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Abstract. As Corona Virus Disease (COVID-19) pandemic strikes the world, 

retail industry has been severely impacted by staff shortage and high risk of virus 

outbreak. However, most of existing smart retail solutions is associated with high 

deployment and maintenance cost that are infeasible for small retail stores. As an 

effort to mitigate the issue, a computer vision-powered smart cashierless checkout 

system is proposed based on You Only Look Once (YOLO) v5 and MobileNet V3 

for product recognition along with 3-stage image synthesis framework that includes 

crop and paste algorithm, GAN-based shadow synthesis and light variation 

algorithm. By using 3000 images generated from the framework, proposed model 

was trained and optimized with TensorRT. Experimental result shows that the 

lightweight model can be deployed on affordable edge devices like Jetson Nano 

while achieving high Mean Average Precision (mAP) of 98.2%, Checkout 

Accuracy (cAcc) of 89.17% with only 0.142s of inference time. 

Keywords: computer vision, object detection, deep learning, retail stores, smart 

retail. 
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1. Introduction 

As the last stage of goods distribution channel, retail can be defined as commercial 

activities that involve direct selling of merchandise to consumers at a specific point 

of purchase (Bankim, 2015). Among the merchandise available in the market today, 

most of them are generally categorized under Fast-Moving Consumer Goods (FMCG) 

which possess several characteristics such as high consumer demand, common 

availability and associated with wide variations. With that, retail stores will require 

high capacity of manpower especially in checkout process to accommodate high 

requirement of FMCG products. However, COVID-19 pandemic has caused most of 

the retail stores to suffer from concern of staff shortages according to Kumar et al. 

(2020). Concurrently, traditional face-to-face checkout process is associated with 

high risk of virus spread chain because close contact within 1 meter will inflict higher 

risk of being infected by COVID-19 virus as stated in Ministry of Health Malaysia 

(2020).  

There are multiple solutions available in the market to help retail stores in 

shifting their operation to cashierless and contactless operation. For instance, Regi-

Robo™ by Panasonic (2018) has adopted Radio Frequency Identification (RFID) in 

their checkout process where all products in store will be labelled with unique RFID 

tag. Thus, customers can simply pick their desired product and placed them in the 

basket before proceeding to a special checkout counter that is equipped with RFID 

reader. The reader will emit signals to the RFID tags. Once the tags are activated, 

they will send their embedded information in wave form to the reader for 

interpretation, allowing an automated checkout process. However, this 

implementation may incur additional costs since every product needs to be manually 

labelled with RFID tags by employee. Additionally, according to Periyasamy & 

Dhanasekaran (2014), RFID technology has degraded performance when dealing 

with metal or liquids, which can be unsuitable for FMCG. 

Besides, Amazon Go by Amazon.Com, (n.d.) has combined deep learning, 

computer vision and different types of sensors in their cashierless store. In the store, 

users can pick their desired item from the shelf and their action will be tracked by the 

cameras mounted in store. Multiple sensors placed on the shelf will also be used to 

increase reliability of product recognition. This implementation simplifies the overall 

shopping experience since user can just enter the store by scanning their Quick 

Response (QR) code at entrance, grab in-store products and leave the store directly. 

However, as stated in Polacco & Backes (2018), the technology can only handle low 

capacity of customer and may fail in recognizing items with similar shape. 

Additionally, the implementation may require complete overhaul of store, which can 

be unfeasible for small-scale retail stores. 

Thus, this paper proposes a software prototype of cashierless checkout intelligent 

vision system that can be deployed on low-cost edge devices. It utilizes state-of- the-
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art deep learning models at its core so that small-scale retail can easily install it at 

their checkout counters while keeping the implementation cost at its minimal. Our 

contribution also includes a novel 3-stage image synthesis framework to effectively 

simulate the actual checkout scenarios with lesser human intervention. 

The remainder of the paper is organized to several sections. Section 2 describes 

the techniques and works related to product recognition. Section 3 and 4 will 

introduce the methods for software prototype development and experimental results. 

Lastly, Section 5 will include conclusions and acknowledgements. 

