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Abstract. IoT edge gateway reduces cloud computing's overload that redirect 

sensor data to  remote servers. For reliable and efficient IoT gateway, column-based 

flash memory has become a reasonable storage due to its space efficiency and 

compression performance. This paper introduces recent IoT network and edge 

computing technology. It proposes efficient replication management called 

Context-mapped Segment Submirroring to support stable data services for sensor 

data in the edge-based IoT environment. Sensor context scaling and chained 

segment submirroring schemes are presented to improve the reliability and 

performance using IoT edge gateway. In the chained submirroring scheme, the 

sensor data are kept in the space-efficient storage of IoT edge. Consequently, sensor 

data transmission and mirroring storage cost can be minimized. The simulation 

results show that the proposed scheme outperforms the traditional scheme in 

respect of operation throughput and its response time. 
Keywords: Edge gateway, sensor data, submirroring, chained compression, IoT 

data management, Edge computing 
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1. Introduction 

In Internet of Things (IoT) environments data offloading is required to decrease the 

volume of database storage and communication to the remote servers (Ashwini,2019), 

(Lee, 2020), (Park, 2019). In IoT edge computing environment, useful computing 

resources are placed on the edge of the IoT sensor network and very close to end-

devices such as IoT sensors (Figure 1). Therefore, IoT computing resources should 

be placed close to end-devices to reduce data traffic and latency. That is, a lot of smart 

IoT services can be provided to process and store data close to end-devices that 

generate the IoT big data (Wei, 2017), (Gopika, 2018), (Amir, 2018). 

Fig. 1: Concept of IoT edge-based computing 

Similar applications prior to the IoT edge technology includes content delivery 

or distribution networks (CDNs) that provided video content close to the user. 

Information-centric networking is also an improved form of content-based routing 

technology like CDN. In the future, IoT edge computing is considered to provide 

effective data filtering and a representative platform for processing big data from IoT 

devices. This means that big data should be optimized before it goes to the cloud to 

reduce communication costs and save energy of end-devices in the future. In addition, 

the IoT edge computing is also tightly coupled with key network technologies such 

as 5G which is characterized by low-delay, stable-communication, energy-efficiency, 

and high-connectivity to various devices. 

Several approaches have been proposed to implement edge computing. The 

resource-rich model approach connects resource-rich servers to virtual machine-

based 'cloudlet' directly after the end-devices via wireless access point. Cloudlet is a 

'mini data center' which has multi-core CPU, flash storage, and wireless LAN to IoT 

edge. For example, sensor data and video collected through Goggle Glass are 
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processed on cloudlet for real-time services. Cloudlet can be used for LTE base 

stations and advanced vehicles in the future and can be expanded to a set of servers 

called micro-cloud. 

The heterogeneous edge model leads the edge platform to increase the utilizations 

of various computing resources. That is, it integrates various devices such as IoT 

servers, access points, set-top boxes, and smart phones. It also provides various 

communication requirements such as wireless connectivity, routing, streaming, 

sharing, and mobile access. Examples of this include a mini-cloud clustered with 

Raspberry Pi and a mobile-cloud composed of various mobile devices. For example, 

mobile learning, mobile games, natural language processing, and mobile health care 

can be operated smoothly on end devices with poor resources. 

Some of the features analyzed in the actual IoT application cases are as follows.  

a) A large portion of sensor data sent from IoT devices has bandwidth-

intensive characteristics. Placing computing resources right next to high-

bandwidth data sources and processing them within the region, can reduce the 

amount of data sent to distant servers. 

b) Low-latency network is important to many applications such as smart cars 

and IoT home network. They should process sensor data quickly to ensure real-

time action and responsiveness. 

c) Geographic distribution is an important characteristic in IoT sensor network. 

One realistic example of this edge computing is a collision avoidance system. 

This edge platform includes local intelligence and low-latency communication 

to vehicle networks and smart road facilities, and utilizes various sensor data 

such as location, speed, and acceleration. These sensor data should be processed 

locally with less delay than in long-distance clouds. 

The column-oriented database is the opposite database of the traditional record-

oriented storage. That is, the column-oriented storage saves sensor data values 

vertically, so sensor data values are basically clustered for effective data compression 

and fast data retrieval. Using the column-based database storage rather than general 

database storage for the IoT sensor data is more advantageous for data compression 

and data transmission (Byun, 2016), (Ahn, 2013), (Abadi, 2008).  

