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Abstract. This study explores and evaluates cost-effective indoor localization 

systems that utilize where possible existing technology and infrastructure, whereby 

making services available to meet broad public utility needs. As a relatively new 

market, indoor localization is growing rapidly through the interconnection of 

businesses and consumers using smartphone and other position-location 

technologies. This paper explores and evaluates the most affordable indoor location 

offerings using available technology and the model of Bregman distance to 

maximise public utility benefits at an affordable price for vulnerable communities. 

We incorporate a review of the findings from technical literature associated with 

indoor location technology coupled with our experiments using the Bregman 

distance model, which maximises the properties of received signals, to find and 

evaluate affordable solutions using available technology. We used the Bregman 
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model in conjunction with selected machine-learning algorithms, including the 

relatively new lightGBM process to test over our experimental indoor localisation 

wireless network using Zigbee and RF channels. The lightGBM algorithm tested 

on our wireless network using Zigbee and RF wireless channels presented the best 

performance in F1-scores, followed closely by two other more standard processes. 

The three algorithms were equivalent in their AUC measure. Notably, the simpler 

algorithm KNN demonstrated excellent results for both AUC and F1-scores. Our 

findings from both the literature overview and experiments indicate effective, 

energy-efficient, cost-effective indoor localisation wireless networks can be 

established using available technology that does not require additional signal 

generation. Specifically, existing buildings do not require costly modifications or 

to incorporate energy inefficient methods to make use of effective indoor 

localization systems for the benefit of customers and broader community.  Using 

alternative measuring metrics, public utility objectives such as affordability for 

vulnerable communities and environmental sustainability due to reduced energy 

consumption can be addressed and quantified. 

Keywords: accessible networks, indoor positioning systems, legislated welfare, 

KNN algorithm, zigbee wireless network services, human rights, law, policy. 
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1. Introduction 

As everyday appliances and activities are increasingly interconnected through the 

internet of things, greater demands for accuracy and reliability are placed on a variety 

of location-based services, which are able to leverage location data shared among 

users (Sadowski & Spachos, 2018). All Location-based systems, whether indoor or 

outdoor (Cho & chun, 2022; Jung et al., 2022) require the expertise of multiple 

providers, including developers who create relevant technologies consisting of 

mobile devices, a communication network, and positioning components. In addition, 

service application and data content providers enabling basic services are also 

involved in the process of developing a functional location system (Uradzinski et al., 

2017). Consequently, location-based systems employ different technologies, phases 

of development and deployment of new and established systems, as well as 

engagement with a variety of technical experts. Certain compromises among 

developers and providers, and other decision makers associated with positioning 

system design metrics are required to enhance the accessibility and interoperability 

of these technologies. The scope of this paper is confined to exploring cost-effective 

indoor positioning systems. An indoor positioning system identifies the position of 

an object within an enclosed setting and continuously updates itself in real-time 

(Cheng & Yan, 2018). Using the appropriate digital technology enables indoor 

positioning systems to serve both market and broader public utility functions. 

According to some analysts, at USD $7.0 billion in 2021 projected to reach $19.7 

billion by 2026, the global Indoor localization market is not only growing but set to 

expand rapidly across the next five years (Markets and Markets 2021) A proliferation 

of consumer and business applications around beacons, integration of beacons in 

cameras, Point of Sale devices, digital signage are some of the uses driving the market 

growth. With their ability to link to personal communication devices, indoor 

localization systems can interconnect and position consumers and businesses within 

a wide array of interior public spaces such as shopping malls, museums, and 

administrative buildings.  

However, if the supply of indoor localization software and infrastructure is 

influenced only by market profitability, there is a risk the technology may fall short 

of fulfilling broader social objectives such as functioning effectively as a public utility 

for vulnerable populations where markets may be less lucrative and able to meet the 

high prices paid for premium services. Some researchers have identified historical 

errors in telecommunication infrastructure design when system developers and 

service providers have minimized attention to broader societal concerns Furthermore, 

arguably the transformative quality of life opportunities in the form of greater 

independence, mobility and confidence, deserve at least equal consideration to less 

profitable markets indoor positioning systems offer other consumers. Specific 

examples of broader public benefit include assisting people with disabilities and the 
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elderly to locate goods and services, enhanced medical monitoring, and effective 

delivery of emergency services (Bianchi et al., 2018), all of which can be accessed in 

health-care facilities, shopping centers, recreational facilities, and other industries 

(Al-Ammar et al., 2014). Therefore, it makes sense for citizen-consumers to be 

widely represented in the design and discussion around provision of such services.  

