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Abstract. Finding bugs and flaws, detecting invalid or inaccurate functionality, 

and analyzing and certifying the entire software product all require software testing. 

We looked at unit testing and integration testing in this project since they are two 

fundamental stages of software testing and are significantly associated. For both 

unit and integration testing, a sufficient number of testing methodologies and 

approaches have been assessed and contrasted, with each implementation system, 

algorithm, and technique being thoroughly scrutinized. Some of them are effective 

in finding as many hidden defects as possible while also reducing testing 

complexity, time, and expense. In this context, we chose sOrTES, a stochastic 

scheduling support tool that would be utilized for manual integration test cases. The 

chosen strategy is the most appropriate since empirical evidence reveals that it can 

prevent around 40% of testing failures while also increasing requirement coverage 

by 9.6%. 

Keywords: integration testing, unit testing, software testing, class integration 

test order, functional testing, test optimization, stochastic test scheduling, 
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1. Introduction  

Software testing is one of the most challenging steps in the whole software 

development process. Proper testing needs a methodical approach for evaluating and 

verifying a software product to detect bugs, faults, and gaps which also leads to 

finding the correctness of behavior and performance of the software. Software testing 

can be classified into two main aspects, functional testing, and non-functional testing. 

The scope of this paper is to cover only the first and second stages of functional 

testing known as unit testing and integration testing. We found many relevant 

methods for the unit and integration testing. Afterward, we evaluated and compared 

those methods to select the most suitable one for using in new software. 

Unit testing is considered the first stage of software testing levels. In this stage, 

each individual unit or component of the software is tested to verify if the intended 

functionality works properly. In test-driven development (TDD), unit tests are created 

even before the programmers write the actual code for the software. The written code 

is considered complete when the unit test is passed. We have reviewed a few unit 

testing methods, algorithms, and methodologies. For example, Zhang et al. (2019) 

focused on preconditions of individual functions and proposed the rule-directed 

symbolic execution approach using a tool, CTS-IC (Code Testing System with 

Implicit Constraint), which was able to obtain good coverage of the function even 

when preconditions were missing. Menendez et al. (2022) introduced a unit test 

generation tool named OutGen, which implements an automatic output sampling to 

provide unit test sets with diversified output. On the other hand, Nassif et al. (2021) 

proposed a technique called DScribe, which is tool-supported and complies with the 

co-generation of unit tests and documentation. Alternatively, Cerioli et al. (2021) 

presented a tool TestWizard, for automatically assessing the unit test method if it is 

coherent to its specification. An interesting use case for this unit testing method is 

that it can be used to elevate the performance testing procedures. To minimize the 

practical obstacles while applying the unit testing for performance testing, Bulej et al. 

(2017) introduced an algorithm named Stochastic Performance Logic (SPL). Overall, 

all the analyzed methods and tools proposed by various researchers for unit testing 

are mostly used targeting automated unit testing. 

After unit testing, integration testing is the next step in the software testing 

process. Software testers use integration tests to assess the performance of individual 

components as a whole and uncover any issues with the interface between modules 

and functionalities. Various research papers have been reviewed to find and evaluate 

integration testing approaches in software testing. Class Integration Test Order (CITO) 

which decides the order, in which the detection of inter-class faults occurs, has been 

discussed by Zhang et al. (2021) and Jiang et al. (2021). Their main objective was to 

reduce the overall stubbing complexity and the costs in problem space. 
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Zhang et al. (2021) used identical class dependence (ICD) and symmetric classes 

