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Abstract. A large amount of data and the synchronization issue between 

various consumers or producers are handled by using distributed storage systems, 

which is a complex task. As a result, this research proposal presents payload 

benchmarking with dynamic load balancing in distributed streaming storage 

systems using modified Whale optimization techniques. The main objective of the 

optimization technique is to analyze the benchmarking data and find the failure 

prediction of Kafka benchmarking. The configuration files of the benchmark are 

taken as input to build the Kafka setup to capture the read and write latency. 

Kafka is a model where the number of producers is limited but the number of 

consumers is growing at an exponential rate. Kafka is a distributed system 

comprised of servers and clients which is used for streaming processors in real-

time messaging systems. The modified Whale optimization algorithm is 

implemented to find the solution to an optimization problem, especially with 

incomplete or inaccurate data. The performance of the Kafka and DevOps 

systems is validated by the parameters of network latency as 400ms, Execution 

time as 980ms, Memory size as 390kb, and Bandwidth as 380kb. The 

performance of the benchmarking tool for distributing the streaming storage 

system has been improved to achieve the maximum possible throughput from the 

streaming storage system. 
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1. Introduction 

The data balancing between various virtual machines within an optimum time is 

efficient for the performance of load balancing in distributed storage systems. The 

large amount of information is processed efficiently by using Kafka which is an 

open-source distributed platform for streaming data. The various servers are using 

Kafka and perform fast due to data stream decoupling and resulting in less latency. 

The issues of distributed systems like replication, node failures, and ensuring data 

integrity are performed efficiently by using Kafka. The main objective of using 

Kafka is for dynamic payload benchmarking for distributed storage systems with a 

modified Whale load balancing optimization algorithm. The streaming data from 

various distributed storage systems is processed based on a processor like Kafka 

(Xingjun et al., 2020). The performance of Kafka is validated by the parameters of 

latency, bandwidth, memory size, and execution time to improve the performance 

of business requirements (Sfaxi and Aissa 2021). The main objective of proposing 

the Kafka broker is too dynamic payload benchmarking for distributed storage 

systems (Barba-Gonzalez et al., 2020). The users or producers send various requests 

to the consumer hence to maintain the messages between the producer and the 

consumer is managed by using the broker called Kafka where a large amount of 

data is portioned into various systems to make the process efficient (Brandon et al., 

2020). The Kafka monitors the traffic between the user and the server requests 

(Shafiq et al., 2021) and a large amount of information between the server and user 

is managed by using optimization algorithms (Talaat et al. 2020). Benchmarking is 

the process of comparing any organization to the best organization to make it 

possible to improve the output at more than the best present with high performance, 

more quality, and low cost. The large amount of data produced from the Internet of 

Things is required sufficient computation power, and storage to balance the data and 

reduce the bandwidth, and complexity of the data is giving by using optimization 

algorithms (Peng et al., 2020). The various dimension of workload is considered for 

benchmarking of the data by using the open source framework namely Kafka 

(Henning and Hasselbring 2021). The Kafka gives efficient results compared to the 

existing Spark, Flink, Storm, Apex, and Beam (Devaraj et al., 2020) due to the 

qualities of high scalability, durability, and speed. The multi-objective load 

balancing techniques like Grasshopper Optimization Algorithm (GOA), Particle 

Swarm Optimization algorithm (PSO), and Grey Wolf Optimization algorithm 

(GWO) algorithms, are presented in the existing methods but due to local optimum 

issues, the performance is reduced (Neelima and Reddy 2020). The load balancing 

is a complex task for a large amount of data to improve the performance of the 

model (Balaji et al., 2021). The minimization of the workload and resulting relevant 

data reduce the latency problems and improve the performance (Khriji et al., 2022). 

The performance metrics like load balancing, power consumption, and resource 

utilization are resulted efficiently by using the modified Whale optimization 
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algorithms (Barba-Gonzalez et al., 2020; Goyal et al., 2021). The growth of the data 

in servers and networks is managed by using the maximum amount of resources, 

improving scalability, eliminating disruptions, and reducing the over-supply 

(Chakraborty et al., 2021). The main contributions of the proposed Kafka method 

using MWOA is represented below: 

1. The benchmark configuration files are taken as the input to analyze the 

dynamic payload benchmarking for improving the performance of the 

systems.  

2. The huge amount of data is preprocessed by using Kafka which is an open-

source stream processing platform. Kafka gives efficient results for fault 

tolerance and scalability in distributed storage systems and enables the 

streaming of data.  

