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Abstract. To ensure the continued usage of the International Data Encryption 

Algorithm (IDEA), current implementations rely on multiphase encryption where 

it is combined with other algorithms such as ROTation (ROT) and Data 

Encryption Standard (DES) for maximum security strength. Multