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Abstract. A Feedforward Deep Neural Network (FDNN) model contains densely connected layers 

where backpropagation is applied to calculate the loss function gradients. Optimising the network 

weights is important to minimise the loss value, hence decreasing the prediction errors and increasing 

the accuracy rate. Optimisers are used to update the weight values or the learning rate for each weight. 

Recent studies show that, although Adaptive Moment Estimation (Adam) produces better results in 

terms of optimising the parameters of the FDNN model, it might lead to poor generalisation 

performance. Therefore, in this paper, an improved Adam-based FDNN model was built for 

personalised predictions of asthma. Data transformation techniques (standardisation and normalisation) 

and regularisation techniques (dropout and max-norm constraint) were applied. Several experimental 

models were trained, and their prediction performance were compared. The empirical findings reveal 

that the best prediction results with low loss value can be obtained when the model is trained with 

standardised inputs and normalised outputs. Moreover, applying dropout (p=0.1) with max-norm (c=3) 

minimises the generalisation error of the model effectively. The results also show that the improved 

Adam-based FDNN model (with 2 hidden layers and 50 hidden nodes) produces better performance 

results with lower prediction loss (Mean Absolute Error (MAE)=0.0409, Mean Squared Error 

(MSE)=0.0038, and Root Mean Squared Error (RMSE)=0.0618) and higher accuracy rate (96%) than 

Stochastic Gradient Descent (SGD), Root Mean Squared Propagation (RMSProp), and Adaptive 

Gradient Descent (AdaGrad). Consequently, the proposed model can be used for personalised asthma 

predictions based on demography and weather. 

Keywords: Feedforward Deep Neural Network, Adam Optimiser, Data Transformation, 

Regularisation. 
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1. Introduction 

The Deep Neural Network (DNN) algorithm, which is a type of Artificial Neural Networks (ANN), is 

known as a biologically inspired simulation based on human brain neurons. DNN is commonly used 

for prediction and pattern recognition (Pandey & Janghel, 2019). Typically, a DNN model consists of 

an input layer, which contains the input values obtained from a given dataset, and an output layer, which 

contains the target values. In addition, the DNN model includes multiple hidden layers and several 

hidden nodes in each hidden layer (Mukherjee et al., 2021). Generally, to evaluate the prediction 

performance of the DNN model, a loss function is used, which calculates the errors between the actual 

output values and predicted values (Zhang et al., 2021). In particular, the loss function measures how 

well the model performed, where a low loss value indicates a good model that provides accurate 

forecasting results. 

A feedforward network is a type of DNN architecture in which connections between the nodes do 

not form a cycle (Bisandu et al., 2021). The Feedforward DNN (FDNN) model contains densely 

connected layers wherein information from the input layer moves in a forward direction through the 

hidden layers to reach the output layer (Zhang et al., 2021). During the initial stage of the FDNN model 

training, a set of random weight values are assigned to the received inputs in each hidden node. 

Subsequently, the sum of the weighted input values is passed as the node element through an activation 

function in the hidden layers of the model (Apicella et al., 2021). In this case, it is important to update 

and fine tune the weight values in order to identify the optimal configuration of the FDNN model, which 

in turn helps to minimise the loss function and find the lowest loss value possible (Zhou et al., 2021). 

As such, updating the network weights, or the step size of each weight (learning rate), is considered an 

optimisation problem. 

Backpropagation is a common algorithm applied primarily to train feedforward models. It is a 

differentiation method for computing the gradients of the loss function with regards to the model 

internal weights (Lyu et al., 2022). In backpropagation, the gradient errors are calculated iteratively 

backwards starting from the output layer, as seen in Figure 1. The main goal of the backpropagation 

algorithm is to identify how the network weights should be updated to minimise the loss function 

(Wright et al., 2022). In this case, the FDNN model applies an optimisation algorithm (commonly 

known as an optimiser), which automatically updates the parameters during the backpropagation 

process by fine tuning the weights or learning rates (Guo et al., 2021). Consequently, values that 

minimise the loss function are used for model testing and validation, thus enhancing further the 

prediction performance of the FDNN model. 

