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1. Introduction

In the field of management sciences and operational research, multi-attribute group 

decision making (MAGDM) refers to a series of decision-making problems that aims 

to obtain the ranking orders of possible alternatives based on the evaluation valued 

that provided by decision makers (DMs) from multiple aspects (Hu et al., 2022; 

Krishnan et al., 2022; Naziris et al., 2022; Ning et al., 2022; Cai et al., 2022). There 

are many methodologies to solve MAGDM problems and one the convenient and 

explainable method is aggregation operator (AO). AO refers to a collection of special 

function that aggregate individual inputs into single ones. In MAGDM problems, AO 

is used to integrate attribute values to compute the overall evaluation values. By 

comparing the final comprehensive evaluation values, the ranking order of 

alternatives is obtained and the optimal one can be determined naturally. The 

weighted average and weighted geo-metric operators are two fundamental AOs that 

have been extensively used in daily life. However, in most practical MAGDM 

problems, there exits wide interrelationship between attributes, and such 

interrelationship between attributes should be considered. The Bonferroni mean (BM) 

(Bonferroni et al., 2011) is useful AOs, which is famous for its ability of capturing 

the interrelationship between aggregated variables. It is worth noting that BM was 

originated for crisp numbers. Nevertheless, we always encounter decision situations, 

which is fulfill with fuzziness and uncertainty. Hence, to make BM more practical, 

many scholars and scientists focused on extending the classical BM to different fuzzy 

environments, such as intuitionistic fuzzy sets (IFSs) (Xu et al., 2011), interval-

valued IFSs (Xu et al.,2011), hesitant fuzzy sets (Xu et al., 2012), dual hesitant fuzzy 

sets (Tu et al., 2017), etc. Quite a few MAGDM methods based on BM have been 

proposed, however, their shortcoming is also evident, i.e., BM can only consider the 

interrelationship between any two arguments. When multiple attributes are 

interrelated, then BM is suitable to be used to compute the overall evaluation values. 

The Hamy mean (HM) (Hara et al., 1998) has recently drawn many scholars’ 

interesting, owing to its capability of effectively dealing with the interrelationship 

among multiple inputs. Similar to BM, HM has been investigated to accommodate 

complicated and uncertain decision-making environments. Li et al. (Li et al., 2018) 

extended HM into IFSs to handle intuitionistic fuzzy MAGDM problems. Wu et al. 

(2019) studied HM under interval-valued IFSs to evaluate the competitiveness of 

tourist destinations. Liu and Liu (2019) proposed a HM based MAGDM method 

under linguistic intuitionistic fuzzy sets. Liu and You (2018) introduced a linguistic 

neutrosophic HM operator based decision-making method. Liu et al. (2019) used HM 

to select heal-care waste treatment technology under intuitionistic uncertain linguistic 

decision environments. For more applications of HM in MAGDM problems under 

different decision-making environments, we suggest authors to refer (Wu et al., 2018; 

Rong et al., 2020; Gulistan et al., 2018; Deng et al., 2018). 
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In (Liu et al., 2019), authors proposed a new hybrid AO, viz. the power Hamy 

mean (PHM) operator, which is a combination of HM with power average (PA) 

(Yager 2001) operator. The main motivation to propose PHM is that scholars have 

realized the importance of considering the interrelationship among attributes and 

simultaneously reducing the negative effect of unreasonable attribute values on the 

final decision results. The capability of PA in effectively dealing with unduly high or 

low input arguments has been widely recognized (Feng et al., 2020; Liu et al., 2000; 

Liu et al., 2019; Liao et al., 2018). PHM absorbs the advantages of PA and HM and 

hence, it is suitable and powerful to deal with actual-life decision-making problems. 

Afterwards, Liu et al. (2020) used PHM to aggregate normal wiggly hesitant 

linguistic information and applied the proposed AOs in the evaluation of land 

ecological security. Liu and Li (2020) generalized PHM into MAGDM problems with 

trapezoidal fuzzy two-dimensional linguistic evaluation information. 

As a nonstandard fuzzy set theory, the Pythagorean fuzzy sets (PFSs) (Yager 

2014), which target at over-coming the shortcoming of IFSs, can describe wider 

information span and more complicated decision-making situations. Therefore, they 

have been extensively applied in MAGDM problems and a few novel decision-

making methods have been pro-posed. In (ma et al., 2016; Zhang et al., 2017; Liang 

et al., 2017; Wei et al., 2018; Li et al., 2018) scholars investigated PFSs based 

Pythagorean fuzzy AOs. In [35-38], the traditional decision-making methods, such as 

TOPSIS, TODIM, ELECTRE and MOORA, were extended PFSs some improved 

MAGDM methods were developed. In addition, extensions of PFSs and their 

applications in MAGDM problems are also an active research field, and decision-

making methods based on interval-valued PFSs (Garg 2016), Pythagorean fuzzy 

uncertain linguistic sets (Liu et al., 2017), Pythagorean 2-tuple linguistic sets (Wei et 

al., 2020), interval-valued Pythagorean fuzzy linguistic sets (Du et al., 2017), dual 

hesitant Pythagorean fuzzy sets (Wei et al., 2017), 2-tuple linguistic Pythagorean 

fuzzy sets (Deng et al., 2018), etc. 

However, PFSs still have limitations when expressing fuzzy decision-making 

information. A PFS A can be expressed as 𝐴 = (𝜇𝐴(𝑥), 𝑣𝐴(𝑥)), then A should satisfy 

that the square sum of membership degree (MD) and non-membership degree (NMD) 

to be less than or equal to one, i.e., (𝜇𝐴(𝑥))
2
+ (𝑣𝐴(𝑥))

2
≤ 1. It is worthy pointing 

out that this constraint cannot be always satisfied. Suppose 𝛼 = (0.75,0.80)to be an 

evaluation value that provided by DM, as 0.752 + 0.802 = 1.2015 > 1, then α 

cannot be denoted by PFSs. Similar to proposing PFSs to overcome the drawback of 

IFSs, Senapati and Yager (2020) proposed the Fermatean fuzzy sets (FFS), with the 

constraint that cubed sum of MD and NMD degrees to be less than or equal to one. 

This characteristic makes FFSs more powerful and suitable to describe DMs’ 

evaluation values in practical MAGDM issues. In (Senapati et al., 2019), authors 

proposed basic AOs for Fermatean fuzzy numbers (FFNs) and studied their 

applications in MAGDM. In addition, some scholars focused on extensions of FFSs 
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and their applications in MAGDM. Liu et al. (2019) extended FFSs to Fermatean 

fuzzy linguistic sets and proposed Fermatean fuzzy linguistic TOPSIS method. Liu 

et al. (2019) continued to present a novel MAGDM method under Fermatean fuzzy 

linguistic sets based on linguistic scale function, TODIM and TOPSIS. Senapati and 

Yager (2019) proposed novel operations of FFNs and introduced Fermatean fuzzy 

weighted product model to deal with MAGDM problems. 

Recently studies on FFSs based MAGDM methods are still not enough. The 

theory of Fermatean fuzzy AOs should be continued. The good performance of PHM 

has deeply impressed scholars; however, it has not been studied under FFSs, which 

is the first motivation of this paper. Second, existing score function of FFNs still has 

drawbacks and it is highly necessary to propose a new score function. Hence, in this 

paper we first put forward a new score function to rank FFNs. Second, we present 

novel AOs for FFNs, i.e., the Fermatean fuzzy PHM operator and Fermatean fuzzy 

power weighted HM operator, by extending PHM into FFSs. Finally, we present a 

novel MADM method under FFSs. The rest of this paper is organized as follows. 

Section 2 reviews some basic concepts and introduces a new score function for FFNs. 

Section 3 puts forward novel Fermatean fuzzy AOs and discusses their properties. 

Section 4 develops a novel method to MAGDM. 

2. Basic Concepts 

Some basic notions are briefly introduced in this section. 

2.1. Fermatean fuzzy sets 

Definition 1 (Senapati et al., 2020). Let X be an ordinary set, then a Fermatean fuzzy 

set (FFS) A is defined as follows 

𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉|𝑥 ∈ 𝑋},     (1) 

where 𝜇𝐴(𝑥) and 𝑣𝐴(𝑥) denote the MD and NMD, such that 0 ≤ 𝜇𝐴(𝑥), 𝑣𝐴(𝑥) ≤

1  and 0 ≤ (𝜇𝐴(𝑥))
3
+ (𝑣𝐴(𝑥))

3
≤ 1 . In addition, 𝜋𝐴(𝑥) = (1 − (𝜇𝐴(𝑥))

3
−

(𝑣𝐴(𝑥))
3
)
1 3⁄

 is called the indeterminacy degree. For convenience, we call the 

ordered pair  𝐴 = (𝜇𝐴(𝑥), 𝑣𝐴(𝑥)) a Fermatean fuzzy number (FFN), which can be 

denoted as 𝛼 = (𝜇, 𝑣) for simplicity.  

