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Abstract. Quantum Entanglement and Quantum swapping are major research 

areas nowadays. Remote quantum entanglement is used in many applications like 

secure communication, secret sharing, data aggregation, and precision sensing. In 

data aggregation applications, every sensor node captures data and communicates 

to the central node. Efficient Data aggregation depends on whether the local 

information or global quantum network information is used for constructing the 

aggregation schedules. In addition, Quantum networks suffer from lossy optical 

links and with limited resources such as quantum memories, edge capacities. 

Computation of optimal schedules deals with large quantities of data and complex 

time-consuming calculations. However, the quantum memories cannot hold the 

qubits for a longer time as the stored qubit completely decoheres an infinite amount 

of time.  Hence, there is a necessity for finding new data aggregation scheduling 

protocols, which use optimal channel capacity and optimal size of memory for 

improving the network throughput. This paper uses a reinforcement-learning 

technique that considers entanglement pairing and swapping the success 

probability of nodes with their neighbors while finding an optimal scheduling 

policy. The proposed method uses local network information for constructing 

optimal data aggregation schedules by prior sharing the maximally entangled qubit 

pairs between the nodes through optimal usage of the processes, channel capacity, 

and memory at the intermediate nodes. Experiments show that our proposed 

method can maximize the network throughput. 
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1. Introduction  

Data Aggregation is the process of aggregating data to the central node by using one 

or more intermediate neighbors. Data aggregation reduces the packet transmissions 

increasing the lifetime of the network. The base station receives the information 

aggregated by the nodes. In this process, entanglement with the best nearest neighbor 

decreases the processing time, best utilizes the available bandwidth and battery of the 

sensors. In this paper, we propose a method for finding new data aggregation 

protocols called QDARL Quantum Data Aggregation scheduling using 

Reinforcement learning, which uses optimal channel capacity and memory for 

improving the quantum network efficiency. It finds optimal data aggregation 

schedules for sending the captured data to a distant quantum central node using local 

quantum network information with minimum bottleneck issues in the network.  

2. Related Studies 

In (S. Madhavi, 2014) (S. Madhavi and Tai Honn Kim, 2019), authors discussed 

energy Efficient Genetic Inspired Scheduling for Data Aggregation. In (H. L. Yeh et 

al., 2011) (S. Madhavi and Tai-hoon Kim, 2008) authors discussed a secured 

authentication protocol for wireless sensor networks using elliptic curve 

cryptography, Sensors. In (Hado Van Hasselt et al., 2016) authors discussed Deep 

reinforcement learning with double Q-Learning. In (Bartlett, Ben, 2018) authors 

discussed “A distributed simulation framework for quantum networks and channels”. 

In (H. Salarian et al., 2014) authors discussed “An energy-efficient mobile-sink path 

selection strategy for wireless sensor networks. In (Francesco T. et al., 2019) (H. J. 

Kimble, 2008) authors discussed Quantum Internet: Networking Challenges in 

Distributed Quantum Computing. In (Sam Morley-Short et al., 2017) authors 

discussed the Physical-depth architectural requirements for generating universal 

photonic cluster states. In (N. Alon et al., 1994) authors discussed “Routing 

Permutations on Graphs via Matchings”. In (M. Caleffi, 2017) authors discussed 

Optimal Routing for Quantum Networks.  In (Kober, J. et al., 2013) authors discussed 

Reinforcement learning in robotic. In (F. Arute, 2019) authors discussed “Quantum 

supremacy using a programmable superconducting processor”.  

3. Proposed Quantum Network Model 

We defined a Quantum network as Q(V, E, C, M) where V is a set of quantum 

processors, E is the set of edges between the processors, C is the set of  Quantum 

channels and links. Let M(i) denotes the quantum memories at the i-th vertex. The 

total transmission time T is slotted, T consists of slots {t0, … tL-1} where L denotes 

the length of the interval. The total schedule S = {S0, S1, ..., ST−1}, where Si denotes 

the subset of nodes in V scheduled to transmit during i-th time slot ti. Let Aij, for i, 

j=1...n denote the set of active nodes for each cluster headi. Assign a timeslot in the 

https://arxiv.org/search/quant-ph?searchtype=author&query=Morley-Short%2C+S
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schedule for each Aij. The slot time assumed smaller than the memory’s coherence 

time.  