Traditionally, the gradient descent optimiser is applied during the backpropagation process to 

optimise the network weights (Song et al., 2020). Nonetheless, it has been observed that learning rate 

optimisers, such as Adaptive Moment Estimation (Adam) algorithm, produce better results in terms of 

optimising the parameters of the FDNN model and locating the global minima (i.e., a point where the 

loss value is globally minimum) (Yi et al., 2020). In this case, the optimiser updates the parameters in 

the current iteration so that the subsequent iteration reduces the loss value, hence navigating down the 

gradient of the loss function during the backpropagation process (Zhang et al., 2021). Although the 

Adam optimiser is widely used for training deep learning models, the Adam-based FDNN model 

sometimes produces a high generalisation error (i.e., validation loss) (Zhou et al., 2020), especially 

when conducting regression analysis. 
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Fig. 1: Basic process of FDNN with backpropagation. 

Therefore, in this paper, an Adam-based FDNN model is developed and applied to the asthma 

dataset for regression analysis. The goal is to develop an optimised predictive model that can provide 

accurate forecasting of asthma exacerbations based on personalised weather triggers with minimum 

prediction loss and generalisation error. The main objectives of this research work are: 

1. To apply data transformation techniques, including standardisation and normalisation, to reduce 

the prediction loss and improve the performance of the of the Adam-based FDNN model. 

2. To apply model regularisation techniques, including dropout regularisation and max-norm 

regularisation, to minimise the generalisation error of the Adam-based FDNN model. 

3. To compare the performance of the improved Adam-based FDNN model with other learning 

rate optimisers, in terms of validation errors, explained variance, and overall prediction accuracy. 

2. Background Study 

2.1. Learning Rate Optimisers 

Learning rate optimisers are responsible for tuning the learning rates of the FDNN model (Zhou et al., 

2020). The Stochastic Gradient Descent (SGD) algorithm is regarded as an approximation of the 

traditional gradient descent optimiser, which iteratively updates the learning rates of the model. It has 

been observed that substantial problems could arise when employing SGD with FDNN, such as 

oscillations of the learning rates in the later training stages of the model, which often lead to increased 

variance issues (Sun et al., 2020). Recently, several adaptive learning rate optimisers have been 

proposed, such as Adaptive Gradient Descent (AdaGrad) and Root Mean Square Propagation 

(RMSProp) algorithms. One of the essential properties of AdaGrad is changing the learning rate for 

every weight value in each epoch (Defossez et al., 2020). However, in some cases, the learning rates 

continue to decrease rapidly, resulting in vanishing gradients that might cause the model to completely 

stop from further training (Sun et al., 2020). In this case, RMSProp utilises the averaged squared 

gradients to normalise them, thus preventing the vanishing gradient problem (Xu et al., 2021). 

Nevertheless, this could cause repetitive updates of the same learning rates, leading to slower training 

and convergence of the model. 

Fortunately, Adam, which is a common adaptive learning rate optimiser, solves the gradient 

vanishing problem of AdaGrad using bounded gradients (Defossez et al., 2020). Unlike RMSProp, 

Adam is renowned for its convergence speed when training FDNN models. Moreover, the Adam 

optimiser works effectively with its default configuration properties and parameter values. This gives 

Adam a significant advantage over other optimisers, especially SGD, which often requires applying 

momentum to obtain better results (Yi et al., 2020). Selected studies, however, have argued that the 

Adam optimiser could lead to worse generalisation performance than SGD (Sun et al., 2020 and Chen 

et al., 2020). As a result, although the Adam-based FDNN model mostly produces good prediction 

results, it has the potential to generate high generalisation errors when applying the model on unseen 

data. 
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Therefore, in this work, various optimisation experiments are conducted to improve the Adam-

based FDNN model for regression analysis. In particular, the impact of data transformation and 

regularisation techniques on the optimisation performance are investigated this paper. Consequently, 

the goal is to develop an optimised model that can provide predictions of asthma exacerbations based 

on personalised weather triggers with low errors and high accuracy.  