The basic operations of FFNs are defined as follows.  

Definition 2 (Senapati et al., 2020). Let 𝛼 = (𝜇, 𝑣) , 𝛼1 = (𝜇1, 𝑣1)  and 𝛼2 =
(𝜇2, 𝑣2) are three FFNs, and 𝜆 be a positive real number, then  

(1) 𝛼1⊕𝛼2 = ((𝜇1
3 + 𝜇2

3 − 𝜇1
3𝜇2
3)1 3⁄ , 𝑣1𝑣2); 

(2) 𝛼1⊗𝛼2 = (𝜇1𝜇2, (𝑣1
3 + 𝑣2

3 − 𝑣1
3𝑣2
3)1 3⁄ ); 

(3) 𝜆𝛼 = ((1 − (1 − 𝜇3)𝜆)
1 3⁄
, 𝑣𝜆); 

(4) 𝛼𝜆 = (𝜇𝜆 , (1 − (1 − 𝑣3)𝜆)
1 3⁄
). 

The comparison method for FFNs is presented as follows. 
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Definition 3 (Senapati et al., 2020). Let 𝛼 = (𝜇, 𝑣) be an FFN, then the score 

function 𝑆(𝛼) is defined as  

𝑆(𝛼) = 𝜇3 − 𝑣3,             (2) 

and the accuracy function is expressed as  

𝐻(𝛼) = 𝜇3 + 𝑣3,            (3) 

For two FFNs 𝛼1 and 𝛼2, then  

If 𝑆(𝛼1) > 𝑆(𝛼2), then 𝛼1 > 𝛼2; 

If 𝑆(𝛼1) = 𝑆(𝛼2), then  

           if 𝐻(𝛼1) > 𝐻(𝛼2), then 𝛼1 > 𝛼2; 

           if 𝐻(𝛼1) = 𝐻(𝛼2), then 𝛼1 = 𝛼2. 

The normalized Hamming distance between any FFNs is defined as follows.  

Definition 4. Let 𝛼1 = (𝜇1, 𝑣1)  and 𝛼2 = (𝜇2, 𝑣2)  be two FFNs, then the 

distance between 𝛼1 and 𝛼2 is defined as  

𝑑(𝛼1, 𝛼2) =
|𝜇1
3−𝜇2

3|+|𝑣1
3−𝑣2

3|+|𝜋1
3−𝜋2

3|

2
,    (4) 

where 𝜋1 and 𝜋2 denote the indeterminacy degrees of 𝛼1 and 𝛼2, respectively. 

2.2. Some basic aggregation operators 
In this subsection, some basic aggregation operators that will be used in the 

followings are presented.  

Definition 5 (Yager 2001). Let 𝑎𝑖(𝑖 = 1,2,… , 𝑛) be a collection of non-negative 

crisp numbers, then the PA operator is defined as  

𝑃𝐴(𝑎1, 𝑎2, … , 𝑎𝑛) =
∑ (1+𝑇(𝑎𝑖))𝑎𝑖
𝑛
𝑖=1

∑ (1+𝑇(𝑎𝑖))
𝑛
𝑖=1

,      (5) 

where 𝑇(𝑎𝑖) = ∑ 𝑆𝑢𝑝(𝑎𝑖, 𝑎𝑗)
𝑛
𝑗=1,𝑖≠𝑗 , 𝑆𝑢𝑝(𝑎𝑖 , 𝑎𝑗)  denotes the support for 𝑎𝑖 

from 𝑎𝑗, such that  

(1) 0 ≤ 𝑆𝑢𝑝(𝑎𝑖 , 𝑎𝑗) ≤ 1; 

(2) 𝑆𝑢𝑝(𝑎𝑖 , 𝑎𝑗) = 𝑆𝑢𝑝(𝑎𝑗, 𝑎𝑖); 

(3) 𝑆𝑢𝑝(𝑎, 𝑏) ≤ 𝑆𝑢𝑝(𝑐, 𝑑), if and only if |𝑎 − 𝑏| ≥ |𝑐 − 𝑑|. 

Definition 6 (Yager 2001). Let 𝑎𝑖(𝑖 = 1,2,… , 𝑛) be a collection of crisp numbers 

and 𝑘 = 1,2,… , 𝑛, the Hamy mean (HM) is expressed as  

𝐻𝑀(𝑘)(𝑎1, … , 𝑎𝑛) =
1

𝐶𝑛
𝑘∑ (∏ 𝑎𝑖𝑗

𝑘
𝑗=1 )

1 𝑘⁄

1≤𝑖1<⋯<𝑖𝑘≤𝑛
,  (6) 

where (𝑖1, 𝑖2, … , 𝑖𝑘) traverses all the k-tuple combination of (1,2,… , 𝑛), and 𝐶𝑛
𝑘 

is the binomial coefficient.   

By combining PA with HM, Liu et al. [21] proposed the PHM operator, whose 

definition is presented as follows.  
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Definition 7 (Yager 2001). Let 𝑎𝑖(𝑖 = 1,2,… , 𝑛) be a collection of crisp numbers 

and 𝑘 = 1,2,… , 𝑛, the power Hamy mean (PHM) operator is defined as 

𝑃𝐻𝑀(𝑘)(𝑎1, … , 𝑎𝑛) =
1

𝐶𝑛
𝑘∑ (∏ (

𝑛(1+𝑇(𝑎𝑖𝑗
))

∑ (1+𝑇(𝑎𝑖))
𝑛
𝑖=1

𝑎𝑖𝑗)
𝑘
𝑗=1 )

1 𝑘⁄

1≤𝑖1<⋯<𝑖𝑘≤𝑛
,    (7) 

where 𝑇(𝑎𝑖) = ∑ 𝑆𝑢𝑝(𝑎𝑖, 𝑎𝑗)
𝑛
𝑗=1,𝑖≠𝑗 , 𝑆𝑢𝑝(𝑎𝑖 , 𝑎𝑗)  denotes the support for 𝑎𝑖 

from 𝑎𝑗, satisfying the properties presented in Definition 8.   

3. Novel Score Function and Corresponding Comparison 
Method of FFNs 

In (Senapati et al., 2020), authors proposed score function and accuracy function of 

FFNs, and based on which a new ranking method for comparing FNNs was proposed. 

However, the score function and corresponding comparison method of FFNs still 

have shortcomings. We provide the following example to explain the drawbacks.  

Example 1. Let 𝛼1 = (0.6, 0.6)  and 𝛼2 = (0.7,0.7)  be any two FFNs, then 

according to Eq. (2), we have 𝑆(𝛼1) = 𝑆(𝛼2) = 0 , which is somewhat 

counterintuitive. In addition, let 𝛽1 = (0.9,0.1)  and 𝛽2 = (0.1,0.9)  be any FFNs, 

then according to Eq. (3), we can obtain 𝐻(𝛽1) = 𝐻(𝛽2) = 1 , which is also 

counterintuitive to a certain degree.  

The main drawbacks of existing score function and accuracy function are that 

they only consider MD and NMD, but neglect hesitation degree, which leads to some 

unreasonable results. In order overcome such drawbacks, we propose a novel 

comprehensive score function of FFNs.  

Definition 8. Let 𝛼 = (𝜇, 𝑣) be an FFN, then the score function 𝑆(𝛼) is defined 

as 

𝑆(𝛼) = 𝜇3 − 𝑣3 + (𝜇3 − 𝑣3)𝜋3,        (8) 

Accordingly, a new comparison method for FFNs is developed.  

Definition 9. Let 𝛼1 = (𝜇1, 𝑣1) and 𝛼2 = (𝜇2, 𝑣2) be any two FFNs, then  

(1) If 𝑆(𝛼1) > 𝑆(𝛼2), then 𝛼1 > 𝛼2; 

(2) If 𝑆(𝛼1) < 𝑆(𝛼2), then 𝛼1 < 𝛼2; 

(3) If 𝑆(𝛼1) = 𝑆(𝛼2), then  

       If 𝜋1 > 𝜋2, then 𝛼1 < 𝛼2; 

       If 𝜋1 = 𝜋2, then 𝛼1 = 𝛼2. 

Additionally, the following theorem can be obtained.  

Theorem 1. Let 𝛼 = (𝜇, 𝑣)  be an FFN, then when 𝜇  increases then 𝑆(𝛼) 

monotonically increases and when v increases then 𝑆(𝛼) monotonically decreases.  

In addition, it is easy to prove that the score function meets the following property.  
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Theorem 2. Let 𝛼 = (𝜇, 𝑣) be an FFN, then the score function 𝑆(𝛼) meets: 

(1) 0 ≤ 𝑆(𝛼) ≤ 1; 

(2) 𝑆(𝛼) = 1 iff 𝛼 = (1,0); 

(3) 𝑆(𝛼) = −1 iff 𝛼 = (0,1). 

4. Some Novel Aggregation Operators of FFNs 

This section proposes some novel operators of FFNs and discusses their properties.  

4.1. The Fermatean Fuzzy Power Average (FFPA) Operator 

Definition 10. Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2, … , 𝑛) be a collection of FFNs, then the 

Fermatean fuzzy power average (FFPHM) operator is expressed as 

𝐹𝐹𝑃𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) =
⊕𝑖=1
𝑛 (1+𝑇(𝛼𝑖))𝛼𝑖

∑ (1+𝑇(𝛼𝑖))
𝑛
𝑖=1

.   (9) 

where 𝑇(𝛼𝑖) = ∑ 𝑆𝑢𝑝(𝛼𝑖, 𝛼𝑗)
𝑛
𝑗=1,𝑖≠𝑗 , 𝑆𝑢𝑝(𝛼𝑖 , 𝛼𝑗)  denotes the support for 𝛼𝑖 

from 𝛼𝑗, such that  

(1) 0 ≤ 𝑆𝑢𝑝(𝛼𝑖 , 𝛼𝑗) ≤ 1; 

(2) 𝑆𝑢𝑝(𝛼𝑖, 𝛼𝑗) = 𝑆𝑢𝑝(𝛼𝑗, 𝛼𝑖); 

(3) 𝑆𝑢𝑝(𝛼𝑖, 𝛼𝑗) ≤ 𝑆𝑢𝑝(𝛼𝑠, 𝛼𝑡), if and only if 𝑑(𝛼𝑖 , 𝛼𝑗) ≥ 𝑑(𝛼𝑠, 𝛼𝑡). 

If we assume that  

𝜏𝑖 =
1+𝑇(𝛼𝑖)

∑ (1+𝑇(𝛼𝑖))
𝑛
𝑖=1

,     (10) 

Then Eq. (10) can be written as  

𝐹𝐹𝑃𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) =⊕𝑖=1
𝑛 𝜏𝑖𝛼𝑖.           (11) 

such that 0 ≤ 𝜏𝑖 ≤ 1 and ∑ 𝜏𝑖
𝑛
𝑖=1 = 1. 

It is easy to prove the following theorems.  

Theorem 3. Let 𝛼𝑖 = (𝜇𝑖, 𝑣𝑖)(𝑖 = 1,2, … , 𝑛) be a collection of FFNs, then the 

aggregated value by using the FFPA is still a FFN and  

𝐹𝐹𝑃𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) = ((1 − ∏ (1 − 𝜇𝑖
1 3⁄ )

𝜏𝑖𝑛
𝑖=1 )

1 3⁄

, ∏ 𝑣𝑖
𝜏𝑖𝑛

𝑖=1 ).         (12) 

Theorem 4 (Idempotency). Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2,… , 𝑛) be a collection of 

FFNs, and 𝛼𝑖 = 𝛼 = (𝜇, 𝑣) for all i, then  

𝐹𝐹𝑃𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) = 𝛼.      (13) 

Theorem 5. (Boundedness). Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2,… , 𝑛) be a collection of 

FFNs, then  

𝛼− ≤ 𝐹𝐹𝑃𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) ≤ 𝛼
+,        (14) 

where 
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𝛼+ = (𝑚𝑎𝑥𝑖=1
𝑛 𝜇𝑖 , 𝑚𝑖𝑛𝑖=1

𝑛 𝑣𝑖),                          

and  

𝛼− = (𝑚𝑖𝑛𝑖=1
𝑛 𝜇𝑖 , 𝑚𝑎𝑥𝑖=1

𝑛 𝑣𝑖).                          

 

4.2. The fermatean fuzzy power weighted average (FFPWA) operator 

If the corresponding weight vector of aggregated FFNs is considered in the FFPA 

operator, then the weighted form is obtained, i.e., the Fermatean fuzzy power 

weighted average (FFPWA) operator. 

Definition 11. Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2,… , 𝑛) be a collection of FFNs, and 𝑤 =
(𝑤1, 𝑤2, … , 𝑤𝑛)

𝑇  the associated weighted vector, such that 0 ≤ 𝑤𝑖 ≤ 1  and 

∑ 𝑤𝑖
𝑛
𝑖=1 = 1. The Fermatean fuzzy power weighted average (FFPWA) operator is 

defined as  

𝐹𝐹𝑃𝑊𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) =
⊕𝑖=1
𝑛 𝑤𝑖(1+𝑇(𝛼𝑖))𝛼𝑖

∑ 𝑤𝑖(1+𝑇(𝛼𝑖))
𝑛
𝑖=1

,                   (15) 

where 𝑇(𝛼𝑖) = ∑ 𝑆𝑢𝑝(𝛼𝑖, 𝛼𝑗)
𝑛
𝑗=1,𝑖≠𝑗 , 𝑆𝑢𝑝(𝛼𝑖 , 𝛼𝑗)  denotes the support for 𝛼𝑖 

from 𝛼𝑗, satisfying the properties presented in Definition 10. We assume that  

𝜛𝑖 =
𝑤𝑖(1+𝑇(𝛼𝑖))

∑ 𝑤𝑖(1+𝑇(𝛼𝑖))
𝑛
𝑖=1

,                           (16) 

then, Eq. (15) is written as  

𝐹𝐹𝑃𝑊𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) =⊕𝑖=1
𝑛 𝜛𝑖𝛼𝑖,                           (17) 

where 0 ≤ 𝜛𝑖 ≤ 1 and ∑ 𝜛𝑖 = 1
𝑛
𝑖=1 .  

Similarly, the FFPWA operator also has the following properties.  

Theorem 6. Let 𝛼𝑖 = (𝜇𝑖, 𝑣𝑖)(𝑖 = 1,2, … , 𝑛) be a collection of FFNs, then the 

aggregated value by using the FFPWA is still a FFN and  

𝐹𝐹𝑃𝑊𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) = ((1 − ∏ (1 − 𝜇𝑖
1 3⁄ )

𝜛𝑖𝑛
𝑖=1 )

1 3⁄

, ∏ 𝑣𝑖
𝜛𝑖𝑛

𝑖=1 ).       (18) 

Theorem 7 (Idempotency). Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2,… , 𝑛) be a collection of 

FFNs, and 𝛼𝑖 = 𝛼 = (𝜇, 𝑣) for all i, then  

𝐹𝐹𝑃𝑊𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) = 𝛼.                         (19) 

Theorem 8 (Boundedness). Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2,… , 𝑛) be a collection of 

FFNs, then  

𝛼− ≤ 𝐹𝐹𝑃𝑊𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) ≤ 𝛼
+,                   (20) 

where 

𝛼+ = (𝑚𝑎𝑥𝑖=1
𝑛 𝜇𝑖 , 𝑚𝑖𝑛𝑖=1

𝑛 𝑣𝑖),                         
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and  

       𝛼− = (𝑚𝑖𝑛𝑖=1
𝑛 𝜇𝑖, 𝑚𝑎𝑥𝑖=1

𝑛 𝑣𝑖). 

4.3. The fermatean fuzzy power hamy mean (FFPHM) operator 

This subsection proposes a combined AO for FFNs by extending the powerful PHM 

into FFSs. The detailed definition of the new operator is presented as follows.  

Definition 12. Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2,… , 𝑛) be a collection of FFNs and 𝑘 =

1,2,… , 𝑛 , then the Fermatean fuzzy power Hamy mean (FFPHM) operator is 

expressed as 

𝐹𝐹𝑃𝐻𝑀(𝑘)(𝛼1, 𝛼2, … , 𝛼𝑛) =
1

𝐶𝑛
𝑘⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛

(⨂𝑗=1
𝑘 (

𝑛(1+𝑇(𝛼𝑖𝑗
))

∑ (1+𝑇(𝛼𝑖))
𝑛
𝑖=1

𝛼𝑖𝑗))

1 𝑘⁄

,      (21) 

where  (𝑖1, 𝑖2, … , 𝑖𝑘) traverses all the k-tuple combination of (1,2,… , 𝑛), and 𝐶𝑛
𝑘 

is the binomial coefficient. 𝑇(𝛼𝑖) = ∑ 𝑆𝑢𝑝(𝛼𝑖, 𝛼𝑗)
𝑛
𝑗=1,𝑖≠𝑗 , 𝑆𝑢𝑝(𝛼𝑖, 𝛼𝑗) denotes the 

support for 𝛼𝑖 from 𝛼𝑗, satisfying the properties in Definition 10. We assume  

𝜉𝑖 =
1+𝑇(𝛼𝑖)

∑ (1+𝑇(𝛼𝑖))
𝑛
𝑖=1

,                               (22) 

then Eq. (21) can be written as  

𝐹𝐹𝑃𝐻𝑀(𝑘)(𝛼1, 𝛼2, … , 𝛼𝑛) =
1

𝐶𝑛
𝑘⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛

(⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼𝑖𝑗))

1 𝑘⁄

,       (23) 

where 𝜉 = (𝜉1, 𝜉2, … , 𝜉𝑛)
𝑇 is called the power weight vector, such that 0 ≤ 𝜉𝑖 ≤

1 and ∑ 𝜉𝑖
𝑛
𝑖=1 = 1.  