3.1 Proposed Quantum data aggregation using Q-L 

Each time slot t has two phases: “channel entanglement” phase and “channel 

entanglement swapping” phase. The “channel entanglement” phase established a 

shared entangled (EPR) pair. An entanglement attempt succeeds with probability p0(e) 

~ η(e), where η(e) ~ e−αL(e) is the transmissibility of a lossy optical channel of length 

L(e) (Mihir Pant et al., 2017). In the “channel entanglement swapping” phase, at each 

cluster node, pairs of qubit memories are entangle swapping is attempted. We define 

the throughput T as the total number of e-bits in all the quantum links in the network 

at any instance of time t.  

Hence the probability that one e-bit is established successfully across the edge e 

during a time slot (Mihir Pant et al., 2017) is given by: p(e) = 1 − (1 − p0)S(e). Let 

us also assume S(e) = S, ∀e ∈ E, which in turn gives us p(e) = p, ∀e ∈ E (Pant, 

Mihir et al., 2019) . A quantum path may use multiple quantum channels but in an 

instance to improve the network efficiency, we consider successful and best 

entanglement pair in the quantum path. The fidelity of entanglement decays 

exponentially with the distance between the nodes (Michael Siomau, 2016). The node 

establishes entanglement with its best neighbor. Hence, to improve this situation, we 

propose each node establishes W parallel channels for establishing a quantum 

entanglement. The edge capacity C is equal to the maximal number of entangled pairs 

generated between adjacent nodes. Fig. 1 shows the quantum network with W parallel 

channels.  

3.2 Scheduling Problem Definition 

Cluster heads and to which cluster head a node should establish EPR pair is discussed 

in Algorithm 1. Throughput depends on  

 

1. The probability of channel entanglement success rate QE at each node i 

2. The probability of the channel entanglement swapping success rate QS at each 

node i 

 

For each channel wi at each node i:    

→1   

If node I have indegree di, then QEi is defined as 
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where, pj denotes the channel entanglement success probability rate at the j-th 1-hop 

neighbour of node i, Where  , L = the length of the channel and   is 

constant depending on the physical media. We assumed p = 0.6 to 0.9 for an in degree 

of 10. Assumed w = 3 and the number of qubits at each node is assumed to be 10 to 

14. The probability of the channel entanglement swapping success rate QS at each 

node i is defined as the points achieved for swapping at state s and the total number 

of concurrent nodes eligible for swapping in slot t schedule s.  Let QCi
conn(j) denotes 

the time taken for a node i to establish a quantum connection with its neighbor j. The 

slot duration in a schedule s is set as  

 

D

j

st  = 
jL

i
1

1= max( ( ))( jQC i

conn .

→3 

 where the value of D is set in such a way that it is at least as great as the time required 

for the quantum connection/entanglement swapping 
b

aL  denotes the a-th  hop 

neighbour list for a node b. Q-learning is a learning algorithm that defines an agent, 

a set of states, and a set of actions per state. The states are various situations in the 

network that the agent learns about from time to time. If those actions are fetching 

towards the goal then the rewards will be allocated otherwise a penalty will be 

awarded. In the proposed method agents follows the following three steps to find the 

optimal policy. 

 

1. The agent starts in a state (s1) and to take an action (a1) it selects an action that gives the 

highest possible value by referencing Q-table  

2. Calculates  reward (r1) (r1 can be positive or negative) 

3. Update q-values 

4. The Q-function can be represented as a q-table with states as rows and actions as columns. 

Using these q-values various decisions like  

• What are the possible Action set for the current state denoted by a,  

• What is the existing State for applying the action a,  

• What is State resulting after applying the action  and  

• after applying the action how many rewards will be obtained 

 

Table 1 shows the procedure for applying the Action for Clusterization. Table 2 

shows the procedure for applying Action for schedules and Table 3 shows the 

procedure for applying the Action for maximizing the throughput.  Let “reward()” 

denotes the maximum reward obtained from an optimal selection policy function M 

which decides the optimal number of concurrent nodes eligible for swapping in slot t 

schedule s. For example, while deciding, a node i selects a node k as its cluster head 

depending on whether  

 

1. The probability of the channel entanglement success rate QE  

2. The probability of the channel entanglement swapping success rate QS  

L

i ep −=
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Node i and node k is maximum when compared to other 1-hop neighbors of i then 

reward = number of ebits on the link between i and k.  