2.2. Data Transformation Techniques 

Data transformation is an important process that takes place before training the predictive model. It is 

a recommended pre-processing step for DNN models, where the values of the variables in the 

experimental dataset from different dynamic ranges are scaled and transformed into a specific range 

(Raju et al., 2020). The two most common data transformation techniques are: normalisation and 

standardisation. Normalisation (also known as Min-Max scaling) rescales the data with a distribution 

value between 0 and 1. Meanwhile, standardisation (also known as Z-score scaling) rescales the data 

by ensuring the mean and the standard deviation are 0 and 1, respectively (Henderi, 2021). 

Generally, feature scaling is considered essential when developing a predictive model using a 

learning algorithm that applies optimisation during the backpropagation process, such as FDNN (Singh 

& Singh, 2020). This is because input features typically have values with varied units and different 

scales, which can increase the difficulty of the prediction problem being modelled. Moreover, unscaled 

input features can result in a slow learning process of the model. In particular, scaling the feature values 

has a significant positive impact on the model stability and prediction accuracy (Raju et al., 2020). 

Normally, for classification problems, scaling target values is not required (Singh & Singh, 2020). 

However, for regression analysis, applying data transformation techniques is crucial to train the model 

with scaled output variables, which, in particular can improve the performance of the optimiser. 

Given the use of the loss function in the FDNN model to calculate the errors between the original 

outputs and predicted outputs and the use of backpropagation to calculate the gradient errors, the scale 

of the output values for training the model are an important factor. In this case, reducing the distribution 

scale of the output values can assist in minimising the size of the gradient errors. On the other hand, 

unscaled output values can result in exploding gradients causing the learning process to fail. 

Unfortunately, there is a lack of empirical evidence in the literature that investigates the impact of data 

transformation on the performance of the Adam optimiser. Therefore, in this paper, data transformation 

techniques are applied to train the Adam-based FDNN model for regression analysis.  

2.3. Model Regularisation Methods 

Typically, for a supervised prediction problem, the goal is to train the model using the training set to 

learn the relationships between the input and output values in the experimental dataset, and then apply 

this learning to predict the target outputs based on the input features using the test set (Zhang et al., 

2021). For the Adam-based FDNN model, determining the generalisation performance is essential to 

identify how accurately the algorithm predicts the target outputs for previously unseen data. This is 

important because a high generalisation error often leads to overfitting (Bejani & Ghatee, 2021). 

Regularisation is an improvement technique that applies small modifications to the predictive model 

such that it generalises well on unseen data (Hu et al., 2020). As such, regularisation is widely used to 

prevent overfitting of the model by minimising the gap between training loss and validation loss. 

There are several regularisation techniques exist for modifying the loss function or training 

algorithm. The most common technique for modifying the loss function is L2 regularisation, also called 

weight decay, which works by adding a penalty term to the loss function in order to decrease the weight 

values (Saud & Shakya, 2021). Meanwhile, the most common technique for modifying the training 

algorithm is dropout regularisation (Srivastava et al., 2014). By applying dropout, connections between 

the nodes in the hidden layers of the FDNN model are randomly dropped in each epoch based on the 
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given dropout ratio, as seen in Fig. 2. As a result, training iterations are performed with a varied set of 

input elements of the existing nodes. 

In many cases, dropout is combined with another type of regularisation for constraining the network 

weights, known as max-norm regularisation. It constrains the norm of the weight vector at each node in 

the hidden layers to be upper bounded by a specified constant, hence preventing the network weights 

from growing to a large value. In fact, dropout regularisation is known for showing significant 

improvements when applying it with max-norm regularisation, which often produces the lowest 

generalisation error (Soumare et al., 2021). Therefore, in this paper, dropout is used with the max-norm 

regularisation method to reduce the generalisation error of the Adam-based FDNN model and minimise 

the validation loss. 

Fig. 2: FDNN model with and without dropout. 

