
605

Dynamic Load Balancing in Distributed Storage

Systems using Modified Whale Optimization

Techniques

K.J. Rajashekar 1, Channakrishnaraju 2

1 Sri Siddhartha Academy of Higher Education, Tumakuru, Department of

Information Science and Engineering, Kalpataru Institute of Technology, Tiptur.

572201, India
3 Department of Computer Science and Engineering, Sri Siddhartha Institute of

Technology, Tumakuru. 572105, India

rajkit2006@gmail.com (Corresponding Author); rajuck@ssit.edu.in

Abstract. A large amount of data and the synchronization issue between

various consumers or producers are handled by using distributed storage systems,

which is a complex task. As a result, this research proposal presents payload

benchmarking with dynamic load balancing in distributed streaming storage

systems using modified Whale optimization techniques. The main objective of the

optimization technique is to analyze the benchmarking data and find the failure

prediction of Kafka benchmarking. The configuration files of the benchmark are

taken as input to build the Kafka setup to capture the read and write latency.

Kafka is a model where the number of producers is limited but the number of

consumers is growing at an exponential rate. Kafka is a distributed system

comprised of servers and clients which is used for streaming processors in real-

time messaging systems. The modified Whale optimization algorithm is

implemented to find the solution to an optimization problem, especially with

incomplete or inaccurate data. The performance of the Kafka and DevOps

systems is validated by the parameters of network latency as 400ms, Execution

time as 980ms, Memory size as 390kb, and Bandwidth as 380kb. The

performance of the benchmarking tool for distributing the streaming storage

system has been improved to achieve the maximum possible throughput from the

streaming storage system.

Keywords: Load Balancing, Kafka, Modified Whale Optimization Algorithm,

Benchmarking, Distributed Storage Systems

ISSN 1816-6075 (Print), 1818-0523 (Online)

Journal of System and Management Sciences

Vol. 13 (2023) No. 1, pp. 605-619

DOI:10.33168/JSMS.2023.0130

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

606

1. Introduction

The data balancing between various virtual machines within an optimum time is

efficient for the performance of load balancing in distributed storage systems. The

large amount of information is processed efficiently by using Kafka which is an

open-source distributed platform for streaming data. The various servers are using

Kafka and perform fast due to data stream decoupling and resulting in less latency.

The issues of distributed systems like replication, node failures, and ensuring data

integrity are performed efficiently by using Kafka. The main objective of using

Kafka is for dynamic payload benchmarking for distributed storage systems with a

modified Whale load balancing optimization algorithm. The streaming data from

various distributed storage systems is processed based on a processor like Kafka

(Xingjun et al., 2020). The performance of Kafka is validated by the parameters of

latency, bandwidth, memory size, and execution time to improve the performance

of business requirements (Sfaxi and Aissa 2021). The main objective of proposing

the Kafka broker is too dynamic payload benchmarking for distributed storage

systems (Barba-Gonzalez et al., 2020). The users or producers send various requests

to the consumer hence to maintain the messages between the producer and the

consumer is managed by using the broker called Kafka where a large amount of

data is portioned into various systems to make the process efficient (Brandon et al.,

2020). The Kafka monitors the traffic between the user and the server requests

(Shafiq et al., 2021) and a large amount of information between the server and user

is managed by using optimization algorithms (Talaat et al. 2020). Benchmarking is

the process of comparing any organization to the best organization to make it

possible to improve the output at more than the best present with high performance,

more quality, and low cost. The large amount of data produced from the Internet of

Things is required sufficient computation power, and storage to balance the data and

reduce the bandwidth, and complexity of the data is giving by using optimization

algorithms (Peng et al., 2020). The various dimension of workload is considered for

benchmarking of the data by using the open source framework namely Kafka

(Henning and Hasselbring 2021). The Kafka gives efficient results compared to the

existing Spark, Flink, Storm, Apex, and Beam (Devaraj et al., 2020) due to the

qualities of high scalability, durability, and speed. The multi-objective load

balancing techniques like Grasshopper Optimization Algorithm (GOA), Particle

Swarm Optimization algorithm (PSO), and Grey Wolf Optimization algorithm

(GWO) algorithms, are presented in the existing methods but due to local optimum

issues, the performance is reduced (Neelima and Reddy 2020). The load balancing

is a complex task for a large amount of data to improve the performance of the

model (Balaji et al., 2021). The minimization of the workload and resulting relevant

data reduce the latency problems and improve the performance (Khriji et al., 2022).