2. Related Works 

2.1. Retail product datasets 

In the field of product recognition, several datasets were released publicly and two of 

them are commonly adopted in recent research in the field. One of datasets is known 

as MVTec D2S Dataset by Follmann et al. (2018) that was prepared to address 

multiple actual checkout counter scenarios such as lighting variation, product 

occlusion, and intraclass variation. The dataset can be found in Ning et al. (2019) and 

Bi & Wang (2021). As shown in Figure 1, It contains 60 classes of Germany groceries 

and made up of 14380 training and 13020 validation images that were captured in a 

resolution of 1920 x 1440. Each of the images was annotated with bounding boxes 

and class name in COCO JSON format.  

 

 
Fig. 1: Train and validation split from D2S dataset. 

Meanwhile, another dataset known as RPC Dataset introduced by Wei et al. (2019) 

is also widely adopted in recent works such as C. Li et al. (2019) and Xiao et al. (2020) 

as it represents a large-scale dataset with 200 classes of China groceries, loaded with 

53739 training and 30000 validation images that were captured at a resolution of 1592 

x 1440 and 1800 x 1800 respectively with their annotations in COCO JSON format. 

The training images were designed to ease image segmentation and synthesis while 
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the test images can be further split into 3 clutter levels. However, lighting variation 

is not considered in the dataset as all the test images were captured under constant 

lighting. Some samples from the dataset are shown in Figure 2. 

 

 
Fig. 2: Train and test split from RPC dataset. 

2.2. Image augmentation 

Generally, vast amount of training samples will be required to achieve a well-

performed deep learning model. However, F.-F. Li et al. (2006) stated that large 

dataset can be hard to acquire. Thus, image augmentation provides an inexpensive 

approach in expanding the dataset diversity through generation of new images by 

introducing operations to the existing images. Several image augmentation 

techniques that were used in product recognition encompassed mask-based synthesis, 

GAN rendering and conventional method.  

Conventional data augmentation will typically involve fundamental manipulation 

of images such as geometric transformation, flipping and colour space transformation, 

cropping, rotation, translation, and noise injection. Such approach can be seen in 

works by Rathnayake & Nawarathna (2020) and Rigner (2019).  

As for mask-based synthesis, the algorithm will commonly involve extraction 

and segmentation of object mask and apply different operations based on the 

extracted mask. In Yi et al. (2019), each product was cropped based on the bounding 

box generated through Selective Search. The cropped products were then used as 

small patches to cover other products to simulate product occlusion. Additionally, in 

Koturwar et al. (2019), product mask was extracted by calculating pixel-wise 

standard deviation across Red, Green and Blue (RGB) colored background Accurate 

mask can be extracted since products will have lower standard deviation because their 

pixel values will not be affected by changes of background colour. After that, the 
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images were crop and paste on an empty background in random orientation to 

simulate random product placement during actual checkout process. 

Meanwhile, Generative Adversarial Networks (GAN) can also be implemented 

in image synthesis. By providing two different datasets that represent the no-shadow 

and shadow domain, GAN can be trained to learn the difference between the two 

domains which eventually allows conversion of images with no-shadow to images 

with shadow. Such approach can be seen in papers by Li et al. (2019), Wei et al. 

(2019) as well as Xiao et al. (2020) where a variant of GAN known as CycleGAN 

released by Zhu et al. (2020) was applied on synthetic images with multiple products 

generated from RPC dataset to achieve higher reliability of training data with realistic 

shadows. 

2.3. State-of-the-arts object detection models 

2.3.1. YOLOv3 

YOLOv3 by Redmon & Farhadi (2018) represents the third model in YOLO family 

and it was developed based on YOLOv2 and introduced several architectural 

improvement. Firstly, as shown in Figure 3, a larger backbone was used, namely 

Darknet-53 that incorporated the concept of skip connections in Residual Network 

(ResNet) that was proposed in He et al. (2015), which will prevent gradient from 

diminishing during model training. In addition, the new architecture allows detection 

at three different scales by first downsampling feature maps by 3 different ratios 

which are 8, 16, 32 for detection of small, medium, and large object respectively 

before each of them is passed for detection at respective convolutional layers. Thus, 

the detection performance of small-sized objects can be improved. 