(SC) to get the same types of classes and introduced a cycle-breaking algorithm for 

the integration testing. On the other hand, Jiang et al. (2021) proposed ConCITO, a 

test order strategy to control coupling that improves existing stubbing cost and 

complexity. Zhang et al. (2019) introduced the Particle Swarm Optimization (PSO) 

algorithm in another paper to achieve precision and speedy convergence for creating 

test orders. Czibula et al. (2018) proposed Reinforcement Learning (RL) to minimize 

the stubbing effort and reduce time. Other than the CITO approach, some researchers 

proposed machine learning methods. For instance, Lima et al. (2019) mentioned that 

in the Continuous Integration (CL) environment, the test case prioritization (TCP) 

technique finds the appropriate order of test cases which improves the overall fault 

detection. Furthermore, Yang et al. (2021) proposed the Reward with Additional 

Reward method where Test Occurrence Frequency (TOF) finds the failure effect of a 

test case. Another unique method was the time-window-based reward function that 

considers test cases with failure quantities and failure distribution. One of the most 

remarkable methods proposed by Tahvili et al. (2019), where the researchers 

introduced a supportive tool for stochastic scheduling of manual integration test cases 

known as sOrTES. sOrTES, the Python-based tool, schedules manual integration test 

cases in natural language text. 

After evaluating the approach of sOrTES, we finally chose sOrTES as the 

recommended method for this project. During the early phases of testing, sOrTES can 

help testers better understand the dependencies for the testing requirements. Tahvili 

et al. (2019) mentioned that about 40% of testing failures could be avoided using the 

proposed execution method of sOrTES. Moreover, the adopted method should reduce 

human judgment when deciding which test case to run first. Finally, we can expect a 

better outcome when applying sOrTES in a new software product. 

The objectives of this project are formulated as follows: 

1. To study the existing unit and integration testing techniques. 

2. To evaluate various methods of the unit and integration testing. 

3. To understand how the method or algorithm works, designed and implemented 

for testing software. 

4. To select the most suitable method for the unit or the integration testing by 

comparing the existing methods. 

Selecting the suitable method to conduct the unit or the integration testing is 

crucial in software testing. This project could help to find the suitable method for the 

unit or the integration test by comparing many existing noble test approaches. During 

the selection of the suitable method, we will check the method in detail to see how 

the method works, how the algorithm is designed and finally, how we can implement 

that algorithm for testing. The selected method will be used to test an existing software 

product where the ultimate target is to reduce the test complexity as well as to detect 
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more functional faults and bugs. Furthermore, choosing a suitable method could 

reduce the testing time and the cost of either testing. 

2. Literature Review 

This section summarizes the papers, which have proposed their own methods, into 

Table I. The advantages, as well as the limitations or challenges of each method, are 

summarized to provide an overview of the methods. This table is mainly used to show 

the advantages and limitations of each method clearly. In addition, from Table I, it 

can be found that the literature review performed focuses on integration testing. As 

integration testing is normally performed after unit testing, the studies on unit testing 

are mainly aimed to understand the steps prior to integration testing better. 

In Table I, there are several algorithms, methodologies, frameworks, and tools 

introduced to optimize the testing process. It is clear that each method has its own 

advantages and limitations, thus the selection of the test method should depend on the 

system under test (SUT). For example, some methods are not suitable for large 

systems. Furthermore, even though all methods have been proven to be effective in 

certain situations, they do not experiment with large amounts of datasets. Some 

methods are not implementation-friendly as they are too complicated. Therefore, 

when determining the method that will be used to test the SUT, the limitations and 

challenges of the method should be taken into consideration. 

Table 1: Summary table of the paper reviewed 

Method 
Testing Type 

(Integration/Unit) 
Advantages Limitations/Challenges 

Combining similar-class 

with dependency (Zhang 

et al., 2021) 

Integration 

This method obtained lower 

stubbing costs compared to 

traditional methods. Also, 

the cycle numbers were 

minimized for similar 

classes, reducing the problem 

space without hampering the 

performance. 

The researchers have not 

tested their method for 

various programming 

languages, so the 

generalizability of this 

method still needs to be 

explored. 

ConCITO (Control 

Coupling Class 

Integration Test Order 

Generation (Jiang et al., 

2021) 

Integration 

Generated CITO with less 

overall stub complexity, 

lowest stub cost in shortest 

execution time. 