The performance metrics like load balancing, power consumption, and resource

utilization are resulted efficiently by using the modified Whale optimization

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

607

algorithms (Barba-Gonzalez et al., 2020; Goyal et al., 2021). The growth of the data

in servers and networks is managed by using the maximum amount of resources,

improving scalability, eliminating disruptions, and reducing the over-supply

(Chakraborty et al., 2021). The main contributions of the proposed Kafka method

using MWOA is represented below:

1. The benchmark configuration files are taken as the input to analyze the

dynamic payload benchmarking for improving the performance of the

systems.

2. The huge amount of data is preprocessed by using Kafka which is an open-

source stream processing platform. Kafka gives efficient results for fault

tolerance and scalability in distributed storage systems and enables the

streaming of data.

3. The preprocessing data is balanced by using the modified Whale

optimization algorithm which is an efficient technique for load balancing

mechanism evaluated to reduce the drawbacks present in the existing

optimization algorithms like PSO, GOA, and GWO.

4. The performance is validated in terms of latency, bandwidth, memory size,

and read size of Kafka and resulting the improved results.

The following research paper is organized as a review of the existing works in

Section 2, and the proposed methodology is explained in Section 3. Section 4

evaluates the results of the proposed algorithm, Section 5 illustrated the

comparative analysis, and the conclusion of the paper is given in section 6.

2. Literature Review

U.K. Jena, et al (2020) developed a novel dynamic load balancing using the

hybridization Modified Particle Swarm Optimization (MPSO) algorithm. The

performance of the machine was improved by balancing the load between various

virtual machines by reducing the waiting time for tasks. The static load balancing

methods gave efficient results with low fluctuation of load in the virtual machine.

The static load balancing does not give efficient results by varying the loads

unpredictably during run time and sufficient memory was required for the server to

create the virtual machines. Veeramanikandan, et al (2020) presented a novel

Distributed Deep Neural Network and Data Flow for big data to result in reduced

network, latency, and service. The Deep neural network reduces the workload of

cloud and network congestion by taking decisions at different levels in a distributed

manner. The main drawback of the Deep Learning algorithm was consumed more

computational time to process the data. The Data Flow of Distributed network

performance was improved by edge computing methodology. Maycon V. Bordin, et

al (2020) developed efficient Data Stream Processing Systems to improve the

computation performance of distributed storage systems. The performance of the

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

608

benchmark distributed storage systems was improved by using the apache storm and

spark streaming analysis. The workflow was characterized based on the processing

cost, input size, occupation of memory, and selectivity and improved the

performance of computation but in the case of the high values, the computational

time and cost were improved.

Giselle Van Dongen, et al (2020) presented the frameworks like Flink, Spark

Streaming, and Structured streaming to improve the benchmarking scalability. The

scaling direction and cluster layout were used as influencing factors to improve the

scaling efficiency. The scalability of the framework, bottleneck throughput, and

design framework were influenced by using the preprocessing characteristics. The

performance of the frameworks did not result in suitable results in the scalability of

benchmarking. Chunlin, et al (2022) presented a geographically distributed storage

system to reduce the transmission time and also reduce the cost of bandwidth. The

load balancing was done optimally by using the geographically distributed cloud.