3. Methods 

3.1. Asthma Dataset 

The asthma dataset employed in this work was collected from an mHealth application, known as 

Weather Asthma (WEA) (Haque et al., 2021a, Haque et al., 2021b and Ho et al., 2020). The dataset 

consists of ten input variables with five weather features (temperature, humidity, air pressure, wind 

speed, and UV index) and five demography features (age, gender, location, outdoor job, and outdoor 

activities). The real-time values of the weather features in the asthma dataset were collected from the 

location of individual WEA application users, which represent the specific weather conditions that 

might exacerbate a particular user’s asthma and lead to acute attacks. Meanwhile, the demography 

features were collected from individual users upon their registration in the WEA application, which 

were used for acquiring personalised asthma predictions. 

The asthma dataset also contains the Asthma Control Test (ACT) scores as the target output. Users 

can conduct ACTs to report their asthma severity level by answering five close-ended questions through 

the WEA application. Each question scores from 1 to 5, and the range of the total score for an ACT is 

5 to 25. According to the Global Initiative for Asthma (GINA), a low ACT score indicates a high chance 

of asthma exacerbation and high ACT score indicates a low chance of asthma exacerbation (Reddel et 

al., 2022). As such, each record in the dataset consists of an ACT score along with the demography 

information of the user who submitted the ACT, and the weather information of the exact day and time 

when the ACT was submitted. Table 1 describes variables in the asthma dataset, which consists of 2020 

records with 10 input features and 1 target output (ACT_score). 

Table 1: Asthma Dataset Variables 

Variable Description 

ACT_score Total score of an ACT submitted by a user. 

Temperature Temperature value in degree Celsius (°C). 

Humidity Humidity percentage (%) value. 

Air_pressure Air pressure value in hectopascals (hPa). 

Wind_speed Wind speed in meters per second (m/s). 
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UV_index UV index range: Low and Extreme. 

Location Location of the user (city name). 

Age_group Age group of the user (18 and below, 19-30, 31-40, 41-50, Above 50). 

Gender Gender of the user (Male, Female, Other). 

Outdoor_job 
Frequency of outdoor job for the user (Frequently, Occasionally, 

Rarely). 

Outdoor_activities 
Likelihood of outdoor activates for the user (Likely, Neither, Not 

Likely). 

 

Afterwards, the dataset was divided into a training set and a test set. The training set consists of 

1616 samples (80%) and the test set consists of 404 samples (20%). Before training the model on the 

asthma dataset, all the categorial variables need to be converted to numeric values. A popular way of 

doing this is by applying the label encoder method, which encodes the categorial labels for each variable 

with a number between 0 and n-1, where n is the number of labels. When a label repeats within the 

variable, it takes the same number as previously assigned (Zhang et al., 2021). The asthma dataset 

contains 6 categorial variables, and they were converted into numerical representations in this manner. 

3.2. Adam-based FDNN 

In this work, the Adam-based FDNN model was developed for regression analysis. To build the optimal 

architecture of the model, the hyperparameters of the model were tuned using Grid Search (GS). GS is 

a simple optimisation algorithm for tuning model hyperparameters in order to find their optimum values. 

The basic process of GS includes three primary steps: (1) select a set of candidate values for each 

hyperparameter from a predefined search space, (2) train various models separately using all possible 

combinations of the selected values, and (3) calculate the loss value for each model and display the 

hyperparameter values of the model with the lowest loss. In this case, Mean Squared Error (MSE) was 

applied as the loss function to train the Adam-based FDNN model. Table 2 represents the optimum 

hyperparameter values. 

Table 2: Optimum Values of Model Hyperparameters 

Hyperparameter Optimum Value 

No. of hidden layers 2 

No. of hidden nodes 50 

Bach size 10 

No. of epochs 100 

Weight initialiser Normal 

 

 

Fig. 3: Adam-based FDNN model architecture. 
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Figure 3 demonstrates the architecture of the Adam-based FDNN model. The Rectified Linear Unit 

(ReLU) was used as the activation function, which provides simple nonlinear transformations in the 

hidden layers of the model. Considering the element (e), ReLU is the maximum of e and 0 (Zhang et 

al., 2021). The following equations were used to predict the target outputs using the FDNN model: 

w = [w1, w2, … , w10] 

f(e) = {
0   for   e < 0
e   for   e ≥ 0

 

e = ∑ xw

10

i=1

+ b 

ŷ = f(e) 

where x is the input value, ŷ is the target output, w is the weight value, b is the bias, e is the node 

element, and f(e) is the activation function. 