Based on the operational rules of FFNs, we can obtain the following aggregated 

value of the FFPHM operator.  

Theorem 9. Let 𝛼𝑖 = (𝜇𝑖, 𝑣𝑖)(𝑖 = 1,2, … , 𝑛) be a collection of FFNs, then the 

aggregated value by the FFPHM operator is also an FFN and  

𝐹𝐹𝑃𝐻𝑀(𝑘)(𝛼1, 𝛼2, … , 𝛼𝑛) = 

((1 −∏ (1 − ∏ (1 − (1 − 𝜇𝑖𝑗
3 )

𝑛𝜉𝑖𝑗
)
1 𝑘⁄

𝑘
𝑗=1 )

1 𝐶𝑛
𝑘⁄

1≤𝑖1<⋯<𝑖𝑘≤𝑛
)

1 3⁄

, ∏ (1 −1≤𝑖1<⋯<𝑖𝑘≤𝑛

∏ (1 − 𝑣
𝑖𝑗

3𝑛𝜉𝑖𝑗
)
1 𝑘⁄

𝑘
𝑗=1 )

1 3𝐶𝑛
𝑘⁄

). (24) 

Proof. According to definition 2, we have  

𝑛𝜉𝑖𝑗𝛼𝑖𝑗 = ((1 − (1 − 𝜇𝑖𝑗
3 )

𝑛𝜉𝑖𝑗
)
1 3⁄

, 𝑣
𝑖𝑗

𝑛𝜉𝑖𝑗
), 
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and 

⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼𝑖𝑗) = (∏ (1 − (1 − 𝜇𝑖𝑗

3 )
𝑛𝜉𝑖𝑗
)
1 3⁄

, (1 − ∏ (1 − 𝑣
𝑖𝑗

3𝑛𝜉𝑖𝑗
)𝑘

𝑗=1 )
1 3⁄

𝑘
𝑗=1 ). 

Hence, we can further obtain  

(⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼𝑖𝑗))

1 𝑘⁄

= (∏ (1 − (1 − 𝜇𝑖𝑗
3 )

𝑛𝜉𝑖𝑗
)
1 3𝑘⁄

,
𝑘

𝑗=1
(1 −∏ (1 − 𝑣

𝑖𝑗

3𝑛𝜉𝑖𝑗
)
1 𝑘⁄𝑘

𝑗=1
)

1 3⁄

) 

and  

⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛
(⨂𝑗=1

𝑘 (
𝑛(1+𝑇(𝛼𝑖𝑗

))

∑ (1+𝑇(𝛼𝑖))
𝑛
𝑖=1

𝛼𝑖𝑗))

1 𝑘⁄

=  

((1 − ∏ (1 −∏ (1 − (1 − 𝜇𝑖𝑗
3 )

𝑛𝜉𝑖𝑗
)
1 𝑘⁄𝑘

𝑗=1
)

1≤𝑖1<⋯<𝑖𝑘≤𝑛

)

1 3⁄

, ∏ (1

1≤𝑖1<⋯<𝑖𝑘≤𝑛

−∏ (1 − 𝑣
𝑖𝑗

3𝑛𝜉𝑖𝑗
)
1 𝑘⁄𝑘

𝑗=1
)

1 3⁄

) 

Finally,  

1

𝐶𝑛
𝑘
⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛

(

 
 
⨂𝑗=1
𝑘 (

𝑛 (1 + 𝑇 (𝛼𝑖𝑗))

∑ (1 + 𝑇(𝛼𝑖))
𝑛
𝑖=1

𝛼𝑖𝑗)

)

 
 

1 𝑘⁄

= 

((1 − ∏ (1 −∏ (1 − (1 − 𝜇𝑖𝑗
3 )

𝑛𝜉𝑖𝑗
)
1 𝑘⁄𝑘

𝑗=1
)

1 𝐶𝑛
𝑘⁄

1≤𝑖1<⋯<𝑖𝑘≤𝑛

)

1 3⁄

, ∏ (1

1≤𝑖1<⋯<𝑖𝑘≤𝑛

−∏ (1 − 𝑣
𝑖𝑗

3𝑛𝜉𝑖𝑗
)
1 𝑘⁄𝑘

𝑗=1
)

1 3𝐶𝑛
𝑘⁄

) 

Additionally, the FFPHM operator has the following properties.  

Theorem 10 (Idempotency). Let 𝛼𝑖 = (𝜇𝑖, 𝑣𝑖)(𝑖 = 1,2, … , 𝑛) be a collection of 

FFNs, and 𝛼𝑖 = 𝛼 = (𝜇, 𝑣) for all i, then 

𝐹𝐹𝑃𝐻𝑀(𝑘)(𝛼1, 𝛼2, … , 𝛼𝑛) = 𝛼.                         (25) 

Proof. As 𝛼𝑖 = 𝛼 = (𝜇, 𝑣) for i = 1,2, … , n, then we can obtain 𝑆𝑢𝑝(𝛼𝑖 , 𝛼𝑗) = 1 

for 𝑖, 𝑗 = 1,2,… , 𝑛 and 𝜉𝑖 = 1 𝑛⁄ . According to Theorem 9, we have  

𝐹𝐹𝑃𝐻𝑀(𝑘)(𝛼1, 𝛼2, … , 𝛼𝑛) = 𝐹𝐹𝑃𝐻𝑀
(𝑘)(𝛼, 𝛼, … , 𝛼) = 
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((1 − ∏ (1 −∏ (1 − (1 − 𝜇3)
𝑛𝜉𝑖𝑗)

1 𝑘⁄𝑘

𝑗=1
)

1 𝐶𝑛
𝑘⁄

1≤𝑖1<⋯<𝑖𝑘≤𝑛

)

1 3⁄

, ∏ (1

1≤𝑖1<⋯<𝑖𝑘≤𝑛

−∏ (1 − 𝑣
3𝑛𝜉𝑖𝑗)

1 𝑘⁄𝑘

𝑗=1
)

1 3𝐶𝑛
𝑘⁄

) 

= (𝜇, 𝑣) = 𝛼 □ 

Theorem 11 (Boundedness). Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2,… , 𝑛) be a collection of 

FFNs, 𝛼− = min(𝛼1, 𝛼2, … , 𝛼𝑛) and 𝛼+ = max(𝛼1, 𝛼2, … , 𝛼𝑛), then  

𝑥 ≤ 𝐹𝐹𝑃𝐻𝑀(𝛼1, 𝛼2, … , 𝛼𝑛) ≤ 𝑦,                      (20) 

where 

𝑥 =
1

𝐶𝑛
𝑘⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛

(⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼

−))
1 𝑘⁄

, 

and  

𝑦 =
1

𝐶𝑛
𝑘⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛

(⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼

+))
1 𝑘⁄

,  

Proof. It is easy to prove that  

𝑛𝜉𝑖𝑗𝛼
− ≤ 𝑛𝜉𝑖𝑗𝛼𝑖𝑗, 

and  

⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼

−) ≤ ⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼𝑖𝑗) 

Therefore,  

(⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼

−))
1 𝑘⁄

≤ (⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼𝑖𝑗))

1 𝑘⁄

, 

and  

⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛
(⨂𝑗=1

𝑘 (𝑛𝜉𝑖𝑗𝛼
−))

1 𝑘⁄

≤⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛
(⨂𝑗=1

𝑘 (𝑛𝜉𝑖𝑗𝛼𝑖𝑗))
1 𝑘⁄

 

Finally,  

1

𝐶𝑛
𝑘
⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛

(⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼

−))
1 𝑘⁄

≤
1

𝐶𝑛
𝑘
⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛

(⨂𝑗=1
𝑘 (𝑛𝜉𝑖𝑗𝛼𝑖𝑗))

1 𝑘⁄

 

which implies that 𝑥 ≤ 𝐹𝐹𝑃𝐻𝑀(𝛼1, 𝛼2, … , 𝛼𝑛). Similarly, we can also prove 

that 𝐹𝐹𝑃𝐻𝑀(𝛼1, 𝛼2, … , 𝛼𝑛) ≤ 𝑦, which completes the proof of Theorem 11. □ 

In the following, we discuss some special cases of FFPHM operator with respect 

to the parameter k.  

Case 1: If 𝑘 = 1, the FFPHM operator is reduced to the Fermatean fuzzy power 

average (FFPA) operator, i.e.,  

𝐹𝐹𝑃𝐻𝑀(1)(𝛼1, 𝛼2, … , 𝛼𝑛) = ((1 −∏ (1 − 𝜇𝑖
3)𝜉𝑖𝑛

𝑖=1 )
1 3⁄
, ∏ 𝑣𝑖

𝜉𝑖𝑛
𝑖=1 ) =⊕𝑖=1

𝑛 𝜉𝑖𝛼𝑖 = 𝐹𝐹𝑃𝐴

(𝛼1, 𝛼2, … , 𝛼𝑛).   (21) 
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In addition, if 𝑆𝑢𝑝(𝛼𝑖, 𝛼𝑗) = 𝑡 > 0, then FFPHM is reduced to Fermatean fuzzy 

average (FFA) operator, i.e. 