Others have already argued an ideal indoor localization using Wi-Fi should be 

deployable, universal, accurate, and reliable (Kotaru et al, 2015) and (Zafari et al, 

2019). To this taxonomy, in consideration of the public utility benefits that are often 

ignored due to prohibitive costs, we add affordability.  

This paper proposes a machine learning method to model indoor positioning 

using a universal and deployable system that leverages the pre-existing Wi-Fi 

infrastructure, without having to modify the hardware of the pre-existing Wi-Fi 

Access Points, thus keeping the cost low.  

The remainder of this paper is organized as follows: Section 2.0 provides a 

literature overview of existing technologies. Section 3.0 presents the proposed 

methodology. Sections 4 & 5 presents the findings and discusses the results. Finally, 

Section 6 concludes the paper.  

2. Literature Review 

2.1. A taxonomy of technologies: Pre-existing wi-fi infrastructure 

The development of an indoor localization system can leverage a number of factors 

associated with the pre-existing Wi-Fi infrastructure. The inherent factors include: 

not having to modify the hardware of the pre-existing Wi-Fi Access Points (AP) or 

calibrating the environment; exploiting only the angle of arrival (AoA) of multipath 

signals; time of flight (ToF); and, received signal strength indicator (RSSI) 

measurements (Kotaru et al, 2015). Recent advances in both device-based 

localization and free based localization modes are based on different wireless 

modalities, localization principles, data fusion techniques (Zafari et al., 2019; Xiao et 

al., 2016), indoor fusion-based positioning systems (Ferreira et al, 2017) and 

protocols (especially for ad-hoc networks) (Ridolfi, 2016). Each localization 

technique has its advantages and disadvantages with respect to versatility and 

suitability for universal deployment. In addition, some indoor localization 

environments may require a combination of different positioning techniques 

(Uradzinski et al., 2017; Cheng & Yan, 2018; Lukianto & Sternberg, 2011). With this 

in mind, the indoor positioning technologies can be broadly categorized into two 

groups: building-dependent and building-independent.  

Building-dependent technologies rely on the internal infrastructure of the 

buildings in which they operate (Bianchi et al., 2018) as shown in Figure 1. 
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Fig. 1: Building-dependent and building independent indoor positioning technologies 

This grouping is affected by the presence of technology within the building and 

the internal structure of the building. These technologies can be further grouped into 

those requiring new, dedicated building infrastructure and those employing existing 

infrastructure.  

The existing structure of buildings likely determines the need for, or viability of, 

dedicated infrastructure. For example, most current buildings lack radio frequency 

(RF) identification and therefore might make use of Wi-Fi support. However, selected 

indoor localization technologies, such as Zigbee, infrared, RF identification, and 

ultra-wideband, typically require dedicated infrastructure (Al-Ammar et al., 2014). 

As well as Wi-Fi, cellular and Bluetooth are also compatible with existing 

infrastructure in typical buildings.  

Building Independent indoor technologies have several advantages because 

specialized hardware is not required within a building. This category includes dead 

reckoning and image-based technologies. Dead reckoning localizes an object based 

on its past position in relation to its speed and direction of movement(Bianchi et al., 

2018), while image-based technologies rely on cameras and image processing. In 

addition to physical infrastructure considerations, indoor positioning systems employ 

one or more techniques to locate objects or nodes within a physical domain. A list of 

advantages and disadvantages of indoor positioning technologies is provided in in 

Table 1. 
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Table 1: Advantages and disadvantages of the various indoor positioning technologies 