Does not check the source 

code that may affect the 

authenticity of path 

conditions. 

Multi-level feedback 

approach, MLFCITO 

(Zhang et al., 2017) 

Integration 

Provided shortest execution 

time, less time consuming, 

generate test order with less 

overall stubbing complexity 

for large-scale systems. 

Not suitable for use in 

small systems as 

execution time is the same 

as other algorithms. 
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Multi-granular flow 

network (MGFN) model 

(Wang et al., 2018) 

Integration 

Able to test higher risk 

classes in early integration 

steps and minimize overall 

complexity of established test 

stubs. 

Only 3 software were 

selected for testing with 2 

other algorithms, 

resulting in limited test 

results. 

Particle swarm 

optimization algorithm 

(Zhang et al., 2019) 

Integration 

Great precision and fast 

convergence speed to 

generate CITO. 

Experiment only 

available for java 

program. 

metamorphic testing 

(Zhang et al., 2021) 
Integration 

It is the first approach to 

validate the existing CITO 

generation systems. 

Experiments were only 

conducted on CITO 

generation systems that 

are not public. 

Reinforcement learning 

approach (Czibula et al., 

2018) 

Integration 
Reduced the test time and 

stubbing effort. 

Experiment does not 

evaluate large software 

systems. 

Historical failure 

information- based 

rewards and additional 

reward method (Yang et 

al., 2021) 

Integration 

The sparse reward in TCP of 

RL-based CI testing is 

improved and the TCP effect 

obtained by the reward with 

additional reward is better 

than those without additional 

reward. 

Information of the 

requirement and code is 

not used to design the 

rewards. 

Historical Reward 

Strategies (Yang et al., 

2020) 

Integration 
Improved the ability of fault 

detection of the test order. 

The CI cycle and time are 

limited to running huge 

amounts of historical 

data. The size of test 

cases and execution 

could affect the 

effectiveness of test 

prioritization history. 

Reinforcement learning 

approach with test suite-

based dynamic sliding 

window and individual 

test case-based dynamic 

sliding window (Yang et 

al., 2021) 

Integration 

Effective in improving the 

test case prioritization effect 

that better adopts the CI 

environment. 

The award function 

might not be effective in 

the situation of low failure 

rate limitation in 

industrial datasets. 

Similarity and correlation 

among the test cases were 

not included. 

NLP & LSTM (Deep 

Learning Algorithms) 

and search-based 

approaches (genetic 

algorithms and simulated 

annealing) (Medhat et 

al., 2020) 

Integration 

Enhanced the efficiency of 

Continuous Testing in IoT 

systems for prioritization and 

selection purposes. 

The accuracy of test 

prioritization has to be 

further improved. Only 

several testing areas are 

included, which are 

integration testing and 

regression testing. 
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Two test case selection 

approaches, class-level 

FEST, and method-level 

MEST, based on 

framework Sapient (Li 

et al., 2020) 

Integration 

Reduced test size and test 

cost, with better fault 

detection efficiency and cost- 

effectiveness. 

In rare cases, dynamic 

binding in MEST may 

lose some dependencies 

when a subclass instance 

is a parameter of 

superclass. 

Using coverage metrics 

to classify the tests 

which then a regression 

test suite is created to 

consist only of effective 

and unique partially 

redundant tests (Marijan 

et al., 2019) 

Integration 

Improves the performance of 

CI and significantly improves 
fault-detection. 

Regression testing 

approach is still not 

efficient enough to 

reduce ineffective test 

redundancy. 

Hybrid multi-criteria 

selection method using 

Analytic Hierarchy 

Process (AHP) and 

Technique for 

Order Preference by 

Similarity to Ideal 

Solution (TOPSIS) 

(Abdulwareth et al., 

2021) 

Integration 

Accuracy is high as all the 

tools are ranked accurately. It 

is beginner-friendly and has 

reduced the selection cost. 

Experts indicated that the 

taxonomy is complex and 

could be difficult to use. 