𝐹𝐹𝑃𝐻𝑀(1)(𝛼1, 𝛼2, … , 𝛼𝑛) = ((1 −∏ (1 − 𝜇𝑖
3)1 𝑛⁄𝑛

𝑖=1 )
1 3⁄
, ∏ 𝑣𝑖

1 𝑛⁄𝑛
𝑖=1 ) =

1

𝑛
⊕𝑖=1
𝑛 𝛼𝑖 = 𝐹𝐹𝐴

(𝛼1, 𝛼2, … , 𝛼𝑛).(22) 

 

 

Case 2: If 𝑘 = 𝑛, the FFPHM operator is reduced to the following form, i.e.,  

𝐹𝐹𝑃𝐻𝑀(𝑛)(𝛼1, 𝛼2, … , 𝛼𝑛) = (∏ (1 − (1 − 𝜇𝑖
3)𝑛𝜉𝑖)𝑛

𝑖=1

1

3𝑛 , (1 − ∏ (1 − 𝑣𝑖
3𝑛𝜉𝑖)𝑛

𝑖=1

1 𝑛⁄

)
1 3⁄

) =

(⊗𝑖=1
𝑛 𝑛𝜉𝑖𝛼𝑖)

1 𝑛⁄ ,  (23) 

In addition, if 𝑆𝑢𝑝(𝛼𝑖, 𝛼𝑗) = 𝑡 > 0, then FFPHM is reduced to Fermatean fuzzy 

geometric (FFG) operator, i.e. 

𝐹𝐹𝑃𝐻𝑀(𝑛)(𝛼1, 𝛼2, … , 𝛼𝑛) = (∏ 𝜇𝑖
1 𝑛⁄𝑛

𝑖=1 , (1 − ∏ (1 − 𝑣𝑖
3)1 𝑛⁄𝑛

𝑖=1 )
1 3⁄
) =⊗𝑖=1

𝑛 𝛼𝑖
1 𝑛⁄ = 𝐹𝐹𝐺

(𝛼1, 𝛼2, … , 𝛼𝑛).   (24) 

4.4. The fermatean fuzzy power weighted hamy mean (FFPWHM) 
operator 

If the weights of aggregated FFNs are taken into consideration in the FFPHM 

operator, then the Fermatean fuzzy power weighted Hamy mean operator is derived.  

Definition 14. Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2,… , 𝑛) be a collection of FFNs and 𝑘 =

1,2,… , 𝑛. Let 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)
𝑇 be the corresponding weight vector, such that 

∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 0 ≤ 𝑤𝑖 ≤ 1. The 3.4. The Fermatean fuzzy power weighted Hamy 

mean (FFPWHM) operator is expressed as  

𝐹𝐹𝑃𝑊𝐻𝑀(𝑘)(𝛼1, 𝛼2, … , 𝛼𝑛) =
1

𝐶𝑛
𝑘⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛

(⨂𝑗=1
𝑘 (

𝑛𝑤𝑖𝑗
(1+𝑇(𝛼𝑖𝑗

))

∑ 𝑤𝑖𝑗
(1+𝑇(𝛼𝑖))

𝑛
𝑖=1

𝛼𝑖𝑗))

1 𝑘⁄

,   (25) 

where  (𝑖1, 𝑖2, … , 𝑖𝑘) traverses all the k-tuple combination of (1,2,… , 𝑛), and 𝐶𝑛
𝑘 

is the binomial coefficient. 𝑇(𝛼𝑖) = ∑ 𝑆𝑢𝑝(𝛼𝑖, 𝛼𝑗)
𝑛
𝑗=1,𝑖≠𝑗 , 𝑆𝑢𝑝(𝛼𝑖, 𝛼𝑗) denotes the 

support for 𝛼𝑖 from 𝛼𝑗, satisfying the properties in Definition 11. If  

𝜂𝑖 =
𝑤𝑖(1+𝑇(𝛼𝑖))

∑ 𝑤𝑖(1+𝑇(𝛼𝑖))
𝑛
𝑖=1

    ,                     (26) 

then Eq. (25) can be transformed into  

𝐹𝐹𝑃𝑊𝐻𝑀(𝑘)(𝛼1, 𝛼2, … , 𝛼𝑛) =
1

𝐶𝑛
𝑘⊕1≤𝑖1<⋯<𝑖𝑘≤𝑛

(⨂𝑗=1
𝑘 (𝑛𝜂𝑖𝑗𝛼𝑖𝑗))

1 𝑘⁄

,      (27) 

where 𝜂 = (𝜂1, 𝜂2, … , 𝜂𝑛)
𝑇 is called the power weight vector, such that 0 ≤ 𝜂𝑖 ≤

1 and ∑ 𝜂𝑖
𝑛
𝑖=1 = 1. 
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Theorem 12. Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2, … , 𝑛)  be a collection of FFNs, the 

aggregated result by the FFPWHM operator is still an FFNs and 

𝐹𝐹𝑃𝑊𝐻𝑀(𝑘)(𝛼1, 𝛼2, … , 𝛼𝑛) = 

((1 −∏ (1 − ∏ (1 − (1 − 𝜇𝑖𝑗
3 )

𝑛𝜉𝑖𝑗
)
1 𝑘⁄

𝑘
𝑗=1 )

1 𝐶𝑛
𝑘⁄

1≤𝑖1<⋯<𝑖𝑘≤𝑛
)

1 3⁄

, ∏ (1 −1≤𝑖1<⋯<𝑖𝑘≤𝑛

∏ (1 − 𝑣
𝑖𝑗

3𝑛𝜉𝑖𝑗
)
1 𝑘⁄

𝑘
𝑗=1 )

1 3𝐶𝑛
𝑘⁄

). (28) 

The proof of Theorem 12 is similar to that of Theorem 9. Moreover, the 

FFPWHM operator also has the following properties.  

Theorem 13 (Idempotency). Let 𝛼𝑖 = (𝜇𝑖, 𝑣𝑖)(𝑖 = 1,2, … , 𝑛) be a collection of 

FFNs, and 𝛼𝑖 = 𝛼 = (𝜇, 𝑣) for all i, then 

𝐹𝐹𝑃𝑊𝐻𝑀(𝑘)(𝛼1, 𝛼2, … , 𝛼𝑛) = 𝛼.                         (28) 

Theorem 14 (Boundedness). Let 𝛼𝑖 = (𝜇𝑖 , 𝑣𝑖)(𝑖 = 1,2,… , 𝑛) be a collection of 

FFNs, then  

𝛼− ≤ 𝐹𝐹𝑃𝑊𝐻𝑀(𝑘)(𝛼1, 𝛼2, … , 𝛼𝑛) ≤ 𝛼
+,                    (29) 

where 

𝛼+ = (𝑚𝑎𝑥𝑖=1
𝑛 𝜇𝑖 , 𝑚𝑖𝑛𝑖=1

𝑛 𝑣𝑖), 

and  

𝛼− = (𝑚𝑖𝑛𝑖=1
𝑛 𝜇𝑖 , 𝑚𝑎𝑥𝑖=1

𝑛 𝑣𝑖). 

5. A novel approach to MAGDM based on the proposed 
operators 

In this section, with the help of the proposed AOs, we propose a new MAGDM 

method under FFSs. Let 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚}  be a set of candidates, and 𝐺 =
{𝐺1, 𝐺2, … , 𝐺𝑛}  be a collective of attributes, whose attribute vector is 𝑤 =
(𝑤1, 𝑤2, … , 𝑤𝑛)

𝑇 , such that ∑ 𝑤𝑗
𝑛
𝑗=1 = 1  and 0 ≤ 𝑤𝑗 ≤ 1 . A group of t DMs 

(𝐷1, 𝐷2, … , 𝐷𝑡) are invited to evaluate the n alternatives. DMs are kindly invited to 

express their evaluation values and specifically for alternative 𝐴𝑖(𝑖 = 1,2,… ,𝑚) of 

attribute 𝐺𝑗(𝑗 = 1,2,… , 𝑛). A FFN 𝛼𝑖𝑗
(𝑙) = (𝜇𝑖𝑗

(𝑙), 𝑣𝑖𝑗
(𝑙)) is used to describe the evaluate 

value of attribute 𝐺𝑗 of alternative 𝑋𝑖 that provided by DM 𝐷𝑙(𝑙 = 1,2,… , 𝑡). Weight 

vector of the group of DMs is 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑡)
𝑇, such that ∑ 𝜆𝑡

𝑡
𝑙=1 = 1 and 0 ≤

𝜆𝑡 ≤ 1. Finally, t Fermatean fuzzy decision matrices are obtained. In the following, 

a novel MAGDM method with FFNs is developed.  

