
175

Replicated Data Management using Scaled Segment

Chain in Unstable IoT Environments

Siwoo Byun

Anyang University, Anyang, South Korea

swbyun@anyang.ac.kr

Abstract. IoT edge gateway reduces cloud computing's overload that redirect

sensor data to remote servers. For reliable and efficient IoT gateway, column-based

flash memory has become a reasonable storage due to its space efficiency and

compression performance. This paper introduces recent IoT network and edge

computing technology. It proposes efficient replication management called

Context-mapped Segment Submirroring to support stable data services for sensor

data in the edge-based IoT environment. Sensor context scaling and chained

segment submirroring schemes are presented to improve the reliability and

performance using IoT edge gateway. In the chained submirroring scheme, the

sensor data are kept in the space-efficient storage of IoT edge. Consequently, sensor

data transmission and mirroring storage cost can be minimized. The simulation

results show that the proposed scheme outperforms the traditional scheme in

respect of operation throughput and its response time.
Keywords: Edge gateway, sensor data, submirroring, chained compression, IoT

data management, Edge computing

ISSN 1816-6075 (Print), 1818-0523 (Online)

Journal of System and Management Sciences

Vol.12 (2022) No.1, pp.175-188

DOI:10.33168/JSMS.2022.0113

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

176

1. Introduction

In Internet of Things (IoT) environments data offloading is required to decrease the

volume of database storage and communication to the remote servers (Ashwini,2019),

(Lee, 2020), (Park, 2019). In IoT edge computing environment, useful computing

resources are placed on the edge of the IoT sensor network and very close to end-

devices such as IoT sensors (Figure 1). Therefore, IoT computing resources should

be placed close to end-devices to reduce data traffic and latency. That is, a lot of smart

IoT services can be provided to process and store data close to end-devices that

generate the IoT big data (Wei, 2017), (Gopika, 2018), (Amir, 2018).

Fig. 1: Concept of IoT edge-based computing

Similar applications prior to the IoT edge technology includes content delivery

or distribution networks (CDNs) that provided video content close to the user.

Information-centric networking is also an improved form of content-based routing

technology like CDN. In the future, IoT edge computing is considered to provide

effective data filtering and a representative platform for processing big data from IoT

devices. This means that big data should be optimized before it goes to the cloud to

reduce communication costs and save energy of end-devices in the future. In addition,

the IoT edge computing is also tightly coupled with key network technologies such

as 5G which is characterized by low-delay, stable-communication, energy-efficiency,

and high-connectivity to various devices.

Several approaches have been proposed to implement edge computing. The

resource-rich model approach connects resource-rich servers to virtual machine-

based 'cloudlet' directly after the end-devices via wireless access point. Cloudlet is a

'mini data center' which has multi-core CPU, flash storage, and wireless LAN to IoT

edge. For example, sensor data and video collected through Goggle Glass are

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

177

processed on cloudlet for real-time services. Cloudlet can be used for LTE base

stations and advanced vehicles in the future and can be expanded to a set of servers

called micro-cloud.

The heterogeneous edge model leads the edge platform to increase the utilizations

of various computing resources. That is, it integrates various devices such as IoT

servers, access points, set-top boxes, and smart phones. It also provides various

communication requirements such as wireless connectivity, routing, streaming,

sharing, and mobile access. Examples of this include a mini-cloud clustered with

Raspberry Pi and a mobile-cloud composed of various mobile devices. For example,

mobile learning, mobile games, natural language processing, and mobile health care

can be operated smoothly on end devices with poor resources.

Some of the features analyzed in the actual IoT application cases are as follows.

a) A large portion of sensor data sent from IoT devices has bandwidth-

intensive characteristics. Placing computing resources right next to high-

bandwidth data sources and processing them within the region, can reduce the

amount of data sent to distant servers.

b) Low-latency network is important to many applications such as smart cars

and IoT home network. They should process sensor data quickly to ensure real-

time action and responsiveness.

c) Geographic distribution is an important characteristic in IoT sensor network.

One realistic example of this edge computing is a collision avoidance system.

This edge platform includes local intelligence and low-latency communication

to vehicle networks and smart road facilities, and utilizes various sensor data

such as location, speed, and acceleration. These sensor data should be processed

locally with less delay than in long-distance clouds.

The column-oriented database is the opposite database of the traditional record-

oriented storage. That is, the column-oriented storage saves sensor data values

vertically, so sensor data values are basically clustered for effective data compression

and fast data retrieval. Using the column-based database storage rather than general

database storage for the IoT sensor data is more advantageous for data compression

and data transmission (Byun, 2016), (Ahn, 2013), (Abadi, 2008).