The main objective of using geographical systems is to have high performance with

less time and optimal cost. The Floyd algorithm was used to minimize the cost of

data transmission bandwidth. The limitation of using geographical systems is not

suitable for more than the limited data and results in less performance. G.Annie

Poornima Princess, et al (2021) presented Harries Hawks Optimization Algorithm

(HHOA) and Pigeon-inspired optimization algorithm for load balancing by utilizing

optimal resources with fewer periods. The JAVA Net beans were used to implement

the frameworks to access the number of tasks and the performance. The proposed

optimization algorithms minimize the computational time and result in optimal

solutions to achieve efficient load balance. The incoming requests are balanced by

using the Hawks algorithm by reducing the overload but the performance of the

model needs to be improved with optimum cost.

Arfa Muteeh, et al (2021) presented a Multi-resource load balancing algorithm

(MrLBA) for reducing the load balance of the model and used the Ant Colony

Optimization algorithm (ACO). The proposed ACO optimization algorithm results

in efficient performance in load balancing of benchmark data with less cost. The

data was preprocessed to minimize the bottleneck tasks and better resource

allocation was done. The main drawback of the ACO was used more resources to

maintain the balancing of the data to result in optimal solutions.

3. Methodology

The payload benchmarking with optimization load balancing algorithm on

Kafka processor is proposed to result in efficient load balancing for benchmark

dataset. Kafka gives efficient results for fault tolerance and scalability in distributed

storage systems and enables the streaming of data in real time. Modified Whale

optimization algorithm gives optimal solution to a complex and difficult problem

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

609

Fig. 1: Flow of Dynamic Payload Benchmarking

3.1. Dataset

The benchmark configuration files are used as input for the load balancing in

distributed streaming storage systems for training and testing. The benchmark

datasets are most significant for high-performance load balancing. The performance

results of the consumer and producer are benchmarked and validate the message

size, and batch size for Kafka configuration.

3.2. Data Preprocessing

A large number of messages in real-time is collected and pre-processed by

using Kafka which is an open-source stream processing platform. Kafka gives

efficient results for fault tolerance and scalability in distributed storage systems and

enables the streaming of data in real time. The records are published by the

producers and consumers subscribe to the topics in that records where every record

consists of a Key-Value pair. The intermediary between the producer and consumer

to build effective distribution is an important task in Kafka. In case of a high

amount of data, the data is portioned into various partitions, for every partition the

read and write operations occur parallel. The input information from producers is

stored in the format of log files with the topic name and partition number up to 1Gb,

after that, the new segment with log, time, and index is created. The timestamp

segment is used for deleting the data automatically when the limit of the time stamp

is expired by using the Time To Live (TTL) operation. Based on the replication

factor if the replication factor is more than 1 for a topic the partition of data takes

place. The partition of data is two types: follower and leader like a master-slave

system and only one leader is present in every partition in a period, the rest of the

partitions are followers. The write and read operations are performed only through

the leader node. Every cluster of Kafka consists of a controller to assign the

partitions for the followers and leader. In this case, all the operations of read and

write are performed by the leader and the followers are in an idle position hence a

synchronization of data takes place to send the input data to the leader and the

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

610

followers parallel by using the sync replicas for partitions (ISR) where the value of

ISR is calculated by replication factor minus 1. The main concept of Kafka is

producers and consumers where the producer application produces the data to

provide the data for some other applications and the consumer is a feature of Kafka

that allows multiple consumers to read similar messages.

Figure 2: Architecture of Apache Kafka

Kafka receives various messages from the producer and sends them to the

consumer where every message is having the attributes of the producer and

consumer. The producer is sending the message to Kafka with some

acknowledgment. In some cases of acknowledgments, the producer sends the

message and does not wait for delivery of the message is zero acks, the producer

sends the message and waits for successful delivery from the leader is ack-1 and

ack=-1 where the message is sent by the producer and waiting for confirmation

from leader and ISR. The consumer receives the group of messages from the cluster

of Kafka where every consumer group consists of a specific group id, stored in the

offset with the name of the topic. The offset of every consumer group is stored

separately then the new consumer gets messages from the offset stored in the file of

the system.

