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Abstract. Machine Learning methods have been used to combat COVID-19 

since the pandemic has started in year 2020. In this regard, most studies have 

focused on detecting and identifying the characteristics of SARS-CoV-2, especially 

via image processing. Some studies have applied machine learning for contact 

tracing to minimise the transmission of COVID-19 cases. Limited work has, 

however, reported on how geospatial features have an influence on the transmission 

of COVID-19 and formation of clusters at local scale. Therefore, this paper has 

aimed to study the importance of geospatial features that had resorted to COVID-

19 cluster formation in Kuala Lumpur, Malaysia in year 2021. Several datasets 

were used in this work, which have included the address details of confirmed 

positive COVID-19 cases and the details of nearby residential areas and Points of 

Interest (POI) located within the federal territory of Kuala Lumpur. The datasets 

were pre-processed and transformed into an analytical dataset for conducting 

empirical investigations. Various feature selection methods were applied, including 

the Boruta Algorithm, Chi-square (Chi2) Test, Extra Trees Classifier (ETC), 

Recursive Feature Elimination (RFE) method, and Deep Learning Autoencoder 

(DLA). Detailed investigations on the top-n features were performed to elicit a set 

of optimal features. Subsequently, several machine learning models were trained 

using the optimal features, including Logistic Regression (LR), Random Forest 

Classifier (RFC), Naïve Bayes Classifier (NBC), and Extreme Gradient Boosting 

(XGBoost). It was revealed that Boruta produced the optimal number of features 

with n = 96, whereas RFC achieved the best prediction results compared to other 

classifiers, with around 95% accuracy. Consequently, the findings in this paper help 

to recognize the geospatial features that have impacts on the formation of COVID-

19 and other infectious disease clusters at local scale. 
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1. Introduction 

The novel SARS-CoV-2 virus (COVID-19) first broke out in December 2019 in 

Wuhan, China, and gradually turned into a pandemic (Zhu et al., 2020). It has affected 

many countries around the world with almost 600 million confirmed cases and more 

than 6.4 million deaths. Countries like the United States has recorded more than 93 

million confirmed cases, while India recorded more than 44 million, and France has 

more than 34 million cases, as of August 2022 (Worldometer, 2022). Malaysia is a 

country located in Southeast Asia that has one of the highest numbers of COVID-19 

positive cases. In fact, COVID-19 is considered the greatest infectious disease 

outbreak that hit Malaysia since the 1918 influenza epidemic (Hashim et al., 2021). 

The growth rate of positive cases in Malaysia became significant in March 2020, 

when a group of delegates attended a religious event named Tabligh (Ting et al., 

2021). This event had led to the detection of a large number of COVID-19 positive 

cases, particularly in Kuala Lumpur, capital of Malaysia. 

In order to mitigate the transmission of COVID-19 cases and minimise the spread 

of the virus in densely populated areas, the federal government of Malaysia had 

enforced a series of national quarantines and sanitary cordon measures as a form of 

Movement Control Order (MCO), Conditional MCO (CMCO), and Enhanced MCO 

(EMCO) that lasted for around 2 years (Tang, 2022). Moreover, an outbreak 

management framework was implemented with an emphasis on Active Case 

Detection (ACD) and contact tracing, followed by cluster identification to link 

positive cases of COVID-19 (Hashim et al., 2021). As a result, numerous clusters 

have formed, especially in densely populated areas and localities (Danial et al., 2020). 

As of 6 August 2022, 7,047 COVID-19 clusters were detected in Malaysia, with 24 

active clusters (COVIDNOW, 2022). Typically, a cluster emerges when a significant 

number of disease cases occur in a specific geographic location around the same 

period of time (Hassan et al., 2021). As such, geospatial variables, such as location 

data and population data, can be used to predict the likelihood of cluster formation at 

local scale. This, in turn, can help to mitigate COVID-19 transmission in densely 

populated areas. 