Step 1. The original decision matrices should be normalized according to the 

following equation  
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𝛼𝑖𝑗
(𝑙) = {

(𝜇𝑖𝑗
(𝑙), 𝑣𝑖𝑗

(𝑙))    𝑖𝑓 𝐺𝑗  𝑖𝑠 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑦𝑝𝑒

(𝑣𝑖𝑗
(𝑙), 𝜇𝑖𝑗

(𝑙))   𝑖𝑓 𝐺𝑗  𝑖𝑠 𝑐𝑜𝑠𝑡 𝑡𝑦𝑝𝑒    
,              (30) 

Step 2. Calculate the supports for 𝛼𝑖𝑗
(𝑎)

 from 𝛼𝑖𝑗
(𝑏)(𝑎, 𝑏 = 1,2,… 𝑡; 𝑎 ≠ 𝑏), i.e., 

𝑆𝑢𝑝 (𝛼𝑖𝑗
(𝑎), 𝛼𝑖𝑗

(𝑏)) by  

𝑆𝑢𝑝(𝛼𝑖𝑗
(𝑎), 𝛼𝑖𝑗

(𝑏)) = 1 − 𝑑(𝛼𝑖𝑗
(𝑎), 𝛼𝑖𝑗

(𝑏)),                        (31) 

wherein 𝑑 (𝛼𝑖𝑗
(𝑎), 𝛼𝑖𝑗

(𝑏))  denotes the distance between 𝛼𝑖𝑗
(𝑎)

 and 𝛼𝑖𝑗
(𝑏)

, and its 

definition can be found in Definition 4.  

Step 3. Calculate the overall support for 𝛼𝑖𝑗
(𝑎)

, i.e., 𝑇 (𝛼𝑖𝑗
(𝑎)
) according to the 

following equation 

𝑇(𝛼𝑖𝑗
(𝑎)) = ∑ 𝑆𝑢𝑝(𝛼𝑖𝑗

(𝑎), 𝛼𝑖𝑗
(𝑏))𝑡

𝑎,𝑏=1;𝑎≠𝑏 .                 (32) 

Step 4. Determine the power weight 𝜂𝑖𝑗
(𝑎)

 associated with 𝛼𝑖𝑗
(𝑎)

, according to  

𝜂𝑖𝑗
(𝑎) =

𝜆𝑎(1+𝑇(𝛼𝑖𝑗
(𝑎)
))

∑ 𝜆𝑎(1+𝑇(𝛼𝑖𝑗
(𝑎)
))𝑡

𝑎=1

,                       (33) 

where obviously 0 ≤ 𝜂𝑖𝑗
(𝑎)
≤ 1 and ∑ 𝜂𝑖𝑗

(𝑎)
= 1𝑡

𝑎=1 . 

Step 5. Compute the overall evaluation value 𝛼𝑖𝑗 of attribute 𝐺𝑗(𝑗 = 1,2,… , 𝑛) 

of alternative 𝐴𝑖(𝑖 = 1,2, … ,𝑚) by  

𝛼𝑖𝑗 = 𝐹𝐹𝑃𝑊𝐴(𝛼𝑖𝑗
(1), 𝛼𝑖𝑗

(2), … , 𝛼𝑖𝑗
(𝑡)),                         (34) 

Step 6. Calculate the supports for 𝛼𝑖𝑒 from 𝛼𝑖𝑓(𝑒, 𝑓 = 1,2… , 𝑛; 𝑒 ≠ 𝑓) by  

𝑆𝑢𝑝(𝛼𝑖𝑒 , 𝛼𝑖𝑓) = 1 − 𝑑(𝛼𝑖𝑒 , 𝛼𝑖𝑓),                              (35) 

where 𝑑(𝛼𝑖𝑒 , 𝛼𝑖𝑓) denotes the distance between 𝛼𝑖𝑒 and 𝛼𝑖𝑓 

Step 7. Compute the overall support for 𝛼𝑖𝑒 by  

𝑇(𝛼𝑖𝑒) = ∑ 𝑆𝑢𝑝(𝛼𝑖𝑒 , 𝛼𝑖𝑓)
𝑛
𝑒,𝑓=1;𝑒≠𝑓 ,                     (36) 

Step 8. Determine the overall weight 𝜉𝑖𝑒 associated with 𝛼𝑖𝑒 by  

𝜉𝑖𝑒 =
𝑤𝑒(1+𝑇(𝛼𝑖𝑒))

∑ 𝑤𝑒(1+𝑇(𝛼𝑖𝑒))
𝑛
𝑒=1

,                                (37) 

wherein 0 ≤ 𝜉𝑖𝑒 ≤ 1 and ∑ 𝜉𝑖𝑒
𝑛
𝑒=1 = 1.  

Step 9. Calculate the overall evaluation value 𝛼𝑖 of alternative 𝐴𝑖(𝑖 = 1,2,… ,𝑚) 

according to  

𝛼𝑖 = 𝐹𝐹𝑃𝑊𝐻𝑀
(𝑘)(𝛼𝑖1, 𝛼𝑖2, … , 𝛼𝑖𝑛),                      (38) 

Step 10. Calculate the score values 𝑆(𝛼𝑖) of 𝛼𝑖. 

Step 11. Determined the ranking order to alternatives based on their score values.  

6. Illustrative Example 
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Example 2. Let’s consider a chip supplier selection problem. Modern chip 

industry plays a vital role in the development of national economy. The development 

of computer, integrated circuit, cloud computing, automobile, home appliance and 

other industries all depend on the development of chip industry. Continuous and 

stable chip supply is very important for the development of enterprises. Therefore, 

the choice of chip suppliers is very important for the survival and development of 

enterprises. The choice of chip suppliers is essentially a MAGDM problem. A laptop 

manufacturer plans to choose one of the four chip suppliers for long-term cooperation. 

The four chip suppliers are denoted by𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4}. The laptop manufacturer 

invites three experts (𝐷1, 𝐷2, and 𝐷3) to evaluate performance of the four candidate 

suppliers. The weight vector of the three experts is 𝜆 = (0.35,0.3,0.3)𝑇. To evaluate 

the performance of the four alternatives, experts are required to evaluate the four 

alternatives from four attributes, i.e., reliability (G1), market share (G2), product 

competitiveness (G3), and quality of service (G4). Weight vector of the four attributes 

is 𝑤 = (0.3,0.2,0.2,0.3)𝑇. DMs are required to use FFNs to describe their evaluation 

values and three original Fermatean fuzzy decision matrices are obtained, which are 

listed in Tables 1-3. 

Table 1: The original fermatean fuzzy decision matrix provided D1. 

 

 

 

Table 2: The original Fermatean fuzzy decision matrix provided D2. 

 G1 G2 G3 G4 

A1 (0.4,0.5) (0.4,0.6) (0.3,0.5) (0.4,0.6) 

A2 (0.3,0.7) (0.4,0.6) (0.5,0.6) (0.4,0.3) 

A3 (0.1,0.4) (0.6,0.7) (0.2,0.5) (0.3,0.5) 

A4 (0.6,0.7) (0.4,0.6) (0.3,0.5) (0.3,0.5) 

Table 3: The original Fermatean fuzzy decision matrix provided D3. 

 G1 G2 G3 G4 

A1 (0.4,0.6) (0.4,0.5) (0.5,0.7) (0.2,0.5) 

A2 (0.3,0.5) (0.4,0.5) (0.7,0.8) (0.3,0.6) 

A3 (0.4,0.6) (0.4,0.5) (0.5,0.6) (0.6,0.7) 

A4 (0.3,0.5) (0.2,0.4) (0.5,0.6) (0.6,0.7) 

6.1. The decision-making process  

Step 1. As all attributes are benefit type the original decision matrices do not need 

to be normalized.  

 G1 G2 G3 G4 

A1 (0.2,0.3) (0.3,0.4) (0.5,0.7) (0.7,0.8) 

A2 (0.4,0.6) (0.5,0.6) (0.6,0.7) (0.3,0.5) 

A3 (0.2,0.4) (0.5,0.6) (0.3,0.5) (0.6,0.7) 

A4 (0.4,0.7) (0.3,0.6) (0.6,0.8) (0.2,0.5) 
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Step 2. Calculate the supports for 𝛼𝑖𝑗
(𝑎)

 from 𝛼𝑖𝑗
(𝑏)(𝑎, 𝑏 = 1,2,… 𝑡; 𝑎 ≠ 𝑏), i.e., 

𝑆𝑢𝑝 (𝛼𝑖𝑗
(𝑎)
, 𝛼𝑖𝑗
(𝑏)
) according to Eq. (31), we can obtain the following results. For the 

convenient description, we use the symbol 𝑆𝑢𝑝(𝑎,𝑏)  to denote the values of 

𝑆𝑢𝑝 (𝛼𝑖𝑗
(𝑎)
, 𝛼𝑖𝑗
(𝑏)
).  