The time taken for a message to move from the producer to the consumer is

calculated as the latency of Kafka in the Kafka cluster. The start time of a message

from the producer until the message is appended to log partitions is treated as the

production time. The Kafka replicates the message for fault tolerance then the

message is ready to consume, the committed phase is called commit time. The

commit time is calculated up to the consumer receiving the message from the

cluster. The maximum data size of the accumulated message in one batch represents

the batch size and the maximum number of batches with limited space as spatial

batch size is denoted as and the maximum time taken to construct the batch is the

temporal batch size(. The configuration of spatial size and temporal size makes

the Kafka producer send the batch. The value of is constant and the value of

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

611

is varying then the mean of the latency is changed. The DevOps model is

implemented for developing the new products quickly and maintain the existing

information. The comprehensive view that results the business value of DevOps by

using the Key Performance Indicators (KPI) and results efficient latency, memory

size and bandwidth efficiently.

3.3. Load Balancer

The huge amount of data produced in the real world is balanced by using

optimization load-balancing algorithms like the modified Whale algorithm. The

input tasks are uniformly split among the leader and the followers to make the

process simple and fast. The main objective of load balancing is to reduce the

overloaded tasks from one machine and assigned them to another system to improve

the efficiency, and throughput, and reduce the time of the machine. The Whale

optimization algorithm results in efficient results in balancing the data across

various machines. The Whale algorithm is designed based on the algorithms like a

swarm, bird flocking, and using mathematical models. The performance metrics like

load balancing, power consumption, and resource utilization are resulted efficiently

by using the modified Whale optimization algorithms. The input benchmark

configuration files are allocated to various systems to store and balance the data

from producer to consumer the Whale optimization algorithm is proposed. Whale

optimization is a meta-heuristic technique proposed based on the hunting behavior

of humpback whales by using the mechanism of a bubble net to chase their prey.

The updated Whale Optimization Algorithm (WOA) is Modified Whale

Optimization Algorithm (MWOA) which is incorporated with the levy flight using

Mantegna's algorithm to give optimal solutions. The MWOA is generating random

configuration files which produce radical networks to reduce the overloading of the

data.

3.3.1. Encircling Prey

The WOA works on finding the optimal solution for balancing the data by

encircling all other prey and updating the optimal solution. The mathematical

expression of encircling behavior is given in equations-(1) and (2).

 (1)

 (2)

Where the number of current iterations is represented as , X is the present

solution, is the best solution in the overall information, and c, A is the

coefficient vectors calculated by the equations (3) and (4) respectively.

 (3)

 (4)

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

612

3.3.2. Bubble-Net Method

The shrinking method of encircling and spiral position updating is used for

performing bubble-net attacks. The Shrinking encircling is calculated by the

equations of (5) and (6) where is linearly minimized as 2 to 0 and the value of

 is limited between [-1,1]. The current solution is updating randomly with the best

solution. The current solution updated with a new solution is giving a new position

by using the Spiral Updating Position.

 (5)

 (6)

Where b defines the logarithm spiral constant, is a number generated

randomly in between the range [-1,1]. The parameter p selection is given to balance

the two models where the value of p is 0.5 for WOA which is represented in the

equation-(7).

 (7)

Where p is a random value ranging between [0,1].

3.3.3. Search for Prey

The whales move randomly to each other and find new prey where the random

search operation is explored when . In the present information, the present

solution is updated with the random solution in place of the best solution which is

measured by the equation- (8) and (9).

 (8)

 (9)

Where is the random solution for present information.

The WOA consists of some problems like premature phenomenon convergence

leading to local optimization and the global search ability is defined which reduces

the performance of WOA. The performance is improving by proposing the MWOA

by improving the exploration ability. The exploration ability of further iteration is

improved by defining a new parameter B to control the data where B is calculated

by the equation-(10).

 (10)

Where a is linearly minimized from 2 to 0, and r is a random value ranging

between [0,1].

The encircling prey is modified in MWOA where the positions of search agents

are improved to the best searching agent. The convergence of premature makes it

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

613

easy to find the local solution and enables the agents to reduce the stagnation where

the modified encircling is measured by the equation-(11).