During the initial MCO, the state government had employed geospatial analytics 

to detect and monitor the dynamics of COVID-19 clusters. There were, however, 

three challenges faced when deploying geospatial analytics: (i) how to identify the 

geospatial features that had resorted to COVID-19 transmission and cluster formation 

at local scale? (ii) how to rank the importance of those identified features? and (iii) 

what would be the optimal feature set for accurately predicting the likelihood of 

cluster formation? 

Therefore, the aim of the work in this paper is to study the importance of 

geospatial features that had resorted to COVID-19 transmission and formation of 

clusters in Kuala Lumpur, Malaysia, in 2021. The main objectives of this work are: 
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(i) to apply feature selection methods for identifying the geospatial features that 

contribute to COVID-19 cluster formation at local scale, and (ii) to train machine 

learning models using the optimal feature set and predicting if a COVID-19 case will 

form a cluster (or be added to an existing cluster) or will become a sporadic (or 

unlinked) case. Consequently, several experiments were conducted based on 

geospatial analytics and feature importance. The findings in this paper help to 

recognise the geospatial features that have impact on the formation of COVID-19 and 

other infectious disease clusters at local scale. 

2. Literature Review 

2.1. Machine learning 

Machine learning methods have been widely utilised in healthcare (Haque et al., 

2021a and Haque et al., 2021b), especially to fight against infectious diseases, such 

as COVID-19 (Alimadadi et al., 2020, Kwekha-Rashid et al., 2021, Mohan et al., 

2022, Malik et al., 2022, Adnan et al., 2022 and Alyasseri et al., 2022). It has been 

observed that machine learning plays a crucial role in COVID-19 investigations, 

discriminations, and accurate predictions (Assaf et al., 2020 and Schaar et al., 2021). 

One of the main contributions of machine learning and deep learning is for medical 

image processing to automatically detect COVID-19 cases based on the images from 

X-rays (Nasiri & Hasani, 2022), chest CT scans (Ardakani et al., 2020), and screening 

coronavirus pneumonia (Wu et al., 2020). Some studies have applied machine 

learning to control the spread of the virus by predicting COVID-19 positive cases 

(Arora et al., 2020) and estimating the number of upcoming cases (Rustam et al., 

2020). Furthermore, machine learning algorithms have been employed for COVID-

19 growth estimation (Tuli et al., 2020), transmission dynamic forecasting (Ravinder 

et al., 2020) and outbreak prediction (Bala, 2021). 

Overall, machine learning algorithms demonstrate high efficacy in solving 

COVID-19 prediction problems (Assaf et al., 2020). In effect, accurate forecast 

analysis assists healthcare systems and policymakers in managing COVID-19 

effectively (Schaar et al., 2021). Moreover, accurate predictive models can help 

identify the specific geographical locations and residential areas where the chances 

of cluster formation are high. As a result, targeted interventions can be applied and 

CMCOs and EMCOs can be enforced on those particular areas to mitigate COVID-

19 transmission. However, limited work in the literature has reported on how machine 

learning methods can be applied for identifying the geospatial features that have an 

influence on the formation of COVID-19 clusters at local scale. Therefore, in this 

work, machine learning methods were applied for geospatial analytics and predictive 

modelling. 
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2.2. Geospatial analytics 

Geospatial analytics are based on gathering and manipulating geospatial features, 

which often combine location information (e.g., coordinates) and location attribute 

information (e.g., population profile) (Ting et al., 2021). Geospatial analytics have 

been employed by researchers in various domains, such as retail business (Ting et al., 