3.3. Evaluation Metrics 

To evaluate the prediction performance of the Adam-based FDNN model for regression analysis, error 

metrics were used as the evaluation metrics. In this case, MSE was applied to calculate the training and 

validation loss of each experimental model. Two more error metrics were used, Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE). MAE is the basic measure of errors applied to calculate 

the absolute difference between the original target outputs and the predicted outputs. MSE is used to 

calculate the squared difference between the original target outputs and the predicted outputs. The key 

difference between MAE and MSE is that the latter can measure the outliers in the dataset. RMSE is 

the square root of MSE, which is measured with the same unit as the output values. The following 

equations were used to calculate the prediction errors of the Adam-based FDNN model: 

MAE =  
1

n
∑ |yi − ŷi|

n

i=1

 

MSE =  
1

n
∑(yi − ŷi)

2

n

i=1

 

RMSE = √
1

n
∑(yi − ŷi)

2

n

i=1

 

where n is the number of records in the dataset, y is the actual output values, and ŷ is the predicted 

values. 

For further performance analysis, Explained Variance Score (EVS) was calculated. The EVS 

indicates how well the model captured the variance in the data that exists in the nonlinear dataset (Zhang 

et al., 2021). A high EVS indicates a good prediction performance. The following equation was used to 

calculate the EVS of the Adam-based FDNN model: 

EVS = 1 −
Var{y − ŷ}

Var{y}
 

where Var is the variance (i.e., the square of the standard deviation), y is the original output values, and 

ŷ is the predicted values. 

The overall accuracy (ACC) was also measured to identify how accurately the model predicted the 

target outputs. For regression analysis, ACC can be calculated using the Mean Absolute Percentage 

Error (MAPE) (Zhang et al., 2021). The following equations were used to calculate the MAPE and 

ACC rate of the Adam-based FDNN model: 
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MAPE =  
1

n
∑ |

yi − ŷi

yi

|

n

i=1

 

ACC = 100 × (1 − MAPE) 

where n is the number of records in the dataset, y is the actual output values, and ŷ is the predicted 

values. 

4. Results and Discussion 

All the experiments in this work have been deployed using Python 3 and Anaconda on Jupyter notebook. 

In this work, several experimental models were constructed to investigate the impact of data 

transformation and regularisation techniques on the performance of the Adam-based FDNN model, in 

terms of prediction loss and generalisation error. The experiments were applied in three stages to 

achieve the objective of this research work. The following sections demonstrate the results of the 

predictive modelling in each stage. 

4.1. Standardisation/Normalisation Results 

In the first experimentation stage, the first objective of this research work was addressed, which is to 

apply data transformation techniques to reduce the prediction loss and improve the performance of the 

Adam-based FDNN model. In this case, both standardisation and normalisation techniques were applied 

to rescale the variables in the asthma dataset. The goal is to identify which technique, or combination 

of techniques, provides the best prediction performance of the Adam-based FDNN model. As such, 6 

predictive models were constructed. The first model was trained using standardised input variables 

(Stand_In). The second model was trained using normalised input variables (Norm_In). The output 

variables in both of these models were not scaled. The third model was trained using standardised input 

variables and standardised output variables (Stand_In_Stand_Out). The fourth model was trained using 

normalised input variables and normalised output variables (Norm_In_Norm_Out). The fifth model was 

trained using standardised input variables and normalised output variables (Stand_In_Norm_Out). The 

sixth model was trained using normalised input variables and standardised output variables 

(Norm_In_Stand_Out). 

Table 3 summarises the performance of all 6 models, and Figure 4 demonstrates the training loss 

and validation loss. It can be seen that the fourth model, which was trained using standardised input 

variables and normalised output variables, achieved the best prediction results, with MAE = 0.0441, 

MSE = 0.0054, RMSE = 0.0733, EVS = 0.94, and ACC = 95%. Meanwhile, the worst prediction results 

were produced by the first and second models, which were trained using unscaled output variables. 