3. The preprocessing data is balanced by using the modified Whale 

optimization algorithm which is an efficient technique for load balancing 

mechanism evaluated to reduce the drawbacks present in the existing 

optimization algorithms like PSO, GOA, and GWO. 

4. The performance is validated in terms of latency, bandwidth, memory size, 

and read size of Kafka and resulting the improved results.  

The following research paper is organized as a review of the existing works in 

Section 2, and the proposed methodology is explained in Section 3. Section 4 

evaluates the results of the proposed algorithm, Section 5 illustrated the 

comparative analysis, and the conclusion of the paper is given in section 6.  

2. Literature Review 

U.K. Jena, et al (2020) developed a novel dynamic load balancing using the 

hybridization Modified Particle Swarm Optimization (MPSO) algorithm. The 

performance of the machine was improved by balancing the load between various 

virtual machines by reducing the waiting time for tasks. The static load balancing 

methods gave efficient results with low fluctuation of load in the virtual machine. 

The static load balancing does not give efficient results by varying the loads 

unpredictably during run time and sufficient memory was required for the server to 

create the virtual machines. Veeramanikandan, et al (2020) presented a novel 

Distributed Deep Neural Network and Data Flow for big data to result in reduced 

network, latency, and service. The Deep neural network reduces the workload of 

cloud and network congestion by taking decisions at different levels in a distributed 

manner. The main drawback of the Deep Learning algorithm was consumed more 

computational time to process the data. The Data Flow of Distributed network 

performance was improved by edge computing methodology. Maycon V. Bordin, et 

al (2020) developed efficient Data Stream Processing Systems to improve the 

computation performance of distributed storage systems. The performance of the 
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benchmark distributed storage systems was improved by using the apache storm and 

spark streaming analysis. The workflow was characterized based on the processing 

cost, input size, occupation of memory, and selectivity and improved the 

performance of computation but in the case of the high values, the computational 

time and cost were improved. 

Giselle Van Dongen, et al (2020) presented the frameworks like Flink, Spark 

Streaming, and Structured streaming to improve the benchmarking scalability. The 

scaling direction and cluster layout were used as influencing factors to improve the 

scaling efficiency. The scalability of the framework, bottleneck throughput, and 

design framework were influenced by using the preprocessing characteristics. The 

performance of the frameworks did not result in suitable results in the scalability of 

benchmarking. Chunlin, et al (2022) presented a geographically distributed storage 

system to reduce the transmission time and also reduce the cost of bandwidth. The 

load balancing was done optimally by using the geographically distributed cloud. 

The main objective of using geographical systems is to have high performance with 

less time and optimal cost. The Floyd algorithm was used to minimize the cost of 

data transmission bandwidth. The limitation of using geographical systems is not 

suitable for more than the limited data and results in less performance. G.Annie 

Poornima Princess, et al (2021) presented Harries Hawks Optimization Algorithm 

(HHOA) and Pigeon-inspired optimization algorithm for load balancing by utilizing 

optimal resources with fewer periods. The JAVA Net beans were used to implement 

the frameworks to access the number of tasks and the performance. The proposed 

optimization algorithms minimize the computational time and result in optimal 

solutions to achieve efficient load balance. The incoming requests are balanced by 

using the Hawks algorithm by reducing the overload but the performance of the 

model needs to be improved with optimum cost.  

Arfa Muteeh, et al (2021) presented a Multi-resource load balancing algorithm 

(MrLBA) for reducing the load balance of the model and used the Ant Colony 

Optimization algorithm (ACO). The proposed ACO optimization algorithm results 

in efficient performance in load balancing of benchmark data with less cost. The 

data was preprocessed to minimize the bottleneck tasks and better resource 

allocation was done. The main drawback of the ACO was used more resources to 

maintain the balancing of the data to result in optimal solutions.  

3. Methodology 

The payload benchmarking with optimization load balancing algorithm on 

Kafka processor is proposed to result in efficient load balancing for benchmark 

dataset. Kafka gives efficient results for fault tolerance and scalability in distributed 

storage systems and enables the streaming of data in real time. Modified Whale 

optimization algorithm gives optimal solution to a complex and difficult problem 
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Fig. 1: Flow of Dynamic Payload Benchmarking 

3.1. Dataset 

The benchmark configuration files are used as input for the load balancing in 

distributed streaming storage systems for training and testing. The benchmark 

datasets are most significant for high-performance load balancing. The performance 

results of the consumer and producer are benchmarked and validate the message 

size, and batch size for Kafka configuration.  