2018), real-estate (Muggenhuber, 2019), and disaster monitoring and prevention (Atif 

et al., 2020). One of the earliest uses of geospatial analytics for COVID-19 is the 

dashboard developed by the World Health Organisation (WHO, 2021) and Johns 

Hopkins University’s centre for Systems Science and Engineering (Freitag et al., 

2020). These websites allow users to follow up-to-date information of countries 

impacted with COVID-19 outbreak to support surveillance, preparedness, and 

response (Boulos & Geraghty, 2020). A study by (Mollalo et al., 2020) highlighted 

the use of geospatial features in modelling the incident and spread of COVID-19 in 

the United States. The utilisation of geospatial features has also been reported in Iran 

where epidemiological maps of cases were developed to monitor the incident 

locations and rates (Jesri et al., 2021). In Italy, geospatial analytics have been 

employed to identify the spread of COVID-19 based on data collected from social 

media (e.g., Facebook) (Fernandez et al., 2021). Meanwhile, geospatial analytics 

have been conducted for COVID-19 ACD in Selangor state, Malaysia (Ting et al., 

2021). Geospatial features, such as population density information, have been 

considered to predict the next most probable outbreak location. 

Apart from the location and population data, geospatial analytics can be used to 

extract Points of Interest (POI) and nearby residential information (Capanema et al., 

2021). These features are capable of determining the central points and residential 

types with large gatherings that can cause rapid transmission of COVID-19 infections. 

Overall, geospatial analytics help to recognise the spatial features that have impact 

on the transmission of COVID-19 cases to the surrounding areas, leading to cluster 

formation. Nevertheless, there is a lack of empirical studies in the literature based on 

geospatial analytics to mitigate COVID-19 cluster formation at local scale. This is 

largely because there are two main challenges when deploying geospatial analytics 

for COVID-19 cluster formation detection and monitoring: (i) what geospatial 

features are required to construct the analytical dataset? and (ii) what is the 

importance score of each identified feature in the analytical dataset? To tackle these 

challenges, in this work, feature selection methods were applied to address feature 

importance.   

2.3. Feature importance 

Feature importance refers to the assigned score (or rank) to the independent variables 

in the experimental dataset based on their fitness at predicting the dependent variable 

(Razmjoo et al., 2019). Generally, predictive modelling deployed for disease related 

problems is considered critical that requires proper selection of the relevant features 
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for justified performance (König et al., 2020). Nonetheless, manually selecting the 

features and determining the optimal set for machine learning and deep learning 

applications can be challenging and time consuming, especially for large datasets that 

include geospatial features. Studies show that the work on feature importance have 

provided positive contributions towards various domains, such as Internet of Things 

(IoT) (Shafiq et al., 2020), biometrics (Mendes et al., 2020), medicine (Shah et al., 

2020), healthcare (Figueroa et al., 2021), and security (Khammassi & Krichen, 2020). 

The study of feature importance plays a crucial role in the process of knowledge 

discovery by primarily removing noisy, redundant, and irrelevant features (Razmjoo 

et al., 2019). Having important features in the dataset would allow a better 

understanding of the influence of independent variables towards the dependent 

variable. 

In this regard, interpretable machine learning methods, or feature selection 

methods, can be applied to obtain insights into the relevance of input features in the 

dataset (König et al., 2020). More specifically, applying a feature selection method 

on the experimental dataset before training the predictive model helps to recognise 

the features that have strong correlation with the target output. This is achieved by 

assigning a feature importance score for each input variable. Variables with low 

scores are then discarded from the final dataset. As such, feature selection is regarded 

as the process of reducing the number of input features when developing a predictive 

model (Liu et al., 2021). Feature selection is often considered crucial to improve the 

prediction accuracy of a classification model (Mendes Junior et al., 2020). Feature 

selection methods can be divided into three types: wrapper methods (Khammassi & 

Krichen, 2020), filter methods (Thaseen et al., 2019), and embedded methods (Shah 

et al., 2020). Typically, a feature selection method needs to be carefully selected 

based on the experimental dataset. Thus, in this study, various feature selection 

methods were applied, and feature importance scores were obtained to identify the 

geospatial features that have contributed to the formation of clusters based on 

COVID-19 cases in Kuala Lumpur. 