𝑆𝑢𝑝(1,2) = 𝑆𝑢𝑝(2,1) = [

0.9614 0.8110 0.6840 0.4250
0.8730 0.9390 0.7820 0.9020
0.9930
0.8480

0.7820
0.9630

0.9810
0.4240

0.5930
0.9810

] 

𝑆𝑢𝑝(1,3) = 𝑆𝑢𝑝(3,1) = [

0.7550 0.9020 1.0000 0.2780
0.8720 0.8480 0.7040 0.9090
0.7920
0.7450

0.8480
0.8290

0.8110
0.6130

1.0000
0.5740

] 

𝑆𝑢𝑝(2,3) = 𝑆𝑢𝑝(3,2) = [

0.9090 0.9090 0.6840 0.8530
0.7820 0.9090 0.4860 0.8110
0.7850
0.5930

0.6300
0.7920

0.7920
0.8110

0.5930
0.5930

] 

Step 3. Calculate the overall support for 𝛼𝑖𝑗
(𝑎)

, i.e., 𝑇 (𝛼𝑖𝑗
(𝑎)
) according to Eq. (32), 

we can obtain the following results. We use the symbol 𝑇(𝑎) to denote the values 

𝑇 (𝛼𝑖𝑗
(𝑎)). 

𝑇(1) = [

1.6010 1.7130 1.6840 1.7030
1.7450 1.7870 1.4860 1.8110
1.7850
1.5930

1.6300
1.7920

1.7920
1.0370

1.5930
1.5550

] 

𝑇(2) = [

1.7550 1.7200 1.3680 1.2780
1.6550 1.8480 1.2680 1.7130
1.7780
1.4410

1.4120
1.7550

1.7730
1.2350

1.1860
1.5740

] 

𝑇(3) = [

1.6640 1.8110 1.6840 1.1310
1.6640 1.7570 1.1900 1.7200
1.5770
1.3380

1.4780
1.6210

1.6030
1.4240

1.5930
1.1670

] 

Step 4. Calculate the power weight 𝜂𝑖𝑗
(𝑎)

 associated with 𝛼𝑖𝑗
(𝑎)

, according to Eq. 

(33), we can obtain the following results. Similarly, we use the symbol 𝜂(𝑎) to denote 

the values of 𝜂𝑖𝑗
(𝑎)

. 

𝜂(1) = [

0.3405 0.3459 0.3650 0.2932
0.3577 0.3485 0.3749 0.3578
0.3583
0.3684

0.3670
0.3582

0.3581
0.3208

0.3703
0.3657

] 

𝜂(2) = [

0.3606 0.3468 0.3221 0.3922
0.3459 0.3561 0.3420 0.3454
0.3574
0.3468

0.3366
0.3535

0.3557
0.3520

0.3122
0.3684

] 

𝜂(3) = [

0.2989 0.3072 0.3129 0.3145
0.2964 0.2955 0.2811 0.2986
0.2842
0.2847

0.2964
0.2883

0.2862
0.3272

0.3174
0.2659

] 
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Step 5. Calculate the overall evaluation value 𝛼𝑖𝑗 of attribute 𝐺𝑗(𝑗 = 1,2, … , 𝑛) 

of alternative 𝐴𝑖(𝑖 = 1,2,… ,𝑚)  according to Eq. (34), we can obtain the 

comprehensive decision matrix as shown in Table 4. 

Table 4: The comprehensive decision matrix. 

 

Step 6. Calculate the supports for 𝛼𝑖𝑒  from 𝛼𝑖𝑓(𝑒, 𝑓 = 1,2… , 𝑛; 𝑒 ≠ 𝑓) 

according to Eq. (35), we can obtain that 

𝑆𝑢𝑝(1,2) = 𝑆𝑢𝑝(2,1) = (0.9614,0.9547,0.7579,0.8197); 

𝑆𝑢𝑝(1,3) = 𝑆𝑢𝑝(1,3) = (0.7903,0.7022,0.9164,0.9777); 

𝑆𝑢𝑝(1,4) = 𝑆𝑢𝑝(4,1) = (0.7577,0.8706,0.7006,0.8709); 

𝑆𝑢𝑝(2,3) = 𝑆𝑢𝑝(3,2) = (0.8289,0.7158,0.8414,0.8289); 

𝑆𝑢𝑝(2,4) = 𝑆𝑢𝑝(4,2) = (0.7963,0.8571,0.9428,0.9487); 

𝑆𝑢𝑝(3,4) = 𝑆𝑢𝑝(4,3) = (0.9539,0.5729,0.7842,0.8801). 

Step 7. Compute the overall support for 𝛼𝑖𝑒 according to Eq. (36), we can obtain 

that 

𝑇 = [

2.5094    2.5866    2.5730    2.5079
2.5275    2.5275    1.9909    2.3005
2.3750    2.5421    2.5421    2.4276
2.6683    2.5973    2.6867    2.6998

] 

Step 8. Calculate the overall weight 𝜉𝑖𝑒 associated with 𝛼𝑖𝑒 according to Eq. (37), 

we can obtain that 

𝜉 = [

0.2977    0.2028    0.2020    0.2975
0.3157    0.2105    0.1784    0.2954
0.2928    0.2049    0.2049    0.2974
0.3001    0.1962    0.2011    0.3027

] 

Step 9. Calculate the overall evaluation value αi of alternative 𝐴𝑖(𝑖 = 1,2,… ,𝑚) 

according to Eq. (38) (suppose that k = 3), we can obtain that 

𝛼1 = (0.4204,0.5708); 𝛼2 = (0.4206,0.6120) 
𝛼3 = (0.4155,0.5722); 𝛼4 = (0.4257,0.5977) 

Step 10. Calculate the score values 𝑆(𝛼𝑖) of alternative 𝐴𝑖(𝑖 = 1,2,… ,𝑚), we 

can obtain that 

𝑆(𝛼1) = −0.2330, 𝑆(𝛼2) = −0.2993, 𝑆(𝛼3) = −0.2422, 𝑆(𝛼4) = −0.2687 

Step 11. We can obtain the ranking order of alternatives, i.e. ,𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻

𝐴2. Hence, 𝐴1 is the best alternative.  

6.2. Analysis of the influence of the parameter k on the decision results  

 G1 G2 G3 G4 

A1 (0.3565,0.4437) (0.3717,0.4931) (0.4556,0.6281) (0.5201,0.6164) 

A2 (0.3431,0.5996) (0.4409,0.5685) (0.6089,0.6896) (0.3418,0.4424) 

A3 (0.2793,0.4489) (0.5189,0.5987) (0.3674,0.5268) (0.5444,0.6302) 

A4 (0.4792,0.6360) (0.3267,0.5338) (0.4975,0.6171) (0.4213,0.5468) 
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This subsection analyzes the impact of the influence of the parameter k on the final 

decision results. We assign different values to k in the FFPWHM operator and 

corresponding ranking orders of alternatives are obtained. To better demonstrate the 

change tendency of the score values, Figure 1 is provided as follows.  

 
Fig. 1: Score values of ranking orders of alternatives. 

As seen from Figure 1, when different values of k are employed, different score 

values of alternatives are obtained. However, the ranking orders of alternatives are 

always 𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2 and 𝐴1 also indicates the robustness and stability of our 

proposed MAGDM method. As a matter of factor, the parameter k plays an important 

role in the information aggregation process. If there is no interrelationship between 

attributes, i.e., all attributes are independent, we can set k = 1. If the relationship exists 

between two attributes, we can set k = 2. In addition, we can set k = 4 if all the four 

attributes are interrelated. DMs can select an appropriate value of k according to 

actual decision-making situations.  

6.3. Comparision with some existing MAGDM methods  

In this section, to illustrate the advantages and superiorities of the proposed 

method, we compare our proposed method with that developed by Senapati and 

Yager (2019) based on the Fermatean fuzzy weighted averaging (FFWA) operator, 

and that presented by Gao et al. (2019) based on the intuitionistic fuzzy power 

Maclaurin symmetric mean (IFPWMSM) operator. Details of the comparison are 

provided as follows.  

6.3.1.  Compared with method developed by Senapati and Yager [49] 

To compare our method with that proposed by Senapati and Yager (2019), we utilize 

these two methods to solve the following Example 3.  

Example 3 (Revised from Senapati and Yager (2019)). Suppose that a group of 

Professors of one university wants to choose a suitable place to construct their home. 
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They select four places, i.e., Ashoke Nagar (A1), Judge Court (A2), Patna Bazar (A3) 

and Kshudiram Nagar (A4), as the alternatives within 10 Kilometers of their university. 

After consultation, they set five criteria , i.e., lifestyle & neighbors (G1), soil type (G2), 

size, shape, orientation, and slope of the block of land (G3), existing roads and access 

to essential services (G4), and cost (G5) for choosing the most suitable place for home 

construction. After deliberation, the weight vector of criteria 𝑤 =
(0.2,0.2,0.1,0.3,0.2)𝑇  is adopted with unanimous consent. Suppose that the 

evaluation values of the alternatives with respect to each criterion are represented by 

Fermatean fuzzy numbers, and the original decision matrix is shown in Table 6. It 

should be noted that the criterion cost (G5) is a negative attribute and should be 

normalized in the calculation process. DMs’ evaluation values are in the form of 

FFNs, which are listed in Table 5. We employ our proposed method based on 

FFPWHM operator and Senapati and Yager’s (2019) method based on FFWA 

operator to handle this example, and the calculation results are shown in Table 6. 