Algorithm 1 is repeated for all the nodes in the network. A node having a 

maximum number of successful entanglements is called the best node. All the 

neighbors of this best node are said to be in one cluster and the best node is called the 

cluster head.  The procedure for finding the best successful entanglement pair is as 

follows in Algorithm 1. 

 
• Step 1. Best Successful entanglement 

• For k=1 to n number of nodes in the network    

•    For I = 1 to number of 1-hop neighbors of  k 

•      For j=1 1 to wi  

•        To establish entanglement pair with node I on jth channel    

•       Compare Max_entaglement _success_probability with a probability of   

•        Channel entanglement success rate QEik   

•       Compare Max_entaglement _swapping__success_probability and the    

•       probability of the channel entanglement swapping success rate QSik 

•   store maximum value in Max_entaglement _success_  probabilityk  

•   store maximum value in Max_entaglement _swapping_success_ probabilityk      

•  Arrange the nodes in the priority of Max_entaglement _swapping _  

•  success_probabilityk  and second priority of Max_entaglement _success _  

•  probability k into list denoted by List_Scuuess_entaglement k  

• Find node p, which is listed first in the list List_Scuuess _ entanglement tk  

• Except with  p, k deactivates all the other entanglements 

• p is the best neighbor with which k can make an engagement Bestneighbor[k]=p 

• Step 2. Reconstruct the network with the best neighbors as the new neighbors and 

the entanglements as edge 

• Step 3. Return modified Graph G 

• Stop 

Algorithm 1. Best successful entanglement pair for node  

 

Fig. 1: The quantum network with W parallel channels 
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Table 1.Action for Cauterization 
State action pair Q(S1,a1) 

Action Action a1 

Find the best successful entanglement pair between a node k and its 1-hop 

neighbors 

Reward The probability of the channel entanglement success rate QE and the probability 

of the channel entanglement swapping success rate QS at  node k’s 1-hop 

neighbor i is maximum when compared to other 1-hop neighbors of k then  

reward = number of ebits on the link between i and k 

State for 

applying the 

action 

State S1 

Initial Network state Q(S1) with vertices V and edges E 

The state 

resulting after 

applying the 

action 

Entanglement is the success between k and node i and  

An agent will Update the q-table with nodes and its cluster head, its  

entanglement pairing,  number of ebits, link capacity, number of qubits 

available Clusterization The base station selects the details of the cluster heads 

and records the list and proceeds for  preparing a schedule for them 

 

Table 2. Action for schedules 
State action pair Q(s2,a2) 

Action Action a1 

The total number of ebits on quantum channel 

Reward The total number of ebits on the quantum channel 

State for applying the 

action 

State S2 

Reconstruct graph(V,E) where  

E denotes entanglement pairs as edges and corresponding nodes with 

entanglement as   vertices V 

The node having the highest 1-hop neighbors is called cluster head 

 state resulting after 

applying the action 

Find interfering cluster head list and allocate  slot I to the nodes which are 

entangled with their corresponding cluster heads 

Find noninterfering cluster head list and allocate  slot i+1 to the nodes 

which are entangled with their corresponding cluster heads 

Table 3. Action for maximizing the throughput 

State action pair Q(s3,a3) 

Action the throughput of the network 

Reward Action a3 

improve Q-values by training the model for Nmax time 

State for applying  action State S3 

Q(s) is  updated to achieve the optimal scheduling policy 

The state resulting after 

applying action 

Q-value from the Q matrix can be used for making a scheduling 

decision for maximizing the throughput 

4. Simulation Results 

The proposed a QDARL using reinforcement learning is implemented using qiskit. 