3. Research Methods 

3.1. Raw datasets 

In this work, four datasets were used to construct the analytical dataset with relevant 

geospatial features, which was later employed for conducting feature importance and 

classification experiments. Table 1 shows the different datasets used in this paper. 

The first dataset, Dcase, consists of 17,842 COVID-19 case addresses in Kuala 

Lumpur. These cases were accumulated from 7 July 2021 to 20 July 2021 and were 

obtained from the Ministry of Health (MOH) Malaysia. The second dataset, Dpop, 

consists of population density for children under five, elderly over 60, men, woman, 

women of reproductive age, and youth at the level of individual latitude and longitude 

(DFG, 2022). 
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To obtain the population density for a particular area, pre-processing of the raw 

dataset was required. The population density was calculated at a 2 km radius from a 

case address. The third dataset, Dres, consists of the residential areas (i.e., localities) 

located within the federal territory of Kuala Lumpur. The dataset was obtained from 

the Valuation and Property Services Department Malaysia and can be found at 

Brickz.my (Brickz, 2022). The purpose was to extract the name, type, and price of 

nearby residential areas where a case was detected. The fourth dataset, Dpoi, 

comprises of POI categories and specific POIs located within the federal territory of 

Kuala Lumpur. The dataset was obtained from Telekom Malaysia (TM, 2022). 

Examples of POIs are KFC, McDonald’s, and KK Super Mart. Each POI is tagged to 

only one particular category. Examples of the POI categories are Hospital, Bank, 

School, Convenient Store, Construction Company, and Hypermarket. The raw 

datasets do not, however, allow feature selection algorithms to be applied directly. 

Therefore, pre-processing and transformation of the raw datasets were required for 

constructing the analytical dataset. 

Table 1: Raw datasets. 

Dataset Description 

Case Address Dataset Dcase 
A list of 17,842 COVID-19 case location address 

detected in Kuala Lumpur. 

Population Density Dataset 

Dpop 

Details about population density in case location, 

based on age, nationality, and ethnicity. 

Residential Area Dataset 

Dres 

Details about residential areas located within 2 km 

radius from case location. 

Points of Interest Dataset 

Dpoi 

A list of categories for POIs and specific POI names 

located within 2 km radius from case location. 

3.2. Analytical dataset 

A well-designed data structure for the analytical dataset can help in addressing the 

research challenges. As such, the analytical dataset Dalx was formed by aggregating 

the transformed datasets Dcase, Dpop, Dres, and Dpoi. The process flow of constructing 

Dalx is demonstrated in Fig. 1, and Table 2 summarises the variables in the dataset. 

There are 145 features in Dalx, which include case address details, population density 

information, nearby residential area information, and POIs. Geocoding was applied 

to extract the population and property information for the 3 major nearby residential 

areas located within 2 km radius from the coordinates of case location. Similarly, the 

number of 50 POI categories and 50 specific POIs were calculated. 
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Fig. 1: Process flow of analytical dataset construction. 

The target output can have one of the two classes: True, which denotes the cases 

that formed a cluster (or were added into a cluster), and False, which denotes the cases 

that became a sporadic case. Consequently, from Dalx, feature importance scores were 

extracted using feature selection methods with respect to (i) cases that belong to 

clusters and (ii) sporadic cases. 

Table 2: Analytical dataset variables. 

Variable No. Variable Type Description 

1 - 2 
Location variables 

(e.g., District name) 

Input features with address info 

obtained from Dcase dataset. 

3 - 15 
Population density variables 

(e.g., elderly_population) 

Input features with population info 

extracted from Dpop dataset. 

16 - 45 

Nearby residential area 

variables (e.g., 

property_type) 

Input features with nearby residential 

info extracted from Dres dataset. 

46 - 95 
POI category variables 

(e.g., convenience_store) 

Input features with POI categories 

extracted from Dpoi dataset. 