Table 5: The Fermatean fuzzy decision matrix of Example 3. 

 G1 G2 G3 G4 G5 

A1 (0.7,0.3) (0.4,0.6) (0.5,0.5) (0.8,0.2) (0.8,0.4) 
A2 (0.5,0.8) (0.8,0.6) (0.4,0.5) (0.7,0.4) (0.6,0.5) 
A3 (0.9,0.6) (0.8,0.1) (0.6,0.4) (0.7,0.5) (0.9,0.3) 
A4 (0.6,0.7) (0.8,0.3) (0.7,0.2) (0.5,0.3) (0.7,0.3) 

Table 6: The calculation results of Example 3 by dealing with different methods. 

Methods Score values 𝑆(𝛼𝑖) Ranking orders 

Senapati and Yager’s 

[49] method 

𝑆(𝛼1) = −0.1143,𝑆(𝛼2) = −0.0418, 

𝑆(𝛼3) = −0.1681,𝑆(𝛼4) = −0.0845 
𝐴2 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴3 

Our proposed 

method (𝑘 = 3) 

𝑆(𝛼1) = −0.1013,𝑆(𝛼2) = −0.1321, 

𝑆(𝛼3) = −0.0150,𝑆(𝛼4) = −0.0402 
𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 

As it is seen from Table 6 that both our proposed method and Senapati and 

Yager’s (2019) method can solve this example, which also indicates the effectiveness 

of our proposed method. In addition, the decision results produced by the two 

methods are different. The ranking order derived by Senapati and Yager’s (2019) 

method is 𝐴2 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴3 and 𝐴2 is the best alternative. Our proposed method 

produces 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2  and 𝐴3  is the optimal alternative. Both the two 

methods are effective to handle real MAGDM problems; however, our method is 

more powerful and flexible than the proposed by Senapati and Yager’s (2019). First 

of all, our method is based on the PA operator, so it is effective to felicitously handle 

unreasonable evaluation values. Second, our method can effectively deal with the 

interrelationship among attributes. However, Senapati and Yager’s (2019) method is 

based on the simple weighted average operator. Compared with our method, the 

drawbacks of Senapati and Yager’s (2019) decision-making method are obvious. 

First, it is powerless to cope with DMs’ unduly high or low evaluation values. In other 
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words, if DMs provide some extreme evaluation values, then Senapati and Yager’s 

(2019) method would also produce unreasonable decision results. Second, Senapati 

and Yager’s (2019) method does not consider the interrelationship among attributes. 

In other words, Senapati and Yager’s (2019) method only considers decision-making 

problems where attributes are independent. However, in most MAGDM problems, 

attributes and interrelated and the interrelationship among them should be taken into 

account when determining the final decision results. Hence, compared with Senapati 

and Yager’s (2019) method, our proposed method is more suitable to handle realistic 

decision making problems.  

6.3.2. Compared with the method developed by Gao et al. (2019) 

To compare our method with Gao et al.’ (2019) method, we provide the following 

example. We use the two methods to solve the following example and discuss their 

decision results.   

Example 4 (Revised from Gao et al. (2019)). In order to increase the value of 

customer experience and expand the market, a bike-sharing operating company 

decides to put some new types of sharing bikes into the market. At the moment, there 

are four different types of bicycles made by four different manufactures, and it hard 

to decide which one is the best. Thus, the manager decides to invite a tester to give 

his/her evaluation by testing them personally. Suppose that (𝐴1, 𝐴2, 𝐴3, 𝐴4)  are 

utilized to represent the four types, and the tester is required to evaluate the bike with 

respect to four attributes, containing safety (G1), comfortability (G2), convenience (G3) 

and aesthetic (G4). The weight vector of the four attributes is𝑤 = (0.4,0.3,0.2,0.1)𝑇. 

The manager requires the tester to provide his/her evaluation with intuitionistic fuzzy 

numbers, and the decision matrix is shown in Table 7. To compare our method with 

the method based on IFPWMSM operator, we utilize these two methods to solve this 

example simultaneously, and the comparison results are shown in Table 8. 

Table 7: The intuitionistic fuzzy decision matrix of Example 4. 

 G1 G2 G3 G4 

A1 (0.6,0.1) (0.7,0.3) (0.7,0.1) (0.4,0.3) 

A2 (0.7,0.2) (0.6,0.1) (0.5,0.4) (0.5,0.3) 

A3 (0.3,0.3) (0.6,0.2) (0.7,0.2) (0.6,0.1) 

A4 (0.6,0.3) (0.5,0.2) (0.4,0.4) (0.5,0.3) 

Table 8: The calculation results of example 4 by using different methods. 

Methods Score values 𝑆(𝛼𝑖) Ranking orders 

Gao et al.’s [50] method 

(suppose that 𝑘 = 2) 

𝑆(𝛼1) = −0.2173,𝑆(𝛼2) = −0.1823, 

𝑆(𝛼3) = −0.1800,𝑆(𝛼4) = −0.1485 
𝐴1 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4 

Our proposed method 

(suppose that 𝑘 = 2) 

𝑆(𝛼1) = 0.4575,𝑆(𝛼2) = 0.3507, 

𝑆(𝛼3) = 0.3887,𝑆(𝛼4) = 0.1657 
𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4 
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As it is seen from Table 8, both Gao et al.’s (2019) method and our proposed 

method can effectively solve this example. In addition, the decision results derived 

by the two methods are slightly different. The ranking order obtained by Gao et al.’s 

(2019) method is 𝐴1 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4 and 𝐴1 is the optimal alternative. Our method 

produces 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4  and 𝐴1  is also the best alternative. This result also 

indicates the effectiveness of our proposed method. In addition, both Gao et al.’s 

(2019) method and our proposed method have the following advantages, i.e., they can 

deal with DMs’ unreasonable evaluation values and take the interrelationship among 

attributes into consideration. However, our proposed method is still more powerful 

than that proposed by Gao et al. (2019). This is because Gao et al.’s (2019) method 

is based on IFSs and our method is based on FFSs. As it is known, IFS should satisfy 

the condition that the sum of MD and NMD is less than or equal to one. Hence, FFS 

can describe larger information space than IFS and when using FFSs to describe DMs’ 

evaluations information, DMs can have more freedom to express their evaluation 

opinions. Therefore, our method is more powerful and flexible than that developed 

by Gao et al. (2019).  

6.4. Summary 

Our proposed method provides a flexible and powerful manner for DMs to determine 

the ranking orders of alternatives in MAGDM problems. Advantages of our method 

are obvious, which can be summarized from three aspects. First, it is suitable to depict 

DMs’ complex evaluation values in complicated realistic MAGDM problems. Our 

method is based FFSs and as analyzed above, FFSs have laxer constraint than IFSs 

and PFSs and hence FFSs can more comprehensively describe DMs’ evaluation 

information. Second, our method is flexible to handle DMs’ unreasonable evaluation 

values. In most MAGDM problems, due to many reasons (such as lack of expertise, 

time shortage, or prejudice), DMs may provide some extreme or unreasonable 

evaluation values, which, obviously negatively impact the final decision results. In 

other word, if such unreasonable evaluation values are not be felicitously handled, 

the final decision results are not reliable. As analyzed above, the second advantage of 

our method is that it can effectively cope with DMs’ evaluation values. Finally, our 

method can take the interrelationship among attributes into consideration. In most 

real MAGDM problems, attributes are usually integrated and such kind of 

interrelationship among attributes should be considered when determining the final 

decision results. Hence, our method is powerful and suitable to be applied to handle 

realistic MAGDM problem.  

7. Conclusions 

This study dealt with MAGDM problems under FFSs. The FFS is a powerful tool to 

handle DMs’ evaluation information in complex and uncertain decision-making 

situations. Hence, MAGDM method based on FFSs is a promising research filled. 
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This paper first proposed some new AOs for Fermatean fuzzy information, i.e., FFPA, 

FFPWA, FFPHM, and FFPWHM. In this study, properties of these operators were 

investigated in detail. These newly developed AOs have good performance in 

aggregating FFNs and hence, a novel MAGDM method based on these AOs was 

presented. The detailed steps of the new method were illustrated. Finally, we applied 

the proposed method in a real decision-making problems to demonstrate its rightness. 

Comparison analysis was provided to demonstrate the advantages of our method. 

Certainly, the limitations of this study should not be neglected. These study only 

considered a small group of DM, however, in some real and complex MAGDM 

problems, a large group of DMs are usually involved, which is called large scale 

group decision-making (LSGDM). Recently, LSGDM has received great attention 

(Gai et al., 2022; Zhou et al., 2022; Wang et al., 2022; Ma et al., 2022; Bai et al., 

2022). Hence, in the future, we shall consider LSGDM methods under FFSs.  
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