3.2. Data Preprocessing 

A large number of messages in real-time is collected and pre-processed by 

using Kafka which is an open-source stream processing platform. Kafka gives 

efficient results for fault tolerance and scalability in distributed storage systems and 

enables the streaming of data in real time. The records are published by the 

producers and consumers subscribe to the topics in that records where every record 

consists of a Key-Value pair. The intermediary between the producer and consumer 

to build effective distribution is an important task in Kafka. In case of a high 

amount of data, the data is portioned into various partitions, for every partition the 

read and write operations occur parallel. The input information from producers is 

stored in the format of log files with the topic name and partition number up to 1Gb, 

after that, the new segment with log, time, and index is created. The timestamp 

segment is used for deleting the data automatically when the limit of the time stamp 

is expired by using the Time To Live (TTL) operation. Based on the replication 

factor if the replication factor is more than 1 for a topic the partition of data takes 

place. The partition of data is two types: follower and leader like a master-slave 

system and only one leader is present in every partition in a period, the rest of the 

partitions are followers. The write and read operations are performed only through 

the leader node. Every cluster of Kafka consists of a controller to assign the 

partitions for the followers and leader. In this case, all the operations of read and 

write are performed by the leader and the followers are in an idle position hence a 

synchronization of data takes place to send the input data to the leader and the 



 

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619 

610 

 

followers parallel by using the sync replicas for partitions (ISR) where the value of 

ISR is calculated by replication factor minus 1. The main concept of Kafka is 

producers and consumers where the producer application produces the data to 

provide the data for some other applications and the consumer is a feature of Kafka 

that allows multiple consumers to read similar messages.  

 

Figure 2: Architecture of Apache Kafka 

Kafka receives various messages from the producer and sends them to the 

consumer where every message is having the attributes of the producer and 

consumer. The producer is sending the message to Kafka with some 

acknowledgment. In some cases of acknowledgments, the producer sends the 

message and does not wait for delivery of the message is zero acks, the producer 

sends the message and waits for successful delivery from the leader is ack-1 and 

ack=-1 where the message is sent by the producer and waiting for confirmation 

from leader and ISR. The consumer receives the group of messages from the cluster 

of Kafka where every consumer group consists of a specific group id, stored in the 

offset with the name of the topic. The offset of every consumer group is stored 

separately then the new consumer gets messages from the offset stored in the file of 

the system. 

The time taken for a message to move from the producer to the consumer is 

calculated as the latency of Kafka in the Kafka cluster. The start time of a message 

from the producer until the message is appended to log partitions is treated as the 

production time. The Kafka replicates the message for fault tolerance then the 

message is ready to consume, the committed phase is called commit time. The 

commit time is calculated up to the consumer receiving the message from the 

cluster. The maximum data size of the accumulated message in one batch represents 

the batch size and the maximum number of batches with limited space as spatial 

batch size is denoted as  and the maximum time taken to construct the batch is the 

temporal batch size( . The configuration of spatial size and temporal size makes 

the Kafka producer send the batch. The value of  is constant and the value of  
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is varying then the mean of the latency  is changed. The DevOps model is 

implemented for developing the new products quickly and maintain the existing 

information. The comprehensive view that results the business value of DevOps by 

using the Key Performance Indicators (KPI) and results efficient latency, memory 

size and bandwidth efficiently.  

3.3. Load Balancer 

The huge amount of data produced in the real world is balanced by using 

optimization load-balancing algorithms like the modified Whale algorithm. The 

input tasks are uniformly split among the leader and the followers to make the 

process simple and fast. The main objective of load balancing is to reduce the 

overloaded tasks from one machine and assigned them to another system to improve 

the efficiency, and throughput, and reduce the time of the machine. The Whale 

optimization algorithm results in efficient results in balancing the data across 

various machines. The Whale algorithm is designed based on the algorithms like a 

swarm, bird flocking, and using mathematical models. The performance metrics like 

load balancing, power consumption, and resource utilization are resulted efficiently 

by using the modified Whale optimization algorithms. The input benchmark 

configuration files are allocated to various systems to store and balance the data 

from producer to consumer the Whale optimization algorithm is proposed. Whale 

optimization is a meta-heuristic technique proposed based on the hunting behavior 

of humpback whales by using the mechanism of a bubble net to chase their prey. 