96 - 145 
Specific POI variables 

(e.g., 7_eleven) 

Input features with specific POIs 

extracted from Dpoi dataset. 

146 Form_cluster variable 

Output class: “True” for cases in 

clusters and “False” for sporadic 

cases. 

3.3. Feature selection methods 
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In this work, four feature selection methods were applied, and feature importance 

scores were obtained from each method. The goal was to identify the features that 

have contributed to the formation of clusters based on the confirmed COVID-19 cases 

detected in different residential areas within the federal territory of Kuala Lumpur. 

The first method is the Boruta algorithm, which was designed as a wrapper around 

the random forest algorithm. Boruta aims to find all relevant variables and recursively 

removes features proved to be less relevant by a statistician rather than random probes 

(Anand et al., 2021). Another wrapper method was applied for feature selection is 

Recursive Feature Elimination (RFE), which was designed to select the optimal 

features by recursively applying smaller sets of features in each iteration than the 

previous ones (Lian et al., 2020). In addition, the Chi-square (Chi2) test was used as 

the filter method for feature selection, which was designed to measure the 

independence of each input feature in the dataset (Thaseen et al., 2019). For the final 

feature selection method, Extra Tree Classifier (ETC) was applied, which is a model-

based embedded approach. It was designed to select the optimal features using 

multiple tree-based classification models (Sharaff & Gupta, 2019). In this case, the 

methods were applied on Dalx to sort out the features that have been considered 

important during the training and testing process based on feature importance scores. 

In addition to the feature selection methods, the Deep Learning Autoencoder 

(DLA) was applied, which is a type of unsupervised algorithm based on neural 

networks. In this case, DLA was not used to extract feature importance, rather it was 

trained as part of the machine learning classifiers for automatic feature extraction. 

The autoencoder is based on the estimation of how much each feature in the dataset 

contribute to the target output prediction (Xu et al., 2019). As such, DLA was used 

to transform the original input features in Dalx to its output (as encoded features). 

Consequently, six datasets were constructed for predictive modelling. 

 

- 𝐷𝑎𝑙𝑥
𝑇𝑜𝑡  includes all features from the original dataset. 

- 𝐷𝑎𝑙𝑥
𝐵𝑜𝑟  includes the optimal set of features from Boruta. 

- 𝐷𝑎𝑙𝑥
𝑅𝑓𝑒

  includes the optimal set of features from RFE. 

- 𝐷𝑎𝑙𝑥
𝐶ℎ𝑖2 includes the optimal set of features from Chi2. 

- 𝐷𝑎𝑙𝑥
𝐸𝑡𝑐  includes the optimal set of features from ETC. 

- 𝐷𝑎𝑙𝑥
𝐷𝑙𝑎  includes the encoded features from DLA. 

Subsequently, four machine learning classification algorithms were applied on 

these datasets, including Logistic Regression (LR), Random Forest Classifier (RFC), 

Naïve Bayes Classifier (NBC), and Extreme Gradient Boosting (XGBoost). The goal 

was to train different models with the optimal set of features in order to predict the 

output class with high accuracy. For validation, confusion matrix was generated to 
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summarise the prediction performance made by each classifier. In this case, the 

number of correct and incorrect output class predictions was calculated for each 

model based on True Positive (TP), which denotes positive values correctly predicted 

as actual positive, False Positive (FP), which denotes negative values incorrectly 

predicted as positive, False Negative (FN), which denotes positive values incorrectly 

predicted as negative, and True Negative (TN), which denotes negative values 

correctly predicted as an actual negative. Evaluation of the classification models was 

based on four metrics: accuracy score, precision score, recall score, and F1 score. The 

following equations are used to calculate the values of each evaluation metric. 

 

 

 

 

4. Results and Discussion 

In this work, empirical investigations were done in two stages. In the first stage, two 

experiments (Ɛ𝐹𝑖
1  and Ɛ𝐹𝑖

2 ) were conducted for feature importance. In the second stage, 

two more experiments (Ɛ𝐶𝑙
1  and Ɛ𝐶𝑙

2 ) were conducted for classification. The key 

findings from these experiments are described in the following sections. 