 

Fig. 3: YOLOv3 model architecture. 
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2.3.2. YOLOv5 

YOLOv5 proposed by Jocher et al. (2021) is a variant of YOLO family that was 

written in python language rather than C language adopted in previous versions of 

YOLO. As shown in Figure 4, YOLOv5 can be decomposed into 3 modules which 

are referred to the backbone for feature extraction, detection neck that is used to 

generate feature pyramids for object scale generalization and detection head that is 

responsible for the bounding box regression and object class prediction. In contrast 

to YOLOv3, YOLOv5 adopts Cross Stage Partial Network (CSPNet) by Wang et al. 

(2019) and Spatial Pyramid Pooling (SPP) by He et al. (2014) as their model 

backbone. The architecture can efficiently reduce the repeated gradient by 

propagating feature maps in two paths and combine after dense and transition layer 

while adapting to variable input image size. As for the neck, YOLOv5 endorsed Path 

Aggregation Network (PANet) by Liu et al. (2018) that will improve performance 

through shorter information path lower and upper feature layers. As for the head, 

YOLOv5 inherits the architecture of YOLOv3 that predicts at 3 different stages.  

 

 
Fig. 4: YOLOv5 Model Architecture. 

2.3.3. RetinaNet 

RetinaNet released by Lin et al. (2018) is a single-stage object detection model 

designed to tackle the issue of low foreground-background ratio which is commonly 

found in single-stage object detectors by introducing a new loss function known as 

Focal Loss that can emphasize on foreground objects that are hard to detect through 

larger weights while reducing the importance of easy examples like background, thus 

elevating the accuracy. In terms of architecture, RetinaNet uses a bottom-up pathway 

and Feature Pyramid Network (FPN) that was introduced by Lin et al. (2017). It acts 

as a top-down pathway to allow scale-invariant feature extraction. The backbone is 

then connected to 2 parallel subnetworks for object classification or bounding box 

regression task respectively as shown in Figure 5. 
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Fig. 5: RetinaNet model architecture. 

2.4. Lightweight CNN 

2.4.1. MobileNet V3 

As the third version of MobileNet series, MobileNet V3 by Howard et al. (2019) 

inherits the concept of MobileNet family by replacing the traditional convolutional 

operation with Depthwise Convolutional Filters and Pointwise Convolution that can 

reduce computational complexity since less multiplications are involved during the 

process. Additionally, MobileNet V3 also implements Squeeze-and-Excitation (SE) 

layers which will emphasize important features through compression and restoration. 

Besides, it adopts a new activation function that is faster to compute since no 

exponential function is involved compared to sigmoid loss function.  

2.4.2. ShuffleNet V2 

ShuffleNet V2 by Ma et al. (2018) was constructed based on ShuffleNet V1 and 

adheres 4 rules of efficient CNN architecture. In contrast to ShuffleNet V1, it 

introduces a two-channel pathway to prevent computationally expensive group 

convolutions.  Additionally, subsequent layers were removed while preserving 

channel shuffle, allowing information sharing between channel groups to reduce 

computational load while improving accuracy. 

2.4.3. 4GhostNet 

As a state-of-the-art lightweight CNN, GhostNet is proposed by Han et al. (2020). It 

introduces plug-and-play ghost module that is able to extract equivalent amount of 

feature maps during convolutional operations with lower Floating-Point Operations 

(FLOPs) as some of the feature maps will be similar and can be generated from other 
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essential feature maps using linear operations instead of using convolution that is 

computationally expensive.  

The module will involve traditional convolution to generate feature map with less 

channel before applying linear operations to generate the feature maps in the 

remaining channels, thus reducing the overall computational complexity compared to 

the traditional convolution operation.  

3. Methodology 

3.1. Dataset preparation and synthesis 

In this paper, a small-scale dataset that consists of 20 classes of retail products was 

acquired through a Huawei P20 camera under environment with uniform lighting and 

background for easy pre-processing. By using 37 human-captured, single-product 

images (size of 2976 x 2976) as inputs, multiple training images were generated using 

a novel image synthesis framework that involved combination of 3 different 

algorithms, namely crop and paste algorithm, GAN-based shadow synthesis 

algorithm and light variation algorithm. 