Technology Advantages Disadvantages 

Radio 

frequency 

identification 

– Penetrates solids 

– Penetrates non-metals or 

insulators 

– Maintains high level of 

compatibility 

– Lacks communication capabilities 

– Determines radio frequency by antenna 

– Provides limited positioning 

coverage 

– Provides insecure radio frequency 

communication 

– more power 

Ultra-

wideband 

– Provides high localization 

accuracy 

– Penetrates obstacles effectively 

– Provides compatibility with 

existing RF system 

– Lacks compatibility with liquid and metallic 

materials 

– Requires very high investment 

Infrared 
– Provides basis for sensitive 

communication 

– Lacks ability to penetrate 

obstacles 

– Lacks multi-room capability 

– Lacks compatibility with fluorescent 

lighting and sunlight 

Ultrasonic 
– Provides compatibility with 

electromagnetic waves 

– Lacks capability of penetrating obstacles 

– Creates false signals 

– Lacks compatibility with high-frequency 

sounds (Xiao et al, 2016) 

Zigbee 

– Requires very little energy for the 

sensors 

– Requires less investment 

– Vulnerable to various signal sources using 

the same signal 

– Requires fast (millisecond) communications 

- Could easily cause transceiver to go to sleep 

Wireless 

local area 

– Covers more than one building 

readily available 

– Potentially requires the recalculation of a 

predefined signal strength map for each 

slight adjustment 

Network 
– Provides high compatibility with 

devices (Bianchi et al., 2018) 
 

Cellular 

based 

– Provides compatibility with 

hardware for customary mobile 

phones 

– Provides compatibility with de-

vices operating at the same 

frequency 

– Reduces reliability because the signal 

propagation varies depending on conditions 

Bluetooth 

– Provides a lighter standard 

– Highly ubiquitous 

– Built into or embedded within 

most devices 

– Relies on relatively expensive receiving 

cells 

– Requires inbuilt host computer 

– Prone to RF interference 

Dead 

reckoning 

– Works without additional 

hardware (e.g., sensors) 
– Only calculates approximate positions 

Image-based – Relatively inexpensive – Provides limited coverage 
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2.2. A taxonomy of technologies: Positioning techniques 

Indoor positioning techniques fall into four major classes: fingerprinting, 

triangulation, proximity, and vision analysis. Triangulation applies the properties of 

geometric triangles when computing the object positions. Fingerprinting refers to the 

characterization of unique identifying attributes, typically, location-dependent signals 

(received signal strength indicators). The proximity localization technique considers 

the positions of target objects with respect to a previously established location; the 

location of the transmitting access point (AP) is used to approximate the position of 

an object within a limited range. Vision analysis techniques rely on images obtained 

from cameras for localization. Table 2 summarizes the available techniques used for 

indoor positioning. 

Table 2: Indoor positioning techniques 

Technique Divisions 

Triangulation Literation and angulation 

Fingerprinting Online and offline 

Proximity 

Physical contact, wireless cellular access points, 

and automatic 

ID systems 

Vision analysis No Division 

2.3. A taxonomy of technologies: Algorithms 

This section provides an analytical study to identify the most effective indoor 

positioning algorithm for our work (Sadowski & Spachos, 2018). The four major 

indoor localization algorithms are characterized by the following parameters: signal 

strength indicator, time difference of arrival, time of arrival, and angle of arrival 

(Obeidat et al., 2021). The RSSI is frequently used with fingerprinting or propagation 

model algorithms (Uradzinski et al., 2017) and approximates the distances of 

unknown nodes from a common established reference node. When the AP is near, the 

received signal and strength indicator values will be higher. The time-of-arrival 

allows us to accurately synchronize the arrival of the transmitted signal at the mobile 

device to determine the signal transmission period between the transmitter and the 

receiver. In contrast, the time-difference-of-arrival allows us to measure the 

propagation time variation among the base stations and multiple target nodes. The 

angle-of-arrival algorithm is vital for measuring the angle of signal reception between 

the transmitter sources in unknown locations. To facilitate the adoption of received 

signal strength for localization by the Zigbee wireless network system, the designers 

embedded a Zigbee chip into the sensor nodes to facilitate, in a linear format, the 

transformation of the power value into the RSSI values (Sadowski & Spachos, 2018).  

Thus, Zigbee systems facilitate the offline path loss survey, real-time RSSI 

collection, and online position calculation. Significantly, Zigbee requires less 

investment and requires very little energy for the sensors which makes it more 
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equitable providing more social value and sustainability benefits for the environment 

through reduced energy consumption. 