4.1. Feature Importance Results 

In this section, the results from Ɛ𝐹𝑖
1  and Ɛ𝐹𝑖

2  are analysed and discussed. In Ɛ𝐹𝑖
1 , the 

four feature selection methods, Boruta, RFE, Chi2, and ETC, were applied on Dalx 

independently. For each method, feature importance scores were extracted with 

respect to (i) cases that form clusters (or added into the existing clusters) and (ii) 

sporadic cases, i.e., cases that do not form clusters (or added into the existing clusters). 

The feature importance scores range from 0.001 to 1.000. As such, all features in Dalx 

were sorted according to the feature importance scores generated by each feature 

selection method. 

Table 3 shows the top-10 features obtained from the feature selection methods. It 

can be seen that multiple geospatial features have appeared in the top ten list of more 

than one method, such as total number of Convenience Store, Construction Company, 

and Corporate Office. Interestingly, all these features are POI categories. In fact, 

almost all features in the top-10 list of each feature selection method are POIs. This 

is probably due to the fact that places with high human traffic and frequently visited 

areas are often identified as sources of infectious disease transmission. Logically, for 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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highly contiguous COVID-19, these places are vulnerable, and it is very likely that a 

person carrying the virus will cause its spread to other nearby people, leading to the 

formation of clusters. Therefore, these geospatial features are essential for 

determining whether a particular case will form a cluster or become a sporadic case. 

The results further demonstrate the importance of social distancing (Qian & Jiang, 

2022), which is considered the most effective measure to mitigate the transmission of 

COVID-19 cases and formation of clusters. 

Table 3: Top ten important geospatial features. 

Boruta Features 
RFE 

Features 

Chi2 

Features 

ETC 

Features 

Hair Salon Engineer Estee Lauder Mukim 

Car Dealer Manufacturer JT Express Restaurant 

Architect Convenience Store Nando’s 
Construction 

Company 

Industrial 

Equipment 

Supplier 

Company Revenue Valley Engineer 

School 
No. of Elderly 

Population 

Secure Parking 

Corporation 
Convenience Store 

Café 
Construction 

Company 
Ayam Penyet AP Hospital 

Engineer Financial Institution Nelsons Manufacturer 

Accountant 

Business 

Management 

Consultant 

Domino's Pizza Hardware Store 

Auto Repair 

Shop 
Corporate Office Fos Apparel Group Corporate Office 

Convenience 

Store 
Advertising Agency Berjaya Roasters 

Residential 

Property Price 

 

In Ɛ𝐹𝑖
2 , further investigations were conducted on the ranked features of each 

method by iteratively training machine learning models with top-n features, where n 

∈ {5….100}. In this case, four predictive models were developed using LR, RFC, 

NBC, and XGBoost. In the first iteration, top-5 features were selected from each 

method to train the predictive models. In the subsequent iterations, features were 

added with step size = 1. The average accuracy generated in each iteration was 

recorded. The goal was to identify the optimal n value for each method that gives the 

highest average accuracy rate for all models, as seen in Fig. 2. It was observed that 

the four feature selection methods exhibited similar pattern with the accuracy rate 

fluctuating at around 94%. However, the optimal n value differs for each method. In 

case of Boruta, the optimal number of features that provides the average highest 

accuracy for all predictive models is n = 96. Meanwhile, the predictive models have 

demonstrated a good prediction performance with n = 88, 85, and 89 for RFE, Chi2, 

and ETC, respectively. 
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Fig. 2: Optimal number of features for all methods. 
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Overall, the optimum number of features for all feature selection methods is 

within the range of 85 and 96. The results also revealed that the prediction accuracy 

of the models increased gradually as the n value increased for each method. This was 

clearly observed with RFC and XGBoost while training. However, NBC did not 

provide significant improvements when the n value increased. Subsequently, the 

optimal n values were utilised to construct the datasets [𝐷𝑎𝑙𝑥
𝐵𝑜𝑟 , 𝐷𝑎𝑙𝑥

𝑅𝑓𝑒
, 𝐷𝑎𝑙𝑥

𝐶ℎ𝑖2 , 𝐷𝑎𝑙𝑥
𝐸𝑡𝑐] for 

conducting further classification modelling and analysis. 