We assumed a dense network with nodes spreading in a 200x200 sq unit area where 

the distance between the nodes is n

50

units. γ is a discount factor and can range from 

0.0 to 1.0. The initial energy of all sensor nodes is 0.5 J.  Each node has a qubit pool 

with qubits equal to the degree of the network. The number of parallel channels W is 

set to half a degree of the network. We implemented the method for testing the 
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network performance using the important parameters like n number of nodes with 

n=200,400,600,800, d indegree of the network with d=5, 8, QS, probability of the 

channel entanglement swapping success rate at each node, Learning rate α € [0, 1] 

and number of bits per packet = 1000. We tested the proposed method for a network 

with indegree 5 and indegree 8. We observed the impact of learning rate on q-values 

which indirectly affects the throughput, channel efficiency. We assumed that each 

node can have up to w channels where w=half the indegree of the node. For the denser 

networks, the throughput increases when compared to the networks with less number 

of in degree. When compared with indegree 5 the result are maximized with in-

network having indegree 8. But our proposed method could not obtain good results 

with indegree more than 8 for a network of size more than 800 in an area of 200x200 

sq units. This may be due to noise leading to the failure of establishing the links. Fig. 

2 shows the Learning rate Vs Q-Values. As the Learning rate increases (alpha value) 

agent knowledge about the better actions increases and the Q-values increase. An 

increase in the Q-value automatically increases the throughput of the system.  

The network throughput is increased with the adoption of Q-learning as its 

optimal policy. All the nodes in the network are trained over 27000 iterations. The 

maximum throughput is seen for n=800 and degree = 8 at a learning rate = 1.0.  Fig. 

2(a) shows that when the agent learning rate is 0.1, the RL agent executes on an 

average for degree 5 with n=200,400,600,800 number of nodes approximately 

8000,12900,16000,23000 steps to make the optimal strategy for the first time and 

converges after 150 iterations. Fig. 3(a) shows that when the agent learning rate 

increases to 1.0, the steps to learn the best strategy on an average for degree 5 with 

n=200,400,600,800 number of nodes approximately is about 3000, 000,6700,10000, 

and it converges to a stable state after 30 iterations.  

 

 
Fig. 2(a) Learning rate Vs Q-Values for indegree = 5 

 



 

Kim and Madhavi / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 283-293 

290 

 

 
Fig. 2(b) Learning rate Vs Q-Values for indegree = 8. 

 

 
Fig. 3(a) Learning rate Vs Channel Efficiency for indegree = 5 

 

 

Fig. 3(b) Learning rate Vs Channel Efficiency for indegree = 8. 

Fig. 3(b)  shows that when the agent learning rate is 0.1, the RL agent executes 

on an average for degree 8 with n=200,400,600,800 number of nodes approximately 

10000,16000,22600,27000 steps to make the optimal strategy for the first time and 

converges to a stable state after 60 iterations and Fig. 4 shows that when the agent 
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learning rate is 1.0, the RL agent executes on an average for degree 8 with 

n=200,400,600,800 number of nodes approximately 4000,6000,12260, 17000 steps 

to make the optimal strategy and it converges to a stable state after 25 iterations. 

Fig. 4 shows how the channel capacity is utilized best with the increase in the 

learning rate. Since the nodes can choose the best neighbour as their cluster head 

giving priority to the link capacity too, the channel utilization also increases. 

5. Conclusions 

Q-learning is a reinforcement learning algorithm, which reaches the state of 

convergence through several continuous iterations to obtain the maximum action 

value matrix Q(st, at) besides making its computational complexity relatively low: 

without a model, the agent learns through an iterative process and estimates the q-

values. 

 

.  

Fig. 4 Agent learning rate and Average Number of iterations for convergence 

From a state Q[s, a] it will apply possible actions denoted by “a” and after 

applying an action fetches reward/punishments depending on the result of the action. 

Through this q-table agent guesses the best action. The proposed method finds 

optimal data aggregation schedules to maximize system throughput over N time slots. 

There are many traditional methods for finding the best schedules for a quantum 

network. But to our knowledge, this is the first time to use RL for finding data 

aggregation schedules using multiple channels and considering the probability of 

entanglement success and swapping probabilities for pairing with neighbor’s nodes 

for aggregating the data. In a future study, we will extend this work for other 

performance indicators such as delay, engagement losses due to noise as reward 

points in RL.  
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