3. Methodology 

3.1. Bregman distance-based model of the indoor localization system 

In this study, we consider an indoor localization system installed in a dedicated square 

shaped floor, where we have four Xbee Access points distributed equally across the 

floor emitting RSSIs.  The square floor plan is defined as a grid space where any 

location M is limited inside the grid dimensions. Any position will be represented in 

2-D (x,y) coordinates on the grid. At each point of the grid, we have collected a set 

of RSSI readings and stored the data in a dedicated RSSI Database. Each entry in the 

database includes a mapping of the grid coordinate (x, y) to the vector of 

corresponding RSS values from all access points in the area.  

Because of the very high variation and interference that RSS suffers from, the 

accuracy of finding the exact location indoor is a challenge. Calculating and 

measuring the distance between different components is conducted using the 

Euclidean Distance or Mahalanobis distance.  However, Bregman distance can be a 

suitable alternative for distance calculation and measurement since it measures the 

distance by merging the relative entropy and the geometric Euclidean distance. A 

Bregman distance measures the distortion between classes that is defined by a Jensen 

convexity gap that is induced by a strictly convex function as in the following 

equation: 

𝐷𝜑(𝑝, 𝑞) = 𝜑(𝑝) − 𝜑(𝑞)− < ∇φ(p), p − q > 

Where <p, q> represent the inner product of p a d q and <p, q> is computed as 

follows: 

< 𝑝, 𝑞 > =  ∑ 𝑝(𝑖)𝑞(𝑖) = 𝑝𝑇𝑞

𝑑

𝑖=1

 

and where ∇φ(p) is the gradient operator of φ at point p.  

∇𝜑(𝑝) = [
𝜕𝜑

𝑑𝑝1

… . .
𝜕𝜑

𝑑𝑝𝑑

]𝑇 

3.2. Indoor setup 

Hence, our hardware and software-based solution for indoor localization includes a 

wireless network over Xbee and RF channels. Four access points are localized to 

communicate with a receiver terminal and the RSSI is measured as the main indicator 

for system input and distance calculation. The study area represents a single floor 

with a simple square structure including 3 rooms and a walking area. The localization 

process is implemented to determine whether the user is localized in a room or a 

walking area. The hardware is designed around Arduino MCU, Xbee modules, and 

RF 433 MHz modules to finalize the entire system requirements. 
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Xbee is selected for its ability to work as a completely independent wireless 

communication module in closed areas with an acceptable communication distance. 

On the other hand, the RF 433 MHz is selected for its simple prototype specifications 

and properties.  

 
Fig. 2: Setup of the test environment 

Mainly we need to understand also the relation between the number of access 

points distributed in the floor and Standard Deviation of the RSSs with the probability 

of having a correct localization result. So we need to simulate the probability of the 

correct location calculation processes on different Access Points number as well as 

on different Standard Deviation values. Below we can notice the effect of having a 

large number of Access Points on the probability calculation among 4 different small 

Standard Deviations. 
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Fig. 3: The relation between the number of access points and probability of current location 

estimation 

Clearly, we can see the large effect in terms of correctness with the reference to 

the Access Points number raises with the smallest standard deviation value. Therefore 

with σ=1 and almost 5 Access Points, we can estimate the location correctly with a 

probability of 1. On the other hand, we needed almost 10 Access points to reach the 

highest probability with σ=4.  Below we present a figure showing the negative impact 

of high σ on the probability calculation: 

 
Fig. 4: The relation between the standard deviation of Gaussian and probability of 

current location estimation 

The probability dropped in half with a high σ=20 despite the number of access 

points found in very good range of 4. 

3.3. Machine learning models of choice 

Several challenges must be addressed when selecting an effective indoor positioning 

system. Indoor environments are typically dynamic and element characteristics can 

interfere with signal integrity; in particular, they contain many reflective objects, 

leading to multipath signals and delays (Mahafzah & Abusaimeh, 2018). The 

positioning of these objects in the environment also affects signal scattering and 

attenuation. For indoor positioning, the reliance on non-line-of-sight signal 

propagation produces inconsistency at the receiver (Uradzinski et al., 2017). Other 

challenges include small-area coverage, slow air circulation, small humidity gradients, 

and low temperatures. Hence, high-precision indoor positioning applications are 

required to enhance the accuracy of localization mapping (Al-Ammar et al., 2014). 