First, crop and paste algorithm will randomly select 3 classes of product out of 

20 classes of products and raw images of corresponding classes will be cropped and 

spontaneously placed onto a plain checkout counter image to simulate the random 

placement of products at the checkout counter. Subsequently, a best performing GAN 

was utilized to render shadows in the synthesized images after comparison between 

CycleGAN (Zhu et al., 2020) and AttentionGAN (Tang et al., 2021). The comparison 

was done based on training of 200 epochs at resolution of 800 x 800 and identity loss 

of 0.4 for background preservation. Subsequently, lighting variation was incorporated 

to the rendered images through conventional data augmentation. All the algorithms 

were associated with automatic annotation as manual image acquisition can be time 

consuming especially when involving wide range of product classes. Ultimately, the 

framework formed a dataset with 3000 synthesized training images, 300 validation 

images and 1200 test images that were captured in the real checkout counter scenario, 

which is as shown in Figure 6. 

   
Raw Images 

 

 Synthesized Images 

 

Validation and Test 

Images 

Fig. 6: Types of images involved in the proposed checkout system. 
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3.2. Model training 

Prior to improvement and optimization of model, a baseline model was selected from 

several representative single-stage deep learning models available in the field, 

consisting of YOLOv3, YOLOv5L, and RetinaNet. By utilizing subset of MVTec 

D2S Dataset from Ning et al. (2019), the training of each model was done for 150 

epochs at a learning rate of 0.001 with Adam optimizer, weight decay of 0.0005, 

image size of 512 x 512, and batch size of 16. YOLOv5L was then used for further 

improvement due to higher performance in the benchmark. 

Subsequently, several lightweight experimental models were constructed by 

replacing the original CSPNet backbone in the YOLOv5 with state-of-the-arts 

lightweight CNNs, including MobileNet V3, ShuffleNet V2, and GhostNet, which is 

as shown in Figure 7. Each of the models was then trained for the same 

hyperparameters for fair comparison with the baseline model. 

 

 
Fig. 7: Experimental YOLOv5 models. 

3.3. TensorRT optimization 

To further optimize the performance of experimental models on Jetson Nano, 

NVIDIA TensorRT by NVIDIA (2016) which is a deep learning model optimization 

runtime was used. The runtime provides a 5-step optimization in maximizing the 

throughput of deep learning models on embedded systems with NVIDIA GPU and 

they are referred to the calibration of weight and precision, layers and tensor fusion, 

auto-tuning of kernel, dynamic tensor memory and CUDA multiple stream execution. 

3.4. Evaluation metrics 

To evaluate the performance of multiple GANs and product recognition models in 

the actual in-store checkout, all models in this paper were benchmarked through 

multiple evaluation metrics. For GANs in our image synthesis framework, Fréchet 

Inception Distance in Heusel et al. (2018) was used along with qualitative analysis. 

As for product recognition models, besides involving common metrics like mean 

Average Precision (mAP) and confusion matrix for accuracy, all models were also 

evaluated using Checkout Accuracy (cAcc) proposed by Wei et al. (2019) because it 
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reflects a model’s practicality in providing exact quantity and classes of products 

during actual checkout process.  

Concurrently, efficiency of models was also measured through training time and 

average inference time. For fair comparison, all training time was obtained on Google 

Colaboratory powered by NVIDIA Tesla P100 Graphical Processing Unit (GPU) 

while all average inference time was measured on Jetson Nano with NVIDIA Tegra 

X1 GPU. 

3.5. Software prototype 

In this paper, the product recognition model was incorporated into a software 

prototype built using Tkinter library (Python Software Foundation, 2022) and 

deployed on Jetson Nano equipped with Spedal AF926H Camera. The prototype was 

also capable to update the model weights automatically and compute using latest 

product prices through connection to MongoDB database (MongoDB, n.d.). 

4. Results and Discussion 

Before selecting YOLOv5L as the baseline model for the product recognition task, 

preliminary benchmark was carried out for multiple single-stage object detection 

models used in previous works such as YOLOv3, YOLOv5L and RetinaNet. The 

dataset used at this stage was a subset of MVTec D2S Dataset from Follmann et al. 

(2018). The results obtained is as tabulated in Table 1. 

Table 1: Preliminary benchmark results. 