 (11)

Where , are randomly selected agents, where .

4. Results and Discussions

The payload benchmarking with dynamic load balancing in distributed storage

systems on Kafka is efficient and a large amount of data is balanced by using the

Modified Whale optimization algorithm. The performance of the model is validated

on the virtual machine consisting of 10Gb Random Access Memory, 36 Gb virtual

storage, 2.4 processor, and 227Gb HD storage. The comparative analysis is

performed between various load optimization algorithms like Grasshopper

Optimization Algorithm (GOA), Particle Swarm Optimization algorithm (PSO),

Grey Wolf Optimization algorithm (GWO), and Modified Whale Optimization

Algorithm(MWOA) with different models like Spark, Flink, Storm, and Kafka

where the proposed Kafka model with MWOA results in efficient results compared

to the existing methods. The performance is validated by the parameters of latency,

memory size, execution time, and bandwidth.

 The performance of latency is measured by the time certain changes are

caused in load balancing of the data where the latency is minimized then the

efficiency of the system is improved. The memory space utilized by the model to

perform a specific task is measured as the size of the memory, the usage of fewer

memory results in more efficiency and less time. The time taken to perform an input

task is considered the execution time of the model. The bandwidth is the maximum

amount of data transferred across the given path that has resulted as the bandwidth

of the model. The performance of latency, Memory size, Execution time, and

Bandwidth are calculated by the equations- (12), (13), and (14).

 (12)

Where is the current number of workloads in time t, denotes the

number of instances per unit, is the instance from the source code.

 (13)

Where VM is the virtual machine with i instances

,

 (14)

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

614

4.1. Quantitative Evaluation

This section evaluates the Kafka model by using MWOA which gives effective

results in dynamic payload benchmarking with input benchmark configuration files.

The comparative analysis is performed between various load optimization

algorithms like GOA, PSO, GWO, and MWOA with different models like Spark,

Flink, Storm, and Kafka where the proposed Kafka model with MWOA results in

efficient results compared to the existing methods. The performance of the Kafka

model with the MWOA optimization algorithm is validated by the parameters

Latency, Execution time, Memory size, and Bandwidth. The load balancing of the

information between the producer and consumer in the Kafka cluster is balanced

efficiently by using the MWOA optimization algorithm. The improved performance

results in the latency, Execution time, Memory size, and Bandwidth.

The performance of the latency, Execution time, Memory size, and Bandwidth

by using various processing models and optimization algorithms have resulted in

the table-1. The performance is measured by the transaction that takes place in the

Kafka cluster between the consumer and the producer. The results evaluated the

latency as 400ms, Execution time as 980ms, Memory size as 390kb, and Bandwidth

as 380kb.

Table 1: Experimental results of various performance parameters

Latency(ms)

Models GOA PSO GWO MWOA

Spark 4900 5000 5100 4800

Flink 5300 5400 4900 4700

Strom 5100 4900 5100 4600

Kafka 4500 5100 5300 4000

Memory Size(kb)

Models GOA PSO GWO MWOA

Spark 570 520 720 530

Flink 540 630 620 560

Strom 490 658 550 470

Kafka 450 480 440 390

Execution time(ms)

Models GOA PSO GWO MWOA

Spark 1490 1500 1510 1480

Flink 1530 1540 1490 1470

Strom 1510 1490 1510 1460

Kafka 1450 1510 1530 980

Bandwidth(kb)

Models GOA PSO GWO MWOA

Spark 530 520 630 480

Flink 560 545 540 530

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

615

Strom 490 490 530 470

Kafka 450 420 410 380

Fig. 3: Experimental Results of Latency Performance

0

100

200

300

400

500

600

700

800

Spark Flink Strom Kafka

M
em

or
y

si
ze

 (
Kb

)

Models

GOA PSO GWO MWOA

Fig.