2. Related works

2.1. IoT component model

Sensor data consists of measured data such as values of light, temperature, and

humidity and light, as well as non-sensory data such as predefined identification data

and default configuration. These sensor data are frequently used for cloud analysis

after being collected from the sensor nodes. To store sensor data, sensor nodes use

flash memory owing to the low price, compactness, portability, and stability.

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

178

An IoT component model consists of a sensor node, an sensor gateway, and a

cloud server, each meaning a sensor data source, a IoT edge gateway, and sensor

database server (Karrar, 2018).

a) Sensor node: IoT sensor node sends large volume of measured sensor data to

IoT gateway. These sensor nodes and gateway devices are all interconnected

to serve various IoT sensor monitoring services.

b) Sensor gateway: IoT sensor gateway forwards the measured sensor data to

cloud servers. The gateway system preprocesses large volume of sensor data

in the course of filtering and offloading process to remove data redundancy

and unnecessary transmission cost.

c) Cloud server: Reliable cloud servers have sufficient computing resources such

as larger main memory, multi-core processor, security software and big

database system for secure IoT services.

2.2. Reliable data management for IoT sensor networks

Because IoT sensor network has unstable wireless channel and limited bandwidth,

the IoT users could suffer from unsafe and slow IoT services. One way to reduce the

likelihood of undesirable services is to copy sensor data to many sensor devices. The

example of critical data replication may be a human location detected from body heats

in disaster areas or battle fields.

In an IoT sensor applications, replicating sensor data can contribute to high level

reliability where each independent sensor node can use its copy if sensor node fails

or wireless network fails for a long time. Moreover, the actual operation cost of

wireless communication is very expensive compared to the other operations. Thus,

data replication and recovery scheme is more required in the sensor network

environment rather than in the general distributed network environment.

In general database management, data recovery refers to the function of restoring

important data to its pre-fault state in the event of a disaster such as a physical failure

and incorrect operation. The disaster-oriented failure can be recovered using backup

storage devices such as hard disks. The user-oriented failure can be recovered by

redoing/undoing some tasks to the closest backup state from the failure point. In

general database, data manager should access the actual storage via the recovery

manager.

The simplest recovery way to control data copy is read-one write-all method.

However, since write transactions cannot be allowed after one single node failure,

this scheme naturally limits the data availability (Bernstein, 1987). To cope with the

low availability problem, the voting methods were developed. In voting methods,

write transactions should have [n/2+1] of copies, instead of all copies in read-one

write-all scheme (Pasojevic, 1994).

The key idea of voting has become generalized to general quorum-consensus

method. In the quorum-consensus architecture, a replicated data access must establish

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

179

a quorum before an actual read or write. The quorum-consensus methods are

recognized as a well-known abstraction technique for ensuring data consistency in

secure distributed systems (Lin, 1997), (Marko, 2012). In recent years, the quorum-

based skill has been developed into robust loggers (Edson, 2017)and block chaining

applications (Christian, 2017).

2.3. Proposed IoT replication control

2.3.1. Edge-based sensor data mirroring

This study proposes a technique called Context-mapped Segment Submirroring

(CmSS) using IoT edge gateway that improves general mirroring techniques for

improving storage performance and reliability of sensor data recovery. Several RAID

techniques (Byun, 2019) were also considered in the design phase, but the practical

choice for edge gateway is considered to be mirrored RAID, because the computation

and the space overhead of other techniques was too large to endure.

The proposed technique also keeps replicated data in different location like RAID.

However, instead of using the same copy of the original data, the edge gateway

exploits variably scaled data after column-wise compression is performed block by

block.

The differences between this technique and general mirroring are as follows. First,

whereas normal mirroring keeps the replica inside its sensor node, this technique

sends the replica to the edge gateway connected to the local network. Second, the

replicated sensor data can be compressed unlike the original mirroring. Thus, the

researcher uses the term ‘submirroring’ instead of mirroring. Third, the replicated

sensor data can be stored at a lower resolution than the original, considering the

limited computing power of the sensor node. Fourth, the replication timing of the

sensor data can be a variable depending on the characteristics of the sensor, rather

than being performed immediately.

For the operational efficiency, sensor data is generated every second in the sensor

node but is aggregated on the edge every minute and uploaded to the cloud every

hour. This is because the large amount of sensor data generated must be filtered or

aggregated through the edge gateways to reduce data transmission overhead in the

first phase. In addition, the data required in the cloud needs to be refined for the same

reason.

The first reason for mirroring on IoT edges is the instability of the sensor node.