Model Backbone 
mAP 

(%) 

Inference 

Time (ms) 

Training 

Time (hrs) 

Mask R-CNN 

 (Ning et al., 2019) 
ResNet- 9 96.20 75.00 - 

YOLOv3 Darknet-53 99.79 33.33 10.50 

YOLOv5L CSPNet 99.50 12.20 5.99 

RetinaNet ResNet-50 99.49 35.32 14.26 

 

It can be noticed that all single-stage models outperformed Mask R-CNN as two-

stage models especially in inference time and training time. Concurrently, YOLOv5 

achieved a relatively short inference time and training time of 12.2ms and 5.69 hours 

respectively despite having a slightly lower mAP of 99.50 compared to YOLOv3 with 

mAP of 99.79%. As for RetinaNet, it achieved similar mAP score with YOLOv5 in 

exchange of high inference time and training time.  

On the other hand, to select for the best performing model for shadow synthesis 

task, benchmark was done between CycleGAN and AttentionGAN, the results can be 

seen in Table 2. 
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Table 2: Results of shadow synthesis 

 
Generated Samples FID 

Input 

 

- 

Attention 

GAN 

 

46.82 

Cycle 

GAN 

 

40.99 

 

From Table 2, CycleGAN offers a more reliable training image with smoother 

and realistic shadow compared to AttentionGAN under the same hyperparameters 

especially for products with irregular packaging. Additionally, less degradation in 

colours and product details can be spotted for images generated by CycleGAN 

compared to AttentionGAN. As for the background preservation, AttentionGAN can 

provide a more realistic background since the translation is focused on products 

through attention mask in its architecture.  For quantitative result, FID score of 

CycleGAN with a value of 40.99 indicates that its generated images are highly 

correlated with the actual checkout counter scenario. By using CycleGAN in the 

proposed image synthesis framework, the dataset can be easily constructed while 

having high correlation with the actual checkout situation without requiring 

additional effort in image acquisition process.  

Additionally, the effect of image synthesis framework on model performance was 

measured through training and evaluation of YOLOv5L using 3 datasets that 

represent different levels of image synthesis (Single, Synthesized, GAN-rendered).  

The results are also compared with re-trained DPNet in Li et al. (2019) which is a 
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Faster R-CNN that also adopted GAN-rendered images in their approach. The results 

are as tabulated in Table 3. 

 

Table 3: Results of shadow synthesis. 

Model 

Non-overlapping Overlapping Avg 

Inference 

Time  

(s) 
mAP 

(%) 

cAcc 

(%) 

mAP 

(%) 

cAcc 

(%) 

DPNet   

(C. Li et 

al., 2019) 

Single 98.4 56.17 65.4 0.50 1.765 

Syn 97.9 81.83 97.5 76.50 1.768 

Ren 98.8 83.83 97.8 79.67 1.774 

YOLOv5L 

Single 99.5 94.50 89.8 39.00 0.673 

Syn 99.5 99.33 98.5 96.33 0.689 

Ren 99.5 99.83 98.5 97.33 0.682 

 

It can be noted that YOLOv5L surpassed DPNet at all 3 levels of image synthesis 

with an average inference time of 0.673s on Jetson Nano. Concurrently, YOLOv5L 

shows an increment in cAcc when trained with 3 different datasets, especially when 

overlapped product is present. The cAcc and mAP increased to 96.33%, 98.5% 

respectively with images generated through crop and paste algorithm. The cAcc 

elevates further to 97.33% when rendered images are used for training while 

maintaining mAP and inference time at 98.5% and 0.682s. 

Moreover, the CSPNet backbone of YOLOv5L model was replaced with other 

lightweight CNNs to allow efficient deployment of Jetson Nano. The results of each 

variant are recorded in Table 4. 

Table 4: Performance of experimental models. 

Backbone GFLOPs 
mAP 

(%) 

cAcc 

(%) 

Training Time 

(hrs) 

Inference 

Time (s) 

CSPNet 

(Baseline) 
108.1 98.5 97.33 6.470 0.505 

GhostNet 42.5 98.2 89.33 3.852 0.244 

ShuffleNet V2 40.7 98.2 87.83 2.891 0.217 

MobileNet V3 38.5 98.2 89.17 2.019 0.200 

From Table 4, it can be noticed that all lightweight models have successfully 

reduced the FLOPs of YOLOv5L baseline model to low values in exchange of slight 

degradation of mAP and cAcc. Among all lightweight models, GhostNet with 42.5 

GFLOPs the smallest mAP, cAcc degradation of 0.3% and 8% from the baseline 
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performance respectively. Simultaneously, MobileNet V3 variant has achieved 

similar performance with lower GFLOPs, whereas ShuffleNet V2 has largest drop in 

cAcc, which is 9.5% from the baseline model. As for the training time and inference 

time MobileNet V3 outperformed other models with shortest training time of 2.019 

hours and 0.2s of inference time. 

