iqbal, 2022) which is to divide them into smallest parts or microservices.

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

215

Fig. 11: TCO Yearly.

Source: Researcher’s Data and Projection Plan, 2022

Fig. 11 describes the total investment projection needed in the use of compute resources. There is a

significant difference in the first year if using virtual machine resources. Meanwhile, the use of public cloud

is gently sloping, the total usage is stable and adjustable as the need and load of the service.

4.4.Discussion

In reference to the result of this study, MSA development will impact the infrastructure and platform used.

This is related to resource availability and capability to scale and handle dynamic requests from end users.

The role of platforms, such as Kubernetes, provide solutions to scaling problems which will have an impact

on increasing the availability of the applications. To give it best performance, the test on application ability

must be done, to decrease system failure in the production stage.

Table. 1: Result Analysis.

Previous system New system

Function Request

sent

SR % Max

tps

Throughput Function Request

sent

SR % Max

tps

Throughput

login 106.97

9

88,6 2.795 255 /s get

token

100.304 99,98 6.291 433 /s

validate

token

102.201 99,4 6.291 433 /s

logout 100.139 99,98 6.291 433 /s

dashboar

d

105.88

6

88,33 2.795 255 /s quota 100.142 99,98 6.291 433 /s

balance 100.108 99,98 6.291 433 /s

vas 108.021 99,99 6.291 433 /s

balance

transfer

100.211 99,98 6.291 433 /s

store 104.85

6

89,15 2.795 255 /s list

product

105.025 99,99 6.291 433 /s

purchase 100.704 99,99 6.291 433 /s

payment 100.031 99,99 6.291 433 /s

0

20

40

60

80

100

120

Y-1 Y-2 Y-3 Y-4 Y-5

Total cost of ownership

Virtual Machine Public Cloud

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

216

profile 103.80

7

88,34 2.795 255 /s add 105.008 99,99 6.291 433 /s

update 100.109 99,99 6.291 433 /s

get

profile

100.021 99,99 6.291 433 /s

care 102.36

9

87,42 2.795 255 /s chat 100.341 99,99 6.291 433 /s

faq 103.631 99,99 6.291 433 /s

store

location

109.302 99,99 6.291 433 /s

Source: Researcher’s Processed Data, 2022

According to Table 1, the data shows that MSA implementation can improve the application performance.

It brings a good impact to the application performance which runs above it. Comparison between MA and

MSA architecture to the application performance is aimed to accommodate larger requests.

4.4.1. Resource Consumption

The use of previous Virtual Machine resources is quite different from the public cloud principle because

the public cloud resource fee will be charged at the first time of resource provisioning, even if the resource

is not being used or idle (Chaurasia et al., 2021). It becomes one factor to consider at the development stage

which can be projected through performance test data (Aldossary et al., 2019) combined with projected

application user numbers.

Table. 2: Autoscaling comparation.

 Monolithic Architecture Microservice Architecture

Virtual Users cpu memory SR cpu memory SR

500 32 64 100% 4 8 100%

1.000 32 64 100% 4 8 100%

1.500 32 64 100% 6 10 100%

2.000 32 64 99,80% 12 24 99,99%

2.500 32 64 98,07% 12 24 100%

3.000 32 64 95,80% 16 32 99,97%

3.500 32 64 91,23% 16 32 100%

4.000 32 64 90,83% 24 48 99,78%

4.500 32 64 87,42% 24 48 100%

5.000 32 64 85,74% 32 48 99,82%

5.500 32 64 80,01% 32 48 100%

6.000 32 64 73,70% 32 48 100%

Source: Researcher’s Processed Data, 2022

According to Table. 2 the result of scalability testing using JMeter comparing the use of VM infrastructure’s

resources experienced a very large decrease in SR due to limited additional resources which took time to

prepare. Meanwhile, microservices can easily scale to receive incoming traffic.

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

217

5. Conclusion and Future Work

The implementation of MSA is much more complex than MA development, but if the execution is right

and is using containerize with Kubernetes platform which has auto-scaling feature, the result will be an

agile system development which has good performance. Kubernetes platform requires the availability of

certain infrastructure, so that the use of public cloud is also a key to satisfying performance results. The

implementation of performance testing can also increase the level of reliability of the product being

developed because it will increase the potential for system failure. The implication of MSA to enterprise

companies is ideal because it will reduce excessive costs in purchasing Enterprise Service Bus product

licences which are widely offered on an enterprise scale.

Acknowledgements

The authors would like to thank everyone, grateful to all of those with whom I have had the pleasure to

work during this and other related projects has provided me extensive personal and professional guidance

and taught me a great deal about both scientific research and life in general.