Test focus selection for 

integration testing [19] 
Integration 

With a small number of 

developed test cases, this 

method can detect 80% of 

integration errors in tested 

applications. 

This method has two 

limitations, other than the 

Java system this method 

may not work, and even 

in Java programs, it may 

not be applicable for all 

domains. 

Stochastic scheduling 

and Natural Language 

Processing (NLP) 

(Tahvili et al., 2019) 

Integration 

Achieved a more efficient 

testing process and better 

quality of software product. 

Lesser human work and 

judgment and more trustable 

results. 

The quality of the result 

is dependent on human-

written SRS and test 

specifications. Criteria of 

test cases must be 

measured before the first 

execution. Specifications 

that are written by 

humans make it harder 

and more complex for the 

system. 

An integration testing 

framework and 

evaluation metrics for 

vulnerability detection 

(Li 2018) 

Integration 
Provided effective black box 

vulnerable mining detection. 

It tends to look for 

vulnerable patterns rather 

than installed libraries. 

Only a few vulnerable 

mining methods are 
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included. 

Bayesian Optimization 

Algorithm (BOA) with 

three different structures 

is GROOVE toolset 

(Rafe et al., 2021) 

Integration 

Better in coverage and speed 

compared to existing 

approaches. 

To achieve a set of test 

objectives, explosions of 

state space and test cases 

might happen while 

exploring paths. 

A method for prioritzing 

integration testing in 

software product lines 

based on feature model 

(Akbari et al., 2017) 

Integration 

Prioritizing integration 

testing based on feature 

model 

The researchers have not 

yet developed an 

algorithm to find the test 

case reduction rate 

(TCRR) and test 

efficiency rate (TER), 

which helps the domain 

engineer during the test 

process. 

Set of integration test 

coverage metrics 

(Mukherjee et al., 2019) 

Integration 

This approach considers 

multiple characteristics of 

object-oriented programs 

such as objects and methods. 

Compared to other 

approaches, this approach 

also uses class relations 

based on the design of objects 

while ignoring the traditional 

connected paths of various 

methods. 

The researchers used 

only the first-order 

mutants for the Java 

mutation testing tool, 

which may affect the 

result of fault detection. 

Integration Testing 

Rules (ITR) model based 

on four main models: 

the reconciled solution 

model, the data sources 

models, the 

transformations model, 

and the test models 

(Blanco et al., 2018) 

Integration 

Effectively find the 

deficiencies to improve the 

final results of the ER 

application. 

Less variety of case 

studies to validate the 

approach. 

Time-Constrained 

Fragment and 

Compare (TCFC) 

algorithm (Brkić et 

al., 2018) 

Integration 

It is ideal for generating the 

overview of differences 

among tables in the database 

within a given time frame. 

It is possible to obtain a 

less accurate comparison 

of tables as a global 

overview. Large table 

comparison could block 

up all the time available 

and not all differences 

can be detected. 
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Rule-directed symbolic 

execution using CTS-IC 

(Zhang et al., 2019) 

Unit 

Implicit constraints assisted 

CTS-IC to obtain high 

coverage of the functions 

with missing preconditions 

Manual checking is 

required to ensure the 

correctness of implicit 

constraints. 

    

Automatic output 

sampling for output 

diversity in unit test 

generation (Menendez et 

al., 2022) 

Unit 

Outperformed other 

generation approaches in 

output uniqueness, mutation 

score, and fault detection. 

The Z3 solver restricts 

the program size and thus 

lowers the tool's 

scalability. The definition 

of diversity needs to be 

revised to reduce 

redundancy. 

Co-generation of unit 

tests and documentation 

with template 

invocations (Nassif et 

al., 2021) 

Unit 

Tests generated are found to 

be more readable than those 

by humans or other state-of-

the-art automated techniques. 

The results are highly 

dependent on the 

templates. 