Therefore, for regression analysis, it is important to scale the output values to reduce the prediction loss 

and improve the performance of the Adam-based FDNN model. Moreover, the findings reveal that 

different data transformation techniques can be used to scale the input and output variables to train the 

same model. Subsequently, to perform the experiments in the second stage, all the input variables in the 

asthma dataset were standardised using the StandardScaler() function, and the output values were 

normalised using the MinMaxScaler() function from scikit-learn library. 

Table 3: Standardisation and Normalisation Results 

Model MAE MSE RMSE EVS ACC 

Stand_In 1.0810 2.2263 1.4921 0.90 93% 

Norm_In 1.8500 5.8222 2.4129 0.75 87% 

Stand_In_Stand_Out 0.1611 0.0741 0.2721 0.93 95% 

Norm_In_Norm_Out 0.0527 0.0061 0.0783 0.92 94% 

Stand_In_Norm_Out 0.0441 0.0054 0.0733 0.94 95% 

Norm_In_Stand_Out 0.2234 0.1019 0.3192 0.90 93% 
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Fig. 4: Training vs. validation loss. 

4.2. Regularisation Results 

In the second experimentation stage, the second objective of this research work was addressed, which 

is to apply model regularisation techniques, including dropout regularisation and max-norm 

regularisation, to minimise the generalisation error of the Adam-based FDNN model. In this case, 

dropout was applied to the hidden layers of the network with dropout value p = {0.1, 0.2, 0.3, 0.4, 0.5}. 

The p value represents the probability ratio for dropping the nodes in the hidden layers. For example, p 

= 0.1 denotes that 10% of the hidden nodes (i.e., 5 nodes) were dropped in each training epoch randomly. 

The goal is to identify which dropout ratio is required to minimise the generalisation error of the Adam-

based FDNN model. As such, 5 predictive models were trained using dropout ratio 10%, 20%, 30%, 

40%, and 50%. Moreover, max-norm regularisation was applied in the hidden layers of each model 

with a constant value c = 3. The c value denotes that the network weights in the hidden nodes were 

constrained to have a norm less than or equal to 3. 

Table 4: Dropout Regularisation Results 

Model MAE MSE RMSE EVS ACC 

Dropout_01 0.0409 0.0038 0.0618 0.95 96% 

Dropout_02 0.0449 0.0051 0.0711 0.94 95% 

Dropout_03 0.0512 0.0054 0.0735 0.93 94% 

Dropout_04 0.0601 0.0072 0.0837 0.92 93% 

Dropout_05 0.0785 0.0103 0.1016 0.87 91% 
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Table 4 summarises the performance of all 5 models, and Figure 5 demonstrates the training loss 

and validation loss of each predictive model. It can be seen that, by applying dropout with p = 0.1, the 

Adam-based FDNN model achieved the best prediction results, with MAE = 0.0409, MSE = 0.0038, 

RMSE = 0.0618, EVS = 0.95, and ACC = 96%. For further analysis on the generalisation performance, 

the percent difference between the training loss and validation loss was calculated for each predictive 

model, as seen in Table 5. For comparison purpose, the prediction results of the best performing model 

from the first experimentation stage that did not apply dropout were also added in Table 4, Table 5, and 

Figure 5. 

It can be recognised that, without applying dropout regularisation, the model produced the best 

training loss value. However, the validation loss was significantly high. In fact, compared to the other 

models, it generated the highest difference ratio between training loss and validation loss, around 70%. 

Meanwhile, the lowest difference ratio was observed when dropout was applied with p = 0.5. 

Nevertheless, the model produced worse prediction results than all other models. This is probably 

because the architecture of the Adam-based FDNN model used in this work is relatively small with only 

2 hidden layers. In effect, applying dropout with p = 0.5 forces the model to drop 50% of its hidden 

nodes along with their respective input elements, which restricts its learning ability. However, since 

dropout was not applied during the testing process, all the input elements containing new information 

were passed to the output layer, leading to a high validation loss. The next lowest difference ratio with 

around 30% was generated by the first model with p = 0.1, which also produced the lowest 

generalisation error, thus improving the generalisation performance of the Adam-based FDNN model. 