4: Experimental Results of Memory Size

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

616

0

200

400

600

800

1000

1200

1400

1600

1800

Spark Flink Strom Kafka

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Models

GOA PSO GWO MWOA

Fig. 5: Experimental results of the execution time

0

100

200

300

400

500

600

700

Spark Flink Strom Kafka

B
an

d
w

id
th

 (
K

b
)

Models

GOA PSO GWO MWOA

Fig. 6: Experimental Results of Bandwidth Performance

The payload benchmarking on Kafka using the MWOA optimization algorithm

for distributed storage systems results in efficient performance which is validated by

the parameters Latency, Memory size, Execution time, and Bandwidth. The

performance of Kafka using MWOA is compared by using various existing methods

resulting in the table-1 and the graphical representation of the results is presented in

figures- (3), (4), (5), and (6).

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

617

5. Comparative Analysis

The Comparative Analysis takes place between the existing algorithms like MPSO,

HHOA, and ACO optimization algorithms with the MWOA algorithm by the

parameters of Latency, Execution time, and Memory size. The latency, bandwidth,

memory size, and execution time of the model are improved by using the Kafka

model with the MWOA optimization algorithm. The information between the

producer and the consumer is balanced by using load-balancing optimization

algorithms. The main advantage of using Kafka is scalable, low latency, durability,

and high concurrency, and the MWOA algorithm are well suitable for balancing the

data to reduce the overloading of the information. Hence the combination of the

Kafka model using the MWOA optimization algorithm results in efficient

performance as the latency of 4000ms, Execution time is 980, and Memory is

utilized as 390kb. The table-2 represents the comparative analysis between the

existing algorithms to the Modified Whale Optimization algorithm on Kafka.

Table 2: Comparative analysis between various optimization algorithms

Algorithms Latency(ms) Execution time(ms) Memory size(kb)

MPSO [16] - 1800 640

HHOA [21] 5100 1300 550

ACO algorithm [22] 4900 1207 433

Proposed algorithm 4000 980 390

6. Conclusion

The payload benchmarking with dynamic load balancing for distributed storage

systems is analyzed by using the benchmark configuration files as the input data.

The input data is processed by using an efficient Kafka method which gives

efficient results for fault tolerance and scalability in distributed storage systems and

enables the streaming of data in real time. The huge amount of information between

the systems is validated by the parameters like latency, throughput, bandwidth,

memory size, and execution time. The proposed Kafka model using a modified

Whale optimization algorithm results efficient results the latency of 4000ms,

execution time of 980ms, and 390kb memory size as compared to the existing

methods like a spark, storm, Flink, and optimizations algorithms like PSO, GOA,

GWO. Further, the privacy and security of the information are evaluated and the

benchmarking data is processed with minimum cost, and energy consumption to

result in more efficient load balancing.

References

Xingjun, L., Zhiwei, S., Hongping, C. and Mohammed, B. O. (2020). A new
fuzzy‐based method for load balancing in the cloud‐based Internet of things using a

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

618

grey wolf optimization algorithm. International Journal of Communication Systems,
33(8), 4370

Sfaxi, L. & Aissa, M. M. B. (2021). Babel: A Generic Benchmarking Platform for
Big Data Architectures. Big Data Research, 24, 100186

Barba-González, C., Nebro, A. J., Benítez-Hidalgo, A., García-Nieto, J. & Aldana-
Montes, J. F. (2020). On the design of a framework integrating an optimization
engine with streaming technologies. Future Generation Computer Systems, 107,
538-550

Brandón, Á., Solé, M., Huélamo, A., Solans, D., Pérez, M.S. and Muntés-Mulero, V.
(2020). Graph-based root cause analysis for service-oriented and microservice
architectures. Journal of Systems and Software, 159, 110432

Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A. and Alzain, M. A. (2021). A load
balancing algorithm for the data centres to optimize cloud computing applications.
IEEE Access, 9, 41731-41744