Unit test's quality 

assessment using anti-

oracles (Cerioli et al., 

2021) 

Unit 

More accurate than the 

manual code review done by 

multiple students. The 

accuracy is even slightly 

higher than the three senior 

experts. 

This approach requires 

the test specification to 

have a certain level of 

formality. 

Mutation analysis 

(Trautsch et al., 2020) 
Integration, Unit 

Able to analyze the 

capabilities of the unit and 

integration testing. 

The evaluation was only 

done on the java 

program, others 

programming language 

projects were not tested. 

Determine the 

relationship between the 

software tester, 

personality 

characteristics, and 

software testing levels 

using MBTI (Kamangar 

et al., 2021) 

Integration, Unit 

Increased the effectiveness 

and reliability of crowd-

based outsourced software 

testing. 

Limited dataset. More 

testing done by the tester 

would result in more 

appropriate results. The 

results would also be 

affected by the tester’s 

experience on using a 

particular testing level. 

3. Method and Results 

Based on the literature review, we selected sOrTES (Tahvili et al., 2019) as the 

recommended method for our study. The reasons why we select sOrTES as our 

recommendation method are because sOrTES is able to assist testers to gain a better 

understanding of the dependencies between the requirements during the early stages 

of testing. Additionally, this method helps to reduce human judgment when selecting 
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which test case should be executed first and the reliable result produced by sOrTES 

that can help organizations achieve greater efficiency and higher quality of software 

products during the testing process. With high-quality software testing, organizations 

save on debugging costs during the testing phase and are able to expedite the release 

of the final product. 

3.1. Explanation of method works and algorithm design 

sOrTES is a Python-based system for assisting automated decision-making, 

consisting of two distinct phases, the extraction phase, and the scheduling phase. The 

requirement coverage and dependencies of each test case are collected in the 

extraction phase, and the execution time is abstracted from the external tool ESPRET 

before entering the scheduling phase to set the ranking of the execution prioritized 

test cases. 

During the extraction phase, test cases are collected from the requirement 

specification and test specification files as input in excel file format. Then, the data 

will be generated in a table consisting of dependencies between test cases, 

requirement coverage, and output columns. The dependency column is collected from 

the excel file that contains all test cases. The dependencies can be determined when 

there are two test cases that are related, for example, the input of test case A is related 

to the output of test case B, which means test case A needs to wait for the complete 

execution of test case B before it can be executed. The requirement coverage column 

can be collected in test cases by counting the total number of requirements, while the 

output column can be generated based on the number of test cases that can be tested 

after each test case is inserted. 

During the scheduling phase, the following algorithms are used to generate the 

scheduling ranking that defines the best execution order. The R in Equation 

(1) represents the result of each test case TCi, which may result in 1 as fail or 0 as 

pass. This result can be tested from the sample function P in Equation (2) by 

determining the dependencies between the TCs. For example in Equation (2), let's say 

the TCj is dependent on TCi, the results of TCj, also known as Rj will always be 1 if TCi 

was never tested before even though the TCj is passed. Once all the dependencies and 

requirement coverage are found in all TCs, the F in Equation (3) can perform to 

schedule ranking of test cases. The F is a feasible set for setting all possible ways of 

testing within TCi according to the precedent Pi. The Pi is the precedents for each test 

case TCi, to determine which TCi is directly dependent on, for example, if TC2 is 

dependent on TC1, then the P2 will have TC1, P2 = {TC1}, where the P1 is an empty 

set. 
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3.2. Implementation of the Algorithms 

From the previous section, we discussed how the algorithms have been designed in 

the previous section in order to achieve the automation of test cases dependencies 

detection and test case scheduling to achieve the proposed decision-making system. 

This information helps us to determine the dependencies detection workflow at 

Integration Testing. The implementation details are a continuous work which 

described the necessary packages, libraries, and pseudocodes, thus, we will first 

review the python implementation as presented by Tahvili et al., 2018 before further 

extending the work of the sOrTES. 