The specific dynamics and needs of varying indoor environments determine the 
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specific type of wireless network services and algorithms to adopt. When designing 

an indoor localization system, performance metrics such as accuracy, availability, 

area of coverage, scalability, cost, and privacy should be considered (Sadowski & 

Spachos, 2018). 

In machine learning, regression algorithms attempt to predict a number (e.g., the 

physical locations of objects in an area), while classification algorithms try to predict 

the class to which an input instance belongs (e.g., sitting room, kitchen, office) (El 

Morr & Ali-Hassan, 2019). Our algorithm used for indoor localisation attempts to 

predict in which area an object exists, (i.e., room1, room2, room3, or hallway) not the 

exact geographic position of the object. Hence, our problem can be defined as a 

machine learning classification problem not a regression one. 

An  overview of research studies that used machine learning based indoor 

localization using Wi-Fi RSSI fingerprints published between 2011 and 2021 reveals 

the most common algorithms were K-nearest neighbours (KNN), Random Forest 

(RF), Decision Tree (DT), and Support Vector Machine(SVM) (Singh et al, 2021). 

For our study, we chose KNN and RF instead of the traditional DT. We also opted to 

test lightGBM, one of the more recently introduced algorithms closely related to DTs 

but more efficient. In addition, incorporated usually high performing algorithms in 

other indoor localisation studies: logistic regression (Abadi et al, 2014), Naïve Bayes 

(Wu et al, 2017), and the AdaBoost ensemble technique (Feng et al., 2014). 

3.4. Evaluation of classifier performance 
Since we would like to correctly localise an indoor object, we are interested in 

models that provide as low as possible false positive and false negative occurrences; 

that is models with high precision  (
𝑇𝑃

𝑇𝑃+𝐹𝑃
) and high recall (

𝑇𝑃

𝑇𝑃+𝐹𝑁
).  Therefore, we 

chose F1-score (2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) as a performance measurement criterion. 

The Receiver Operating Characteristic (ROC) curve can also be helpful. The area 

under the curve (AUC) of the ROC represents the recall or true positive rate (TPR) 

in the y-axis and the false positive rate (𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
) in the x-axis, at different 

classification thresholds. A high AUC value represents a model with high TPR and 

low FPR. A value of 0.5 represents a random guess; the larger than 0.5 the AUC value 

is, the better performance of the model. 

4. Results 

We have collected 5642 instances for training and 1672 instances for testing. The 

instances represent the RSSI values/vectors that are generated by each access point.  

The dataset is formed of three features representing the RSS reading that are all 

numeric type; the class is numeric the expected room (coded 1 to 4). 
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We have used (Ali, 2020) in Python to run the machine learning algorithms. 

Using 10-fold cross validation, we run the following algorithms: K Nearest Neighbors, 

Logistic Regression, Naive Bayes, Random Forest, LightGBM, and Ada Boost.  

Table 3: Result of the cross-validation learning 

Model F1-Sore AUC 

Light Gradient Boosting Machine (LightGBM) 0.95 0.99 

Random Forest (RF) 0.95 0.99 

K Nearest Neighbors (KNN) 0.94 0.99 

Naive Bayes 0.62 0.86 

Logistic Regression 0.56 0.82 

AdaBoost 0.51 0.67 

 

The lightGBM algorithm presented the  best performance in the F1-score, 

followed closely by RF and KNN. The three algorithms were equivalent in their AUC 

measure. Nayve Bayes, the logistic regression and Adaboost performance performed 

poorly in F1-scores. Their AUC was good for Naïve Bayes and logistic regression, 

and only satisfactory for Adaboost. It is notable that a simple algorithm such as KNN 

has shown excellent results for both AUC and F1-scores. 6 

5. Discussion 

Our findings indicate that machine learning is a key tool for enhancing the indoor 

localization (Singh et al., 2021; Bharadwaj et al., 2022; Yan et al., 2021; Zhang et al., 

2020; Xue et al., 2020; Li et al., 2020; Bhatti et al, 2020). The proposed model has 

shown high accuracy across the machine learning algorithms tested. The positive 

performance can be attributed partially to the consistency and stability of the 

environment parameters and conditions inside the testing/training area (indoor area), 

proving that the hardware selected can be considered stable for generating RSSI 

signals.   