Second, there is too much data to mirror in the cloud. Therefore, it is necessary to

reduce it to a transferable level through data processing such as filtering on the edges.

Third, the edge gateway is connected to the sensor nodes by local network, so the

communication load is relatively low and stable. Fourth, compared to sensor nodes,

IoT edge gateway has stable hardware and power supplies and not exposed to the

outside damage, thus ensuring the stability of the data. However, efficient storage

control techniques are needed, since the amount of sensor data must be significantly

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

180

reduced and mirrored to run on resource-poor small gateways compared to general

IoT servers.

2.3.2. Scaled context mapping and variable transmission

The purpose of using sensors is mostly to check that the desired devices are

functioning normally within the acceptable range or where abnormalities have

occurred. Therefore, it is not necessary to send too much detailed values to the server

if the values are within acceptable range. In a typical case, statistics of numerous

sensor values or sensor information where anomalies occur are important. Therefore,

it is inefficient to divide the range of sensor values into equally spaced areas. That is,

it is much more efficient to divide the range of sensor values into multiple variable

areas and send only the code values of those areas. This means that the volume of

data storage and communication can be greatly reduced by sending variably scaled

code rather than fixed scaled data.

In multi-scale related research (Marco, 2019), mathematical, computational, and

statistical methods were used together. This study expands multi-scaling using

variable scale mapping that considers the characteristics of sensor context,

compresses it on a column basis, and utilizes it for submirroring as shown in Figure

2.

For simple example, there are 100 temperature sensors in a particular workshop

and the normal range of sensors is 10-40 degrees and can be reported with a precision

of 5 degrees. However, below or above this range is defined to be abnormal and

should be reported within a precision of 1 degree. The total sensing range is 1 to 50

degrees.

For this case, representing the entire temperature area of the Scaled Context Map

(SCM_temp) in order of (#area code, temperature range) is shown below, meaning

that data range is compressed to 26/50 and can be reduced by almost half.

SCM_temp = { (#1,1), (#2,2), ..., (#10,10), (#11,11~15), (#12,16~20),

(#13,21-24), (#14,25~30), (#15,31~35), (#16,36~40), (#17,41), (#18,42), ...,

(#26,50) }

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

181

Fig. 2: Example of multi-scaled context mapping

In addition, it is possible to reduce the transmission volume using variable-cycle

transmission. If the sensor data is in the normal range, it can be sent on a three second

basis, and if the data in the non-normal range is sent on a one second basis, the amount

of data transmission can be reduced by a third. Additionally, data transfers can be

further reduced by inhibiting repetitive data transfers or by excluding previous similar

data from the transfer data sets.

2.2.3. Segment-chained compression and submirroring

CmSS exploits column-based database skill to maximize data compression. This

study tested the efficiency of compression based on network flow data (Table 1). It

uses the Lzo API module (Lzo, 2020) for column-based decompression or

compression, and the lzo performance test showed that the compressed ratio is about

20%. Due to the high locality of column-based sensor data, the capability of data

compression and decompression is inherently good, especially for text type and code

type data. The compressed size of 10,000 sensor data is less than 33KB. The columns

associated with queries are selected randomly by workload generator.

The column-by-column compression procedure consists of multi-chain

concatenation that uses small-size column segments rather than full-size one segment

to minimize compression and decompression overhead.

The decompression and compression costs of small data segments are essentially

reduced compared to one large segment. Since CmSS can move to the beginning of

the original column and only small segments can be decompressed, the access speed

is greatly improved. Since recent multi-core processors are much powerful than

normal storage devices, the overhead of segment decompressing is negligible. The

system architecture of CmSS is described in Figure 3.

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

182

Table 1: Compression test of IPTV NetFlow

Test CliRttTm SvrRttTm FstFinTm SessStartTm...

Lzo Time for

Compression
30 ms 36 ms 40 ms 82 ms

Lzo size of

compressed data
699 Bytes 1,562 Bytes 1,782 Bytes 32,200 Bytes

Example.1 0.072 16.182 183.168
2021-02-01

10:53:05.000000

Example.2 0.076 16.179 183.192
2021-02-02

17:15:43.000000

Fig. 3: Architecture of context-mapped segment submirroring

The chained segment indexing method divides the original node into several short

segment which can reduce the decompression workload. Then, it connects the short

segments together and stores them in a built-in jump table (chained segment) that can

go directly to the detailed location as needed. Decompressing a longer index node

requires longer restoration time.