The authors admitted that dependency detection should be started in the early 

stage. Natural Language Processing techniques are utilized as the two required inputs, 

namely requirement specification and test specification, are written in natural 

language. The important information has been extracted from the documents and 

mapped to each other to examine the interdependencies among the requirements and 

test cases. The authors presented three steps to complete the dependencies linkage, 

including test case extractor (Fig. 11), requirements extractor (Fig. 10), and test case 

and requirement combiner (Fig. 13, Fig. 12). Requirements extraction algorithm 

defines how the requirements can be extracted from the documents (.xlsx files) by 

recording the requirement name, and input and output signals; Test case extraction 

algorithm extracts the important information from the specification by using xlrd2 

library package to track the relevant data. In the test case and requirement combiner 

steps, two algorithms were presented where both of the results from the requirements 

extractor and test case extractor are combined to create a dependency graph. With the 

dependencies detected from the specifications, the authors made use of vis.js and 

javascript libraries to visualize the graph.  

 

 

 

 

Fig. 1: Snapshot of requirements extraction algorithm presented by Tahvili et al., 

(2018). 
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Fig. 2. Snapshot of test case extraction algorithm presented by Tahvili et al., (2018). 

 

 

 

 

 

 

 

 

Fig. 3: Snapshot of dependency detection between test cases algorithm presented by 

Tahvili et al., (2018). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Snapshot of dependency detection between test cases algorithm presented by Tahvili 

et al., (2018). 

After the dependency analysis, the authors carry on the manual test case 

scheduling process by utilizing ESPRET (Tahvili et al., 2018), a tool for calculating 

the test case execution time to better improve the accuracy of ranking the test cases. 

The approach measures the estimation of execution time according to the actual 

execution time from historical execution data through NLP techniques, log analysis, 
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and finally, regression models were applied. A summary of the steps taken by 

ESPRET is demonstrated in Fig. 14. When there is no prior test execution data, the 

system will parse the new test step by determining if the step is matched with the 

previous execution. If there is no previous data, a baseline value will be assigned to 

the test case. After the estimation of test case execution has been done, the polynomial 

regression models are applied to obtain the actual execution time. Total execution 

time will then be returned at the end of the process. 

Fig.  5: ESPRET tool workflow diagram (adapted from Tahvili et al., (2018)). 

From all of the information gathered and provided through the steps above-

mentioned, the automatic test scheduling can be optimized. The authors have done 

an industrial case study to verify the usability of the proposed tool for dynamic 

test case scheduling. The dependencies among the test cases and requirements have 

been identified. Then, the requirements coverage is computed and test cases can 

be ranked accordingly. Redundant test execution can be avoided through the 

dynamic scheduling of the test case based on the dependencies change and cost is 

effectively reduced. 

4. Conclusion 

Software bugs and defects could be deadly as they might cost billions of dollars and 

countless precious times. Therefore in this work, over 30 unit test and integration test 

papers with various methods or approaches were studied and analyzed to determine 

the best functional software testing method. More than half of the papers were 
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researching integration testing methods where CITO-related approaches, machine 

learning-related methods, and selection of test element methods were the main 

focuses. On the other hand, unit test generation, assessment, and performance testing 

were the main focus for the unit testing papers that were being reviewed. A summary 

of all the papers was illustrated in Table I with respective advantages and limitations 

included. With all the papers being referenced and analyzed, sOrTES has chosen to be 

our recommendation method in view of its ability to enable testers to better understand 

the requirements dependencies, reduce human judgment during test case selection, as 

well as all the exceptional outcomes of producing reliable results. Detailed 

explanations and ways of implementation were as well discussed. This work has 

provided a comprehensive view of recent works on the unit and integration testing 

approaches proposed. 

Authors’ Contributions 

We reviewed unit testing and integration testing in this project as they are highly 

correlated and are two fundamental levels of software testing. Then, we chose an 

approach, sOrTES, a supportive tool for stochastic scheduling that will be used for 

manual integration test cases. 
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