Although the analysis has shown that the LightGBM is the algorithm of choice, 

a case can be made for KNN owing to the simplicity of its implementation. This 

finding confirms findings that KNN is a good algorithm to perform indoor 

localisations (Huang & chan, 2011; Ni et al., 2003).   

The low cost and relative high effectiveness of this system for effective indoor 

localization and positioning have both market and public utility relevance, as it 

supports equitable access for the most vulnerable and least affluent citizens. The gap 

between those who do have access to technology (e.g., broadband internet 

(Riddlesden & Singleton, 2014)) and those who do not, is commonly known as the 

digital divide (Van Dijk, 2006). Digital divide is a source of inequity in many domains 

of life, be it in education (Warschauer, 2004), economy (Bronson & Knezevic, 2019), 



 

Omran et al / Journal of System and Management Sciences, Vol. 12 (2022) No. 3, pp. 117-134 

129 

or health (Chang et al., 2021). COVD-19 has stressed the need to access affordable 

technology, and to the imperative to close the digital divide to enhance equitable 

access to social educational, social and health needs. The United Nations expressed 

its conviction that narrowing the digital divide could contribute to more equitable 

access to social goods (UN,  2020). Indoor localisation is expected to play a social 

role as low cost technology is important for accessing healthcare (Pourhomayoun et 

al, 2012) and homecare (Pourhomayoun et al., 2012; Ballardini et al., 2015; Braun & 

Dutz, 2016; Stelios et al., 2008). Consequently, our study aligns with the concern to 

provide low-cost equitable access to technology to close the digital divide.  

6. Conclusion 

In this study, we presented a comparison of major indoor positioning technologies 

with respect to the available techniques and localization algorithms. Furthermore, we 

focused our research on exploring technologies and models that maximized public 

utility for vulnerable groups, which required adding affordability to the current 

taxonomy of universal access, reliability and …  

Affordability has multiple stakeholders, including service providers, 

governments, and most importantly the vulnerable communities least able to afford 

new innovations that have major quality of life implications. For this reason, we 

incorporated into our evaluation of available indoor positioning approaches the 

Bregman distance of curvature model that values residue signal strength, and in the 

process reconceptualizes signal ‘noise’ as a valuable component of an effective and 

affordable system. In other words, the system we advocate is both effective and 

efficient.  We tested other efficiencies of the model through applying AI algorithms 

that evaluate machine learning and found it scored highly on almost all performance 

measurements.  

One limitation of this approach is its artificial setting. Future studies will add to 

the findings of this study by testing our approach in a live environment and natural 

setting. Additionally, it is essential to understand the parameters that contribute the 

most to enhancing the quality of the combined indoor localization technologies, 

positioning technique, and relevant positioning algorithms used in this study. The use 

of the proposed approaches can benefit developments that increase equitable access 

to innovations.  

Another limitation of the current study is the lack of specified cost benefits 

between approaches using the properties of current received signals as opposed to 

technologies requiring the generation of new signals that are used for indoor 

positioning functions. Additionally, such a comparison should also account fort 

positive and negative externalities associated with power saving methods, 

environmental impact, as well as applications other than indoor localization that may 

emerge from incorporating technologies and techniques involving new signal 
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generation. An economic analysis  including direct costs and benefits as well as all 

economic externalities could be the focus of a broader study. These are considerations 

that also feed into policy discussions around carbon credits and financial recognition 

of energy-reducing initiatives. For governments and public bodies to invest and/or 

regulate networked systems, both costs and benefits need to be transparent and 

quantified to gain some degree of political acceptance. 

From both public utility and environmental perspectives, it is evident our research 

is part of the larger research conversation that needs to take place when considering 

the nexus of innovations leading to the growth of the burgeoning indoor wireless 

global market industry and priorities in the broader society. 
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