2. Related works 

2.1. IoT component model  

Sensor data consists of measured data such as values of light, temperature, and 

humidity and light, as well as non-sensory data such as predefined identification data 

and default configuration. These sensor data are frequently used for cloud analysis 

after being collected from the sensor nodes. To store sensor data, sensor nodes use 

flash memory owing to the low price, compactness, portability, and stability. 
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An IoT component model consists of a sensor node, an sensor gateway, and a 

cloud server, each meaning a sensor data source, a IoT edge gateway, and sensor 

database server (Karrar, 2018).  

a) Sensor node: IoT sensor node sends large volume of measured sensor data to 

IoT gateway. These sensor nodes and gateway devices are all interconnected 

to serve various IoT sensor monitoring services. 

b) Sensor gateway: IoT sensor gateway forwards the measured sensor data to 

cloud servers. The gateway system preprocesses large volume of sensor data 

in the course of filtering and offloading process to remove data redundancy 

and unnecessary transmission cost. 

c) Cloud server: Reliable cloud servers have sufficient computing resources such 

as larger main memory, multi-core processor, security software and big 

database system for secure IoT services. 

2.2. Reliable data management for IoT sensor networks 

Because IoT sensor network has unstable wireless channel and limited bandwidth, 

the IoT users could suffer from unsafe and slow IoT services. One way to reduce the 

likelihood of undesirable services is to copy sensor data to many sensor devices. The 

example of critical data replication may be a human location detected from body heats 

in disaster areas or battle fields.  

In an IoT sensor applications, replicating sensor data can contribute to high level 

reliability where each independent sensor node can use its copy if sensor node fails 

or wireless network fails for a long time. Moreover, the actual operation cost of 

wireless communication is very expensive compared to the other operations. Thus, 

data replication and recovery scheme is more required in the sensor network 

environment rather than in the general distributed network environment. 

In general database management, data recovery refers to the function of restoring 

important data to its pre-fault state in the event of a disaster such as a physical failure 

and incorrect operation. The disaster-oriented failure can be recovered using backup 

storage devices such as hard disks. The user-oriented failure can be recovered by 

redoing/undoing some tasks to the closest backup state from the failure point. In 

general database, data manager should access the actual storage via the recovery 

manager. 

The simplest recovery way to control data copy is read-one write-all method. 

However, since write transactions cannot be allowed after one single node failure, 

this scheme naturally limits the data availability (Bernstein, 1987). To cope with the 

low availability problem, the voting methods were developed. In voting methods, 

write transactions should have [n/2+1] of copies, instead of all copies in read-one 

write-all scheme (Pasojevic, 1994).  

The key idea of voting has become generalized to general quorum-consensus 

method. In the quorum-consensus architecture, a replicated data access must establish 
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a quorum before an actual read or write. The quorum-consensus methods are 

recognized as a well-known abstraction technique for ensuring data consistency in 

secure distributed systems (Lin, 1997), (Marko, 2012). In recent years, the quorum-

based skill has been developed into robust loggers (Edson, 2017)and block chaining 

applications (Christian, 2017). 

2.3. Proposed IoT replication control 

2.3.1. Edge-based sensor data mirroring  

This study proposes a technique called Context-mapped Segment Submirroring 

(CmSS) using IoT edge gateway that improves general mirroring techniques for 

improving storage performance and reliability of sensor data recovery. Several RAID 

techniques (Byun, 2019) were also considered in the design phase, but the practical 

choice for edge gateway is considered to be mirrored RAID, because the computation 

and the space overhead of other techniques was too large to endure. 

The proposed technique also keeps replicated data in different location like RAID. 

However, instead of using the same copy of the original data, the edge gateway 

exploits variably scaled data after column-wise compression is performed block by 

block. 

The differences between this technique and general mirroring are as follows. First, 

whereas normal mirroring keeps the replica inside its sensor node, this technique 

sends the replica to the edge gateway connected to the local network. Second, the 

replicated sensor data can be compressed unlike the original mirroring. Thus, the 

researcher uses the term ‘submirroring’ instead of mirroring. Third, the replicated 

sensor data can be stored at a lower resolution than the original, considering the 

limited computing power of the sensor node. Fourth, the replication timing of the 

sensor data can be a variable depending on the characteristics of the sensor, rather 

than being performed immediately. 

For the operational efficiency, sensor data is generated every second in the sensor 

node but is aggregated on the edge every minute and uploaded to the cloud every 

hour. This is because the large amount of sensor data generated must be filtered or 

aggregated through the edge gateways to reduce data transmission overhead in the 

first phase. In addition, the data required in the cloud needs to be refined for the same 

reason. 

The first reason for mirroring on IoT edges is the instability of the sensor node. 

Second, there is too much data to mirror in the cloud. Therefore, it is necessary to 

reduce it to a transferable level through data processing such as filtering on the edges. 

Third, the edge gateway is connected to the sensor nodes by local network, so the 

communication load is relatively low and stable. Fourth, compared to sensor nodes, 

IoT edge gateway has stable hardware and power supplies and not exposed to the 

outside damage, thus ensuring the stability of the data. However, efficient storage 

control techniques are needed, since the amount of sensor data must be significantly 
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reduced and mirrored to run on resource-poor small gateways compared to general 

IoT servers. 