For this built-in index configuration, one small index header is added to the

segment area, and thus compression time may take a little longer. However, in case

of retrieving data from a leaf index node, the data in the desired column data can be

fetched directly from the segments. Then, only the segment can be unzipped without

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

183

wasting time to find it from the starting point of original long cluster. As a result, data

search operations can be performed efficiently.

2.4. Computer simulation

2.4.1. Simulation model

The researcher compared the performance of three types of data mirroring. The basic

original mirroring scheme is denoted as OrgMr, shortly in the test. As mentioned

above, CmSS scheme exploits both submirroring and chained segment for space-

efficiency. The CmSS version only with submirroring is denoted as SubMr.

In this study, simulation system was programmed using C++ and CSIM (Csim,

2020) for workload generation and performance analysis. The key performance

metrics are response time and throughput rate for mirroring operations. The response

time is the time that takes between the request and the execution of the mirroring

operations, and the throughput rate is the counter of mirroring operations processed

per second.

The experimental system consists of a Mirroring Operation Generator(MOG), a

Mirroring Manager (MM) for the operation, a Compression Manager (CM), and a

Segment Manager (SM), as shown in Figure 4. The MOG generates mirroring

operation at predefined intervals to make the system workload required for the

simulation. The MM manager manages and analyzes the operation, and then sends its

data to CM. After compressing the data using Lzo algorithm, the CM sends the

compressed data to SM. The SM makes chained segments and saves them in the file

system.

2.4.2. Simulation results and interpretation

The computer simulation was performed to check the effect of the mirroring operation

in which number of IoT sensor node (No_ISN) increases. The result graphs for the

three schemes, OrgMr, SubMr, and CmSS are as follows.

The overall search throughput is shown in Figure 5, and response time is shown

in Figure 6. In Figure 5, the x axis is the mirroring input which is the number of

generated mirroring requests per second. Thus, changing the value of generated

mirroring requests means the workload variation of mirroring operations from IoT

sensor nodes. The y axis is the transaction processing results which is the counter of

finished mirroring operations per second. In Figure 6, the overall response time

smoothly increases with the mirroring request workload. The main reason of this

incensement is the mirroring contention that caused by the increment of the

simulation workload. In the result of this simulation, the best performance is shown

by CmSS, followed by SubMr and OrgMr.

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

184

Fig. 4: Simulation model for performance evaluation

Figure 5 shows that the throughput of each scheme decreases beyond No_ISN of

120 to 160. Although the value of No_ISN has been increased beyond 120, the

number of active mirroring requests that are currently being processed in the

simulator appears to be reduced slightly. This reduction means that adding more

mirroring requests beyond 120 to 160 simply leads to increasing the mirroring

operation overload, not necessarily incurring an enhanced level of performance. From

this simulation, the researcher can claim that the throughput rate of the mirroring

operation are essentially influenced by the factor of mirroring workloads such as data

scaling and segment compression.

Figure 6 shows that the throughput rate of SubMr begins to be degraded as

No_ISN increases beyond 200, although SubMr shows enhanced throughput rate than

OrgMr by shrinking the mirroring volume by the data scaling. This fact means that

SubMr also suffers form the negative effect of mirroring overload under the high

contention condition.

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

185

Fig. 5: Mirroring Throughput Rate Test

Fig.

6:

Mirroring response test

CmSS shows slightly higher throughput rate than SubMr under the high

contention condition. This means that CmSS successfully lessens the degree of Lzo

compression in flash memory using chained indexing and small-size segmentation

skills.

In Figure 6, the researcher observed that the mirroring response of OrgMr and

SubMr increases slightly as the number of the mirroring requests increases. At the

overall range of mirroring requests from IoT sensor nodes, the response time of CmSS

is lower than that of OrgMr and SubMr. With respect to the mirroring throughput rate,

20

40

60

80

100

120

140

T
h
ro

u
g
h
p
u
t

IoT Sensor Nodes

OrgMr

SubMr

CmSS

0

100

200

300

400

500

600

700

800

900

1000

E
la

p
se

d

T
im

e
(m

s)

IoT Sensor Nodes

OrgMr

SubMr

CmSS

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

186

the mirroring operation gain of CmSS relative to OrgMr reaches about 10.3%. In

terms of mirroring response, the time gain reaches to 25%. This achieved difference

means that a large portion of mirroring gain in CmSS over OrgMr comes from the

positive effect of sensor data scaling and index segmentation to reduce mirroring

workload.

5. Conclusions

This study introduced recent IoT network and edge computing technology. It also

proposes a technique called context-mapped segment submirroring using IoT edge

that improves general mirroring techniques for improving storage performance and

safety of sensor data.