Table 5: Generalisation Error Results 

Model Train_Loss Val_Loss Percent_Diff 

No_Dropout 0.0026 0.0054 70% 

Dropout_01 0.0028 0.0038 30% 

Dropout_02 0.0031 0.0051 47% 

Dropout_03 0.0036 0.0054 40% 

Dropout_04 0.0050 0.0072 36% 

Dropout_05 0.0091 0.0103 12% 
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Fig. 5: Training vs. validation loss. 

High generalisation error is a common problem that often occurs while training deep learning-based 

models. In this regard, previous work has suggested applying other normalisation and regularisation 

techniques, such as Batch Normalisation (BN) (Roburin et al., 2020) and scaling of weights using L2 

regularisation (Loshchilov & Hutter, 2019), to improve the training and performance of the DNN 

models. In this work, both BN and L2 regularisation were applied (with and without dropout) on the 

Adam-based FDNN model. As such, 4 more predictive models were constructed. The first model was 

trained with a BN layer that was added after the activation layer (Batch_Norm). In the second model, 

L2 regularisation was used (L2_Norm). The third model combined both dropout and BN (Dropout+BN), 

and the fourth model was trained using dropout and L2 regularisation (Dropout+L2). 

 

0 20 40 60 80 100

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

T
ra

in
in

g
 L

o
s
s

Epoch

 No_Dropout

 Dropout_01

 Dropout_02

 Dropout_03

 Dropout_04

 Dropout_05

0 20 40 60 80 100

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

V
a
lid

a
ti
o
n
 L

o
s
s

Epoch

 No_Dropout

 Dropout_01

 Dropout_02

 Dropout_03

 Dropout_04

 Dropout_05



Haque et al., Journal of System and Management Sciences, Vol. 13 (2023) No. 2, pp. 241-257 

252 

 

 

Fig. 6: Training vs. validation loss. 

Table 6: Model Regularisation Results 

Model MAE MSE RMSE EVS ACC 

Dropout 0.0409 0.0038 0.0618 0.95 96% 

Batch_Norm 0.0644 0.0075 0.0869 0.90 92% 

L2_Norm 0.0986 0.0154 0.1241 0.82 88% 

Dropout+BN 0.0505 0.0067 0.0816 0.91 92% 

Dropout+L2 0.0927 0.0141 0.1188 0.82 89% 

 

Table 6 summarises the performance of all 4 models, and Figure 6 demonstrates the training loss 

and validation loss. For comparison purpose, the prediction results of the best performing model with 

dropout (p = 0.1) were also added in Table 6 and Figure 6. In this case, it can be seen that the Adam-

based FDNN model performed best when only dropout was applied, followed by BN. However, high 

variance was observed when the model was trained using BN. In this case, although applying dropout 

with BN reduced variance, it did not enhance the generalisation performance of the Adam-based FDNN 

model. This issue was previously examined in a study (Li et al., 2019) where it was revealed that dropout 

and BN can lead to a worse performance when they are combined together. This is because dropout is 

applied during training only, hence the variance of a specific node is shifted during testing. On the other 

hand, BN maintains its statistical variance in the test phase. Meanwhile, Table 6 shows that L2 produced 

the highest generalisation error and lowest accuracy rate with around 88%. In this regard, a study 

(Loshchilov & Hutter, 2019) argued that, unlike SGD, adaptive learning algorithms (such as Adam) do 
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not apply weight decay when updating model parameters, thus making L2 regularisation less effective 

in Adam-based models. 