2.3.2. Scaled context mapping and variable transmission  

The purpose of using sensors is mostly to check that the desired devices are 

functioning normally within the acceptable range or where abnormalities have 

occurred. Therefore, it is not necessary to send too much detailed values to the server 

if the values are within acceptable range. In a typical case, statistics of numerous 

sensor values or sensor information where anomalies occur are important. Therefore, 

it is inefficient to divide the range of sensor values into equally spaced areas. That is, 

it is much more efficient to divide the range of sensor values into multiple variable 

areas and send only the code values of those areas. This means that the volume of 

data storage and communication can be greatly reduced by sending variably scaled 

code rather than fixed scaled data. 

In multi-scale related research (Marco, 2019), mathematical, computational, and 

statistical methods were used together. This study expands multi-scaling using 

variable scale mapping that considers the characteristics of sensor context, 

compresses it on a column basis, and utilizes it for submirroring as shown in Figure 

2. 

For simple example, there are 100 temperature sensors in a particular workshop 

and the normal range of sensors is 10-40 degrees and can be reported with a precision 

of 5 degrees. However, below or above this range is defined to be abnormal and 

should be reported within a precision of 1 degree. The total sensing range is 1 to 50 

degrees. 

For this case, representing the entire temperature area of the Scaled Context Map 

(SCM_temp) in order of (#area code, temperature range) is shown below, meaning 

that data range is compressed to 26/50 and can be reduced by almost half. 

 

SCM_temp = { (#1,1), (#2,2), ..., (#10,10), (#11,11~15), (#12,16~20), 

(#13,21-24), (#14,25~30), (#15,31~35), (#16,36~40), (#17,41), (#18,42), ..., 

(#26,50) } 
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Fig. 2: Example of multi-scaled context mapping 

In addition, it is possible to reduce the transmission volume using variable-cycle 

transmission. If the sensor data is in the normal range, it can be sent on a three second 

basis, and if the data in the non-normal range is sent on a one second basis, the amount 

of data transmission can be reduced by a third. Additionally, data transfers can be 

further reduced by inhibiting repetitive data transfers or by excluding previous similar 

data from the transfer data sets. 

2.2.3. Segment-chained compression and submirroring 

CmSS exploits column-based database skill to maximize data compression. This 

study tested the efficiency of compression based on network flow data (Table 1). It 

uses the Lzo API module (Lzo, 2020) for column-based decompression or 

compression, and the lzo performance test showed that the compressed ratio is about 

20%. Due to the high locality of column-based sensor data, the capability of data 

compression and decompression is inherently good, especially for text type and code 

type data. The compressed size of 10,000 sensor data is less than 33KB. The columns 

associated with queries are selected randomly by workload generator. 

The column-by-column compression procedure consists of multi-chain 

concatenation that uses small-size column segments rather than full-size one segment 

to minimize compression and decompression overhead. 

The decompression and compression costs of small data segments are essentially 

reduced compared to one large segment. Since CmSS can move to the beginning of 

the original column and only small segments can be decompressed, the access speed 

is greatly improved. Since recent multi-core processors are much powerful than 

normal storage devices, the overhead of segment decompressing is negligible. The 

system architecture of CmSS is described in Figure 3. 
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Table 1: Compression test of IPTV NetFlow 

Test CliRttTm SvrRttTm FstFinTm SessStartTm... 

Lzo Time for 

Compression  
30 ms 36 ms 40 ms 82 ms 

Lzo size of 

compressed data 
699 Bytes 1,562 Bytes 1,782 Bytes 32,200 Bytes 

Example.1 0.072 16.182 183.168 
2021-02-01 

10:53:05.000000 

Example.2 0.076 16.179 183.192 
2021-02-02 

17:15:43.000000 

 

Fig. 3: Architecture of context-mapped segment submirroring 

 

The chained segment indexing method divides the original node into several short 

segment which can reduce the decompression workload. Then, it connects the short 

segments together and stores them in a built-in jump table (chained segment) that can 

go directly to the detailed location as needed. Decompressing a longer index node 

requires longer restoration time.  

For this built-in index configuration, one small index header is added to the 

segment area, and thus compression time may take a little longer. However, in case 

of retrieving data from a leaf index node, the data in the desired column data can be 

fetched directly from the segments. Then, only the segment can be unzipped without 



 

 
Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188 

 

183 

 

wasting time to find it from the starting point of original long cluster. As a result, data 

search operations can be performed efficiently.  

2.4. Computer simulation 

2.4.1. Simulation model 

The researcher compared the performance of three types of data mirroring. The basic 

original mirroring scheme is denoted as OrgMr, shortly in the test. As mentioned 

above, CmSS scheme exploits both submirroring and chained segment for space-

efficiency. The CmSS version only with submirroring is denoted as SubMr.  