References

Akbulut, A., & Perros, H. G. (2019). Performance Analysis of Microservice Design Patterns. IEEE Internet

Computing, 23(6), 19–27. https://doi.org/10.1109/MIC.2019.2951094

Aldossary, M., Djemame, K., Alzamil, I., Kostopoulos, A., Dimakis, A., & Agiatzidou, E. (2019). Energy-aware

cost prediction and pricing of virtual machines in cloud computing environments. Future Generation Computer

Systems, 93, 442–459. https://doi.org/10.1016/j.future.2018.10.027

Ali, A., & Iqbal, M. M. (2022). A Cost and Energy Efficient Task Scheduling Technique to Offload

Microservices Based Applications in Mobile Cloud Computing. IEEE Access, 10, 46633–46651.

https://doi.org/10.1109/ACCESS.2022.3170918

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., & Holley, K. (2008). SOMA: A Method for

Developing Service-Oriented Solutions. IBM Systems Journal, 47(3), 377–396.

https://doi.org/10.1147/sj.473.0377

Baransel, B. A., Peker, A., Balkis, H. O., & Ari, I. (2021). Towards Low Cost and Smart Load Testing as a

Service Using Containers (pp. 292–302). https://doi.org/10.1007/978-3-030-71711-7_24

Blinowski, G., Ojdowska, A., & Przybylek, A. (2022). Monolithic vs. Microservice Architecture: A Performance

and Scalability Evaluation. IEEE Access, 10, 20357–20374. https://doi.org/10.1109/ACCESS.2022.3152803

Chaurasia, N., Kumar, M., Chaudhry, R., & Verma, O. P. (2021). Comprehensive survey on energy-aware server

consolidation techniques in cloud computing. The Journal of Supercomputing, 77(10), 11682–11737.

https://doi.org/10.1007/s11227-021-03760-1

Cheng, W., Feng, H., & Liang, G. (2022). Design of IT Infrastructure Multicloud Management Platform Based

on Hybrid Cloud. Wireless Communications and Mobile Computing, 2022, 1–12.

https://doi.org/10.1155/2022/9227948

De, B. (2017). API Management. Apress. https://doi.org/10.1007/978-1-4842-1305-6

Hutomo & Girsang, Journal of System and Management Sciences, Vol. 13 (2023) No. 3, pp. 205-218

218

Georgios, C., Evangelia, F., Christos, M., & Maria, N. (2021). Exploring Cost-Efficient Bundling in a Multi-

Cloud Environment. Simulation Modelling Practice and Theory, 111, 102338.

https://doi.org/10.1016/j.simpat.2021.102338

Hossain, Md. S. (2018). Challenges of Software Quality Assurance and Testing. International Journal of

Software Engineering and Computer Systems, 4(1), 133–144. https://doi.org/10.15282/ijsecs.4.1.2018.11.0044

Hsu, P.-F., Nguyen, T. K., & Huang, J.-Y. (2021). Value Co-Creation and Co-Destruction in Self-Service

Technology: A Customer’s Perspective. Electronic Commerce Research and Applications, 46, 101029.

https://doi.org/10.1016/j.elerap.2021.101029

Katsamakas, E. (2022). Digital Transformation and Sustainable Business Models. Sustainability, 14(11), 6414.

https://doi.org/10.3390/su14116414

Khurshid, S., Shrivastava, A. K., & Iqbal, J. (2021). Effort based software reliability model with fault reduction

factor, change point and imperfect debugging. International Journal of Information Technology, 13(1), 331–340.

https://doi.org/10.1007/s41870-019-00286-x

Lauretis, L. De. (2019). From Monolithic Architecture to Microservices Architecture. 2019 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW), 93–96.

https://doi.org/10.1109/ISSREW.2019.00050

Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan, Z., Shen, J., & Babar, M. A. (2021). Understanding and

Addressing Quality Attributes of Microservices Architecture: A Systematic Literature Review. Information and

Software Technology, 131, 106449. https://doi.org/10.1016/j.infsof.2020.106449

Németh, G. Á., & Sótér, P. (2021). Teaching performance testing. Teaching Mathematics and Computer Science,

19(1), 17–33. https://doi.org/10.5485/TMCS.2021.0518

Nousopoulou, E., Kamariotou, M., & Kitsios, F. (2022). Digital Transformation Strategy in Post-COVID Era:

Innovation Performance Determinants and Digital Capabilities in Driving Schools. Information, 13(7), 323.

https://doi.org/10.3390/info13070323

Perri, D., Simonetti, M., & Gervasi, O. (2022). Deploying Efficiently Modern Applications on Cloud. Electronics,

11(3), 450. https://doi.org/10.3390/electronics11030450

Razzaq, A. (2020). A Systematic Review on Software Architectures for IoT Systems and Future Direction to the

Adoption of Microservices Architecture. SN Computer Science, 1(6), 350. https://doi.org/10.1007/s42979-020-

00359-w

Rosen, M., Lublinsky, B., T. Smith, K., & J. Balcer, M. (2008). Applied SOA: Service-Oriented Architecture

and Design Strategies. Wiley Publishing, Inc.

Tamiru, M. A., Tordsson, J., Elmroth, E., & Pierre, G. (2020). An Experimental Evaluation of the Kubernetes

Cluster Autoscaler in the Cloud. 2020 IEEE International Conference on Cloud Computing Technology and

Science (CloudCom), 17–24. https://doi.org/10.1109/CloudCom49646.2020.00002

Zafar, M. N., Afzal, W., & Enoiu, E. (2022). Evaluating system-level test generation for industrial software.

Proceedings of the 3rd ACM/IEEE International Conference on Automation of Software Test, 148–159.

https://doi.org/10.1145/3524481.3527235