To operate on small edge gateways that lack computing resources compared to

resource-rich general computers, the volume of sensor data should be reduced and

mirrored. While normal mirroring keeps the same copy of the original sensor data,

proposed technique exploits variably scaled data and chained compression segment

by segment. To minimize sensor data transmission and mirroring storage cost, the

sensor data are kept in the column-based flash storage of IoT edge. Therefore, the

replicated sensor data can be stored efficiently, considering the limited space and

computing power of the sensor network.

There are small drawbacks in implementing the scaling and chained segment

where the data scaling and segment compression processes essentially lead to

additional system overhead, although it saves the mirroring space. The simulation

results show that the proposed mirroring scheme using chained segment submirroring

in column-based flash storage, outperforms the traditional scheme in respect of

mirroring response time and its throughput rate.

References

Ashwini, L. K., Lee, H. & Hwang, M. (2019). Implementation of IoT Application
using Geofencing Technology for Protecting Crops from Wild Animals. Asia-pacific
Journal of Convergent Research Interchange, 6(6), 13-23.

Lee, Y. G. (2020). A Study on Development of an Integrated IoT Service Platform
Using Spatial Information. Asia-pacific Journal of Convergent Research Interchange,
6(9), 73-80

Park, H. D. & Kim, S. G. (2019). A Study on Monitoring and Control Architecture
for Smart Lighting System in IoT Environment. Asia-pacific Journal of Convergent
Research Interchange, 5(3), 91-100.

Wei, Y., Fan, L., Xiaofei, H., William, G. H., Chao, L., Jie, L. & Xinyu, Y. (2017).
A Survey on the Edge Computing for the Internet of Things. IEEE Access. 6, 6900-
6919.

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

187

Gopika, P., Mario D. & Tarik, T.. (2018). Edge Computing for the Internet of Things:
A Case Study. IEEE Internet Of Things Journal, 5(2), 1275-1284.

Amir, M. R., Nguyen Gia T., Negash, B., Anzanpour, A., Azimi, I., Jiang, M. &
Liljeberg, P. (2018). Exploiting smart e-Health gateways at the edge of healthcare
Internet-of-Things: A fog computing approach. Future Generation Computer
Systems, 78(2), 641-658.

Byun, S. & Jang, S. (2016). Asymmetric Index Management Scheme for High-
capacity Compressed Databases. Journal of Korea Academia-Industrial, 17(7), 293-
300.

Ahn, S. & Kim, K. (2013). A Join Technique to Improve the Performance of Star
Schema Queries in Column-Oriented Databases. Journal of Korean Institute of
Information Scientist and Engineers, 40(3), 209-218.

Abadi, D., Samuel, R. and Madden, N.. (2008). ColumnStores vs. RowStores: How
Different Are They Really?. Proceedings of the ACM SIGMOD'08. Vancouver, BC,
Canada, 967-980.

Karrar, A. & Fadl, M. (2018). Security Protocol for Data Transmission in Cloud
Computing. International Journal of Advanced Trends in Computer Science and
Engineering, 7(1), 1-5.

Bernstein, P., Hadzilacos, V., & Goodman N. (1987) Concurrency control and
recovery in database systems, Addison-Wesley Press.

Pasojevic, M. & Berman, P. (1994). Voting as the optimal static pessimistic scheme
for managing replicated data. IEEE Trans. Parallel Distrib. Syst. 5(1), 64-73.

Lin, X., (1997). A fully distributed quorum consensus method with high fault-
tolerance and low communication overhead. Theor. Comput. Sci. 185(2), 259-275.

Marko V.. (2012). Quorum Systems: With Applications to Storage and Consensus.
Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers

Edson Tavares de Camargo, Elias P. Duarte Jr., Fernando Pedonez. (2017). A
Consensus-based Fault-Tolerant Event Logger for High Performance Applications,
Euro-Par 2017: Parallel Processing. 415-427.

Cachin, C. & Vukolic M. (July 2017). Blockchain consensus protocols in the wild”,
Technical Report. arXiv:1707.01873, IBM Research - Zurich, 1-24.

Byun S. (2019). Modeling and simulation of the redundant array of
inexpensive/independent disks storage for internet of things monitoring servers.
International Journal of Electrical Engineering Education. 58(2), 156-167.

Byun / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 175-188

188

Marco S. Reis, (2019). Multiscale and Multi-Granularity Process Analytics: A
Review. Processes 7(2), 61.

Lzo, (2020). Professional data compression,
http://www.oberhumer.com/products/lzo-professional.

Csim, (2020). Introduction to CSIM Modeling,
https://www.csim.com/overview.html

https://www.csim.com/overview.html