In this study, simulation system was programmed using C++ and CSIM (Csim, 

2020) for workload generation and performance analysis. The key performance 

metrics are response time and throughput rate for mirroring operations. The response 

time is the time that takes between the request and the execution of the mirroring 

operations, and the throughput rate is the counter of mirroring operations processed 

per second.  

The experimental system consists of a Mirroring Operation Generator(MOG), a 

Mirroring Manager (MM) for the operation, a Compression Manager (CM), and a 

Segment Manager (SM), as shown in Figure 4. The MOG generates mirroring 

operation at predefined intervals to make the system workload required for the 

simulation. The MM manager manages and analyzes the operation, and then sends its 

data to CM. After compressing the data using Lzo algorithm, the CM sends the 

compressed data to SM. The SM makes chained segments and saves them in the file 

system. 

2.4.2. Simulation results and interpretation 

The computer simulation was performed to check the effect of the mirroring operation 

in which number of IoT sensor node (No_ISN) increases. The result graphs for the 

three schemes, OrgMr, SubMr, and CmSS are as follows. 

The overall search throughput is shown in Figure 5, and response time is shown 

in Figure 6. In Figure 5, the x axis is the mirroring input which is the number of 

generated mirroring requests per second. Thus, changing the value of generated 

mirroring requests means the workload variation of mirroring operations from IoT 

sensor nodes. The y axis is the transaction processing results which is the counter of 

finished mirroring operations per second. In Figure 6, the overall response time 

smoothly increases with the mirroring request workload. The main reason of this 

incensement is the mirroring contention that caused by the increment of the 

simulation workload. In the result of  this simulation, the best performance is shown 

by CmSS, followed by SubMr and OrgMr. 



 

 
Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188 

 

184 

 

 

 

Fig. 4: Simulation model for performance evaluation 

Figure 5 shows that the throughput of each scheme decreases beyond No_ISN of 

120 to 160. Although the value of No_ISN has been increased beyond 120, the 

number of active mirroring requests that are currently being processed in the 

simulator appears to be reduced slightly. This reduction means that adding more 

mirroring requests beyond 120 to 160 simply leads to increasing the mirroring 

operation overload, not necessarily incurring an enhanced level of performance. From 

this simulation, the researcher can claim that the throughput rate of the mirroring 

operation are essentially influenced by the factor of mirroring workloads such as data 

scaling and segment compression. 

Figure 6 shows that the throughput rate of SubMr begins to be degraded as 

No_ISN increases beyond 200, although SubMr shows enhanced throughput rate than 

OrgMr by shrinking the mirroring volume by the data scaling. This fact means that 

SubMr also suffers form the negative effect of mirroring overload under the high 

contention condition.  
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Fig. 5: Mirroring Throughput Rate Test 

 

Fig. 

6: 

Mirroring response test 

CmSS shows slightly higher throughput rate than SubMr under the high 

contention condition. This means that CmSS successfully lessens the degree of Lzo 

compression in flash memory using chained indexing  and small-size segmentation 

skills. 

In Figure 6, the researcher observed that the mirroring response of OrgMr and 

SubMr increases slightly as the number of the mirroring requests increases. At the 

overall range of mirroring requests from IoT sensor nodes, the response time of CmSS 

is lower than that of OrgMr and SubMr. With respect to the mirroring throughput rate, 
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the mirroring operation gain of CmSS relative to OrgMr reaches about 10.3%. In 

terms of mirroring response, the time gain reaches to 25%. This achieved difference 

means that a large portion of mirroring gain in CmSS over OrgMr comes from the 

positive effect of sensor data scaling and index segmentation to reduce mirroring 

workload. 

5. Conclusions 

This study introduced recent IoT network and edge computing technology. It also 

proposes a technique called context-mapped segment submirroring using IoT edge 

that improves general mirroring techniques for improving storage performance and 

safety of sensor data.  

To operate on small edge gateways that lack computing resources compared to 

resource-rich general computers, the volume of sensor data should be reduced and 

mirrored. While normal mirroring keeps the same copy of the original sensor data, 

proposed technique exploits variably scaled data and chained compression segment 

by segment. To minimize sensor data transmission and mirroring storage cost, the 

sensor data are kept in the column-based flash storage of IoT edge. Therefore, the 

replicated sensor data can be stored efficiently, considering the limited space and 

computing power of the sensor network. 

There are small drawbacks in implementing the scaling and chained segment 

where the data scaling and segment compression processes essentially lead to 

additional system overhead, although it saves the mirroring space. The simulation 

results show that the proposed mirroring scheme using chained segment submirroring 

in column-based flash storage, outperforms the traditional scheme in respect of 

mirroring response time and its throughput rate. 
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