4.3. Comparative Analysis and Discussion 

In the third experimentation stage, the final research objective of this research work was addressed, 

which is to compare the performance of the improved Adam-based FDNN model with other learning 

rate optimisers. In this case, the FDNN model was trained using SGD, RMSProp, and AdaGrad. The 

goal is to find out if standardisation, normalisation, and regularisation also improve the performance of 

these optimisers, as it was observed with the Adam optimiser during the previous experimentation 

stages. As such, 6 predictive models were constructed. The first 3 models (SGD_FDNN, 

RMSProp_FDNN, and AdaGrad_FDNN) were trained using the SGD, RMSProp, and AdaGrad 

optimisers, respectively. Subsequently, each optimiser was used again to train the subsequent 3 models 

(SGD_FDNN_StNrRg, RMSProp_FDNN_StNrRg, and AdaGrad_FDNN_StNrRg), with standardised 

inputs, normalised outputs, and dropout with p = 0.1. 

Table 7 summarises the performance of all 6 models, and Figure 7 demonstrates the training loss 

and validation loss of each predictive model. For the purpose of comparison, the prediction results of 

the original Adam-based FDNN model (Adam_FDNN) and the improved model 

(Adam_FDNN_StNrRg) obtained from the previous experimentation stage were also added in Table 7 

and Figure 7. It can be seen that, when data transformation and regularisation techniques were not 

applied, SGD provided better prediction results than the other optimisers, with MAE = 0.6640, MSE = 

0.9652, RMSE = 0.9825, EVS = 0.94, and ACC = 95%. 
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Fig. 7: Training vs. validation loss. 

Table 7: Model Optimisation Results 

Model MAE MSE RMSE EVS ACC 

SGD_FDNN 0.6640 0.9652 0.9825 0.94 95% 

RMSProp_FDNN 1.0772 2.2833 1.5111 0.90 93% 

AdaGrad_FDNN 1.6924 4.8536 2.2031 0.79 88% 

Adam_FDNN 1.2072 2.9093 1.7057 0.88 92% 

SGD_FDNN_StNrRg 0.0906 0.0142 0.1191 0.82 89% 

RMSProp_FDNN_StNrRg 0.0518 0.0054 0.0735 0.94 95% 

AdaGrad_FDNN_StNrRg 0.0615 0.0072 0.0848 0.91 93% 

Adam_FDNN_StNrRg 0.0409 0.0038 0.0618 0.95 96% 

 

However, high variance was observed with this model, which denotes that although it was able to 

represent the training set accurately, overfitting might appear when applying the model on unseen data. 

Meanwhile, when standardisation, normalisation, and regularisation techniques were applied, SGD 

produced the worst performance results. Noticeably, the improved Adam-based FDNN model has the 

best performance results with lowest loss and highest accuracy. This indicates that, with its default 

parameter values, the Adam optimiser outperforms all the other learning rate optimisers when trained 

with scaled data and with dropout and max-norm regularisation. 
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5. Conclusion 

In this paper, an FDNN model was developed for personalised predictions of asthma. Typically, FDNN 

applies backpropagation to calculate the gradients of the loss function with regards to the internal 

weights of the model. Optimising the network weights is important to minimise the loss value, hence 

decreasing prediction errors. Therefore, optimisers are applied to update the weight values or the 

learning rate for each weight. SGD, AdaGrad, RMSProp, and Adam are common learning rate 

optimisers used for training the FDNN model. It was recognised that, although Adam produces good 

results in terms of optimising the model parameters, it might lead to poor generalisation performance. 

Therefore, in this paper, an Adam-based FDNN model was built for regression analysis using the asthma 

dataset. To improve the performance of the model, data transformation and regularisation techniques 

were applied. Several experimental models were trained, and their prediction results were compared. 

The empirical findings reveal that the best prediction performance with the lowest loss can be obtained 

when the model is trained with standardised inputs and normalised outputs. Moreover, applying dropout 

(p=0.1) with max-norm (c=3) minimises the generalisation error of the model effectively. The 

experimental work in this paper provides further evidence that the Adam optimiser produces better 

generalisation results when a dropout layer is added in the model than BN and L2 regularisation. The 

results also show that the improved Adam-based FDNN model provides the best performance results 

with the lowest validation loss and highest accuracy than other learning rate optimisers. Consequently, 

the proposed model can be applied to accurately predict asthma exacerbations based on personalised 

weather triggers with low errors. 
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