The updated Whale Optimization Algorithm (WOA) is Modified Whale 

Optimization Algorithm (MWOA) which is incorporated with the levy flight using 

Mantegna's algorithm to give optimal solutions. The MWOA is generating random 

configuration files which produce radical networks to reduce the overloading of the 

data.  

3.3.1. Encircling Prey 

The WOA works on finding the optimal solution for balancing the data by 

encircling all other prey and updating the optimal solution. The mathematical 

expression of encircling behavior is given in equations-(1) and (2). 

    (1) 

      (2) 

Where the number of current iterations is represented as , X is the present 

solution,  is the best solution in the overall information, and c,  A is the 

coefficient vectors calculated by the equations (3) and (4) respectively.  

     (3) 

        (4) 
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3.3.2. Bubble-Net Method 

The shrinking method of encircling and spiral position updating is used for 

performing bubble-net attacks. The Shrinking encircling is calculated by the 

equations of (5) and (6) where   is linearly minimized as 2 to 0 and the value of    

 is limited between [-1,1]. The current solution is updating randomly with the best 

solution. The current solution updated with a new solution is giving a new position 

by using the Spiral Updating Position. 

    (5) 

   (6) 

Where b defines the logarithm spiral constant,  is a number generated 

randomly in between the range [-1,1]. The parameter p selection is given to balance 

the two models where the value of p is 0.5 for WOA which is represented in the 

equation-(7). 

 (7) 

Where p is a random value ranging between [0,1]. 

3.3.3. Search for Prey 

The whales move randomly to each other and find new prey where the random 

search operation is explored when . In the present information, the present 

solution is updated with the random solution in place of the best solution which is 

measured by the equation- (8) and (9).  

    (8) 

    (9) 

Where  is the random solution for present information.  

The WOA consists of some problems like premature phenomenon convergence 

leading to local optimization and the global search ability is defined which reduces 

the performance of WOA. The performance is improving by proposing the MWOA 

by improving the exploration ability. The exploration ability of further iteration is 

improved by defining a new parameter B to control the data where B is calculated 

by the equation-(10). 

             (10) 

Where a is linearly minimized from 2 to 0, and r is a random value ranging 

between [0,1]. 

The encircling prey is modified in MWOA where the positions of search agents 

are improved to the best searching agent. The convergence of premature makes it 
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easy to find the local solution and enables the agents to reduce the stagnation where 

the modified encircling is measured by the equation-(11). 

          (11) 

Where ,   are randomly selected agents, where  . 

4. Results and Discussions 

The payload benchmarking with dynamic load balancing in distributed storage 

systems on Kafka is efficient and a large amount of data is balanced by using the 

Modified Whale optimization algorithm. The performance of the model is validated 

on the virtual machine consisting of 10Gb Random Access Memory, 36 Gb virtual 

storage, 2.4 processor, and 227Gb HD storage. The comparative analysis is 

performed between various load optimization algorithms like Grasshopper 

Optimization Algorithm (GOA), Particle Swarm Optimization algorithm (PSO), 

Grey Wolf Optimization algorithm (GWO), and Modified Whale Optimization 

Algorithm(MWOA) with different models like Spark, Flink, Storm, and Kafka 

where the proposed Kafka model with MWOA results in efficient results compared 

to the existing methods. The performance is validated by the parameters of latency, 

memory size, execution time, and bandwidth. 

 The performance of latency is measured by the time certain changes are 

caused in load balancing of the data where the latency is minimized then the 

efficiency of the system is improved. The memory space utilized by the model to 

perform a specific task is measured as the size of the memory, the usage of fewer 

memory results in more efficiency and less time. The time taken to perform an input 

task is considered the execution time of the model. The bandwidth is the maximum 

amount of data transferred across the given path that has resulted as the bandwidth 

of the model. The performance of latency, Memory size, Execution time, and 

Bandwidth are calculated by the equations- (12), (13), and (14). 

   (12) 

Where  is the current number of workloads in time t,  denotes the 

number of instances per unit,  is the instance from the source code.  

  (13)  

Where VM is the virtual machine with i instances 

,

    (14) 



 

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619 

614 

 

4.1. Quantitative Evaluation 

This section evaluates the Kafka model by using MWOA which gives effective 

results in dynamic payload benchmarking with input benchmark configuration files. 