4.2. Classification results 

In this section, the results from Ɛ𝐶𝑙
1  and Ɛ𝐶𝑙

2  are analysed and discussed. In Ɛ𝐶𝑙
1 , the 

four classification models were trained using six different datasets. It should be noted 

that each of these datasets consist of different numbers of features. For instance, 𝐷𝑎𝑙𝑥
𝑇𝑜𝑡 

has all the original features from Dalx. Meanwhile, 𝐷𝑎𝑙𝑥
𝐵𝑜𝑟  contains top 96 features 

sorted by Boruta. Similarly, 𝐷𝑎𝑙𝑥
𝑅𝑓𝑒

 has 88 features, 𝐷𝑎𝑙𝑥
𝐶ℎ𝑖2 has 85 features, and 𝐷𝑎𝑙𝑥

𝐸𝑡𝑐 

has 89 features. Another dataset 𝐷𝑎𝑙𝑥
𝐷𝑙𝑎 was constructed in this experiment with the 

encoded features generated by DLA. The average accuracy values achieved by the 

classification models for each feature selection method were computed, as seen in 

Table 4. The goal of this experiment was to identify which feature selection (or 

feature extraction) method generates the highest average accuracy for the predictive 

models based on the optimal feature list. 

Table 4: Average model accuracy for analytical datasets. 

Model 𝑫𝒂𝒍𝒙
𝑻𝒐𝒕 𝑫𝒂𝒍𝒙

𝑩𝒐𝒓 𝑫𝒂𝒍𝒙
𝑹𝒇𝒆

 𝑫𝒂𝒍𝒙
𝑪𝒉𝒊𝟐 𝑫𝒂𝒍𝒙

𝑬𝒕𝒄 𝑫𝒂𝒍𝒙
𝑫𝒍𝒂 

LR 0.9330 0.9493 0.9504 0.9476 0.9468 0.9344 

RFC 0.9504 0.9316 0.9316 0.9328 0.9325 0.9465 

NBC 0.8902 0.9297 0.9297 0.9297 0.9297 0.9297 

XGBoost 0.9498 0.9496 0.9479 0.9493 0.9484 0.9456 

Average 0.9309 0.9401 0.9399 0.9399 0.9394 0.9391 

 

Comparing the performance of the classification models, it was recognised that, 

on average, the models were able to provide predictions with the highest accuracy 

when they were trained using 𝐷𝑎𝑙𝑥
𝐵𝑜𝑟. This indicates that the Boruta algorithm was able 

to produce the most optimal feature list compared to the other feature selection 

methods. The results also show that the lowest average accuracy was generated when 

the predictive models were trained using the original features in the analytical dataset. 

Hence, feature selection has a positive impact on the prediction accuracy of the 

classifier. Meanwhile, it is worth noting that training the models with the optimal 

feature lists obtained from the feature selection methods with Boruta, RFE, Chi2, and 

ETC has provided better classification results than the feature extraction method with 

DLA. This indicates that, for classification models, feature selection is effective, as 

it was previously suggested in the literature (Mendes et al., 2020). 
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During the final experiment Ɛ𝐶𝑙
2  in this work, classification analysis was 

performed using LR, RFC, NBC, and XGBoost to predict the class of the target 

outputs. In this case, the optimal feature list produced by the Boruta algorithm was 

used to train the four machine learning models. The prediction performance of the 

models was evaluated using the confusion matrix and evaluation metrics. Fig. 3 

illustrates the percentage of “True” and “False” predictions for each model, whereas 