Talaat, F. M., Saraya, M. S., Saleh, A. I., Ali, H. A. & Ali, S. H. (2020). A load
balancing and optimization strategy (LBOS) using reinforcement learning in fog
computing environment. Journal of Ambient Intelligence and Humanized
Computing, 11(11), 4951-4966

Peng, J., Cai, K. and Jin, X. (2020). High concurrency massive data collection
algorithm for IoMT applications. Computer Communications, 157, 402-409

Henning, S. and Hasselbring, W. (2021). Theodolite: Scalability benchmarking of
distributed stream processing engines in microservice architectures. Big Data
Research, 25, 100209

Devaraj, A. F. S., Elhoseny, M., Dhanasekaran, S., Lydia, E. L. & Shankar, K.,
(2020). Hybridization of firefly and improved multi-objective particle swarm
optimization algorithm for energy efficient load balancing in cloud computing
environments. Journal of Parallel and Distributed Computing, 142, 36-45.

Neelima, P. and Reddy, A., (2020). An efficient load balancing system using
adaptive dragonfly algorithm in cloud computing. Cluster Computing, 23(4), 2891-
2899

Balaji, K., Kiran, P. S. & Kumar, M. S. (2021). An energy efficient load balancing
on cloud computing using adaptive cat swarm optimization. Materials Today:
Proceedings

Khriji, S., Benbelgacem, Y., Chéour, R., Houssaini, D. E. & Kanoun, O. (2022).
Design and implementation of a cloud-based event-driven architecture for real-time
data processing in wireless sensor networks. The Journal of Supercomputing, 78(3),
3374-3401

Rajashekar and Channakrishnaraju, Journal of System and Management Sciences, Vol. 13 (2023) No. 1, pp. 605-619

619

Barba-González, C., Nebro, A. J., Benítez-Hidalgo, A., García-Nieto, J. & Aldana-
Montes, J. F. (2020). On the design of a framework integrating an optimization
engine with streaming technologies. Future Generation Computer Systems, 107,
538-550

Goyal, S., Bhushan, S., Kumar, Y., Rana, A. U. H. S., Bhutta, M. R., Ijaz, M. F. &
Son, Y. (2021). An optimized framework for energy-resource allocation in a cloud
environment based on the whale optimization algorithm. Sensors, 21(5), 1583

Chakraborty, S., Saha, A. K., Sharma, S., Mirjalili, S. & Chakraborty, R. (2021). A
novel enhanced whale optimization algorithm for global optimization. Computers &
Industrial Engineering, 153, 107086

Jena, U. K., Das, P. K. & Kabat, M. R. (2020). Hybridization of meta-heuristic
algorithm for load balancing in cloud computing environment. Journal of King Saud
University-Computer and Information Sciences

Sankaranarayanan, S., Rodrigues, J. J., Sugumaran, V. & Kozlov, S. (2020). Data
Flow and Distributed Deep Neural Network based low latency IoT-Edge
computation model for big data environment. Engineering Applications of Artificial
Intelligence, 94, p.103785

Bordin, M. V., Griebler, D., Mencagli, G., Geyer, C. F. & Fernandes, L. G. L.
(2020). DSPBench: A suite of benchmark applications for distributed data stream
processing systems. IEEE Access, 8, 222900-222917

Bordin, M. V., Griebler, D., Mencagli, G., Geyer, C. F. & Fernandes, L. G. L.
(2020). DSPBench: A suite of benchmark applications for distributed data stream
processing systems. IEEE Access, 8, 222900-222917

Li, C., Cai, Q. & Lou, Y. (2022). Optimal data placement strategy considering
capacity limitation and load balancing in geographically distributed cloud. Future
Generation Computer Systems, 127, 142-159

Annie Poornima Princess, G. & Radhamani, A. S. (2021). A hybrid meta-heuristic
for optimal load balancing in cloud computing. Journal of Grid Computing, 19(2),
1-22

Muteeh, A., Sardaraz, M. and Tahir, M., 2021. MrLBA: Multi-resource load
balancing algorithm for cloud computing using ant colony optimization. Cluster
Computing, 24(4), 3135-3145