The comparative analysis is performed between various load optimization 

algorithms like GOA, PSO, GWO, and MWOA with different models like Spark, 

Flink, Storm, and Kafka where the proposed Kafka model with MWOA results in 

efficient results compared to the existing methods. The performance of the Kafka 

model with the MWOA optimization algorithm is validated by the parameters 

Latency, Execution time, Memory size, and Bandwidth. The load balancing of the 

information between the producer and consumer in the Kafka cluster is balanced 

efficiently by using the MWOA optimization algorithm. The improved performance 

results in the latency, Execution time, Memory size, and Bandwidth.  

The performance of the latency, Execution time, Memory size, and Bandwidth 

by using various processing models and optimization algorithms have resulted in 

the table-1. The performance is measured by the transaction that takes place in the 

Kafka cluster between the consumer and the producer. The results evaluated the 

latency as 400ms, Execution time as 980ms, Memory size as 390kb, and Bandwidth 

as 380kb.  

Table 1: Experimental results of various performance parameters 

Latency(ms) 

Models GOA PSO GWO MWOA 

Spark 4900 5000 5100 4800 

Flink 5300 5400 4900 4700 

Strom 5100 4900 5100 4600 

Kafka 4500 5100 5300 4000 

Memory Size(kb) 

Models GOA PSO GWO MWOA 

Spark 570 520 720 530 

Flink 540 630 620 560 

Strom 490 658 550 470 

Kafka 450 480 440 390 

Execution time(ms) 

Models GOA PSO GWO MWOA 

Spark 1490 1500 1510 1480 

Flink 1530 1540 1490 1470 

Strom 1510 1490 1510 1460 

Kafka 1450 1510 1530 980 

Bandwidth(kb) 

Models GOA PSO GWO MWOA 

Spark 530 520 630 480 

Flink 560 545 540 530 



 

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619 

615 

 

Strom 490 490 530 470 

Kafka 450 420 410 380 

 

 
Fig. 3: Experimental Results of Latency Performance 
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Fig. 5: Experimental results of the execution time 
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Fig. 6: Experimental Results of Bandwidth Performance 

The payload benchmarking on Kafka using the MWOA optimization algorithm 

for distributed storage systems results in efficient performance which is validated by 

the parameters Latency, Memory size, Execution time, and Bandwidth. The 

performance of Kafka using MWOA is compared by using various existing methods 

resulting in the table-1 and the graphical representation of the results is presented in 

figures- (3), (4), (5), and (6).  
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5. Comparative Analysis 

The Comparative Analysis takes place between the existing algorithms like MPSO, 

HHOA, and ACO optimization algorithms with the MWOA algorithm by the 

parameters of Latency, Execution time, and Memory size.  The latency, bandwidth, 

memory size, and execution time of the model are improved by using the Kafka 

model with the MWOA optimization algorithm. The information between the 

producer and the consumer is balanced by using load-balancing optimization 

algorithms. The main advantage of using Kafka is scalable, low latency, durability, 

and high concurrency, and the MWOA algorithm are well suitable for balancing the 

data to reduce the overloading of the information. Hence the combination of the 

Kafka model using the MWOA optimization algorithm results in efficient 

performance as the latency of 4000ms, Execution time is 980, and Memory is 

utilized as 390kb. The table-2 represents the comparative analysis between the 

existing algorithms to the Modified Whale Optimization algorithm on Kafka.  

Table 2: Comparative analysis between various optimization algorithms 

Algorithms Latency(ms) Execution time(ms) Memory size(kb) 

MPSO [16] - 1800 640 

HHOA [21] 5100 1300 550 

ACO algorithm [22] 4900 1207 433 

Proposed algorithm 4000 980 390 

6. Conclusion 

The payload benchmarking with dynamic load balancing for distributed storage 

systems is analyzed by using the benchmark configuration files as the input data. 

The input data is processed by using an efficient Kafka method which gives 

efficient results for fault tolerance and scalability in distributed storage systems and 

enables the streaming of data in real time. The huge amount of information between 

the systems is validated by the parameters like latency, throughput, bandwidth, 

memory size, and execution time. The proposed Kafka model using a modified 

Whale optimization algorithm results efficient results the latency of 4000ms, 

execution time of 980ms, and 390kb memory size as compared to the existing 

methods like a spark, storm, Flink, and optimizations algorithms like PSO, GOA, 

GWO. Further, the privacy and security of the information are evaluated and the 

benchmarking data is processed with minimum cost, and energy consumption to 

result in more efficient load balancing. 
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