On the other hand, qualitative analysis was performed for each model to justify 

their adaptability to lighting variation and extreme condition with heavily overlapped 

products. Their predictions can be seen in Table 5, Table 6, Figure 8, and Figure 9.  

 

    

(Groundtruth) (MobileNet V3) (ShuffleNet V2) (GhostNet) 

Fig. 8: Models’ predictions in low-light conditions. 

Table 5: Confidence score in low-light condition 

Items 

Confidence Score 

MobileNet V3 + 

YOLOv5L 

ShuffleNet V2 + 

YOLOv5L 

GhostNet + 

YOLOv5L 

Boh 0.95 0.95 0.88 

Halls Black 

0.93 0.94 0.95 

0.91 0.93 0.96 

Mentos Orange 0.88 0.91 0.90 
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 (Groundtruth)   (MobileNet V3)  (ShuffleNet V2) (GhostNet) 

Fig. 9: Models’ predictions in extreme condition. 

Table 6: Confidence score in extreme condition. 

Items 

Confidence Score 

MobileNet V3 + 

YOLOv5L 

ShuffleNet V2 + 

YOLOv5L 

GhostNet + 

YOLOv5L 

Dequadin 0.96 0.95 0.98 

Full Cream Milk 0.92 0.92 0.96 

Low Cream Milk 0.97 0.96 0.95 

Halls Black 0.95 0.95 0.99 

HFT Black Soya 0.95 0.95 0.96 

KitKat 0.97 0.90 0.98 

Mentos Orange 0.91 0.89 0.95 

NutriOne Nuts 0.95 0.96 0.96 

Ricola Lemon 0.93 0.95 0.97 

 

In low-light condition, all models can locate the products accurately using 

bounding boxes and predict each product at high confidences. Whereas for extreme 

condition, all product classes are accurately detected However, MobileNet V3 and 

GhostNet variant outperform ShuffleNet V2 with relatively high and stable 

confidence score. However, it can be noticed that the bounding boxes generated by 

MobileNet V3 variant are less converged to the ground truth compared to other 

models. 

Furthermore, to pursue for faster inference time on Jetson Nano, TensorRT was 

applied to all models and their optimized inference time are shown in Figure 10. All 

models’ inference time on Jetson Nano are successful reduced with a minimal 

inference time of 0.142s with MobileNet V3 variant. 
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Fig. 10: TensorRT-optimized inference time. 

Finally, software prototype was constructed using the most optimized model 

which is MobileNet V3 variant. By utilizing frame difference in OpenCV, the 

software will detect for user’s hand movement before performing inference, which 

can essentially reduce false positive rate. Moreover, Additional features such as 

model weight update and continuous price computation were included to further 

reduce human requirement in system maintenance and update. The features are shown 

in Figure 11 and Figure 12. 

 

 

Fig. 11: Frame difference for movement detection. 
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Fig. 12: Continuous price computation. 

5. Conclusion 

In brief, this paper proposes a software prototype of cashierless checkout system by 

utilizing a YOLOv5 deep learning model at its core for product recognition and price 

computing to reduce the risk of virus spread chain during in-store checkout. The 

training of the product recognition model is supported by a novel 3-stage image 

synthesis framework that includes crop and paste algorithm, CycleGAN, and 

conventional image augmentation to effectively simulate the actual checkout scenario 

with less human involvement. With the highly correlated training data, mAP and 

cAcc of YOLOv5L are increased to 98.5% and 97.33% under checkout scene with 

occluded products. Furthermore, multiple lightweight models of YOLOv5L were 

developed and MobileNet V3 variant achieved an optimal inference time of 0.142s 

on Jetson Nano while having minimal degradation in mAP of 0.3% and cAcc of 8.16% 

after optimized with TensorRT. Thus, it can be concluded that the proposed software 

prototype is suitable to be implemented in small-scale smart retail. For future works, 

further studies can be done regarding incremental learning technique to allow 

minimal training time especially when new retail product is introduced.  
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