Table 5 compares the evaluation metric values achieved by each model, trained with 

the optimal feature set. It was revealed that RFC outperformed all other models with 

an accuracy rate of around 95%. Moreover, precision, recall, and F1 scores generated 

by RFC are 0.9435, 0.9496, and 0.9443, respectively. Generally, it can be said that 

RFC algorithm is capable of preventing overfitting of the model by applying bagging-

type ensemble of multiple trees. This is due to the fact that the final decision of RFC 

is based on the majority decision and features built on different decision trees 

(Chaabane et al., 2020), thus providing a high accuracy rate. 

XGBoost also showed promising outputs with a similar accuracy rate. Meanwhile, 

both LR and NBC provided predictions with lower accuracy rates than RFC and 

XGBoost. This is probably due to the existence of linear decision surface in LR that 

can only model linear relationships between the dependent variable and independent 

variables. On the other hand, NBC produced the worst prediction accuracy because 

of the existence of imbalance distributions of the output classes in the dataset. For 

instance, the number of cases that formed clusters is significantly higher than the 

sporadic cases. Consequently, the NBC model was trained with a higher probability 

that a case will form a cluster (or added to an existing cluster), thus affecting its 

performance. In summary, the empirical investigations revealed that applying Boruta 

for feature importance, along with RFC for classification, is beneficial for conducting 

geospatial analytics and identifying the significant spatial features that resorted to 

COVID-19 transmission and formation of clusters at local scale. 

Fig. 3: Confusion matrix for all classifiers. 

 

 

Table 5: Classification results. 
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Model Accuracy Precision Recall F1 Score 

LR 0.9316 0.9208 0.9316 0.9020 

RFC 0.9496 0.9435 0.9496 0.9443 

NBC 0.9297 0.8643 0.9297 0.8958 

XGBoost 0.9493 0.9430 0.9493 0.9437 

5. Conclusion 

One of the challenges when deploying analytics solution for COVID-19 in Malaysia 

especially at the initial stage was to provide a sound method for cluster detection at 

local scale. Kuala Lumpur, as the capital city of Malaysia with a large number of 

populations, could have been the source of major COVID-19 outbreak if the 

transmission was not monitored and put under control. One of the main challenges 

was to investigate and determine the geospatial features that lead to COVID-19 

cluster formation at local scale. In this study, geospatial datasets from various sources 

(i.e., geographical, population, daily confirmed cases) were obtained and transformed 

into an analytical dataset. The analytical dataset was then used in the study of feature 

importance to investigate the relations between the geospatial features and output 

classes, which represent (i) cases that form clusters (or added into the existing clusters) 

and (ii) sporadic cases, i.e., cases that do not form clusters (or added into the existing 

clusters). 

In the empirical study, several feature selection methods were applied, and the 

lists of important features were obtained. It was recognised that the Boruta algorithm 

generates the optimal set of features, where the top-10 geospatial features include Hai 

Salone, Car Dealer, Architect, Industrial Equipment Supplier, School, Café, Engineer, 

Accountant, Auto Repair Shop, and Convenience Store. The findings suggest that 

POIs have primarily contributed to COVID-19 transmission at local scale, which led 

to the formation of numerous clusters in Kuala Lumpur. There was, however, no 

feature related to population within the top-10 feature list. This is largely because 

there is no strong correlation between population size and number of cases, 

suggesting that transmission of disease is caused by human traffic rather than 

population density. The only limitation of the current dataset is that it does not consist 

of detail population information such as job type, education level, and salary range. 

Therefore, no investigation could be performed on finding the correlation between 

those features and COVID-19 cluster formation. This paper ends with a use case on 

how machine learning methods based on geospatial analytics can be used for 

accurately predicting the formation of COVID-19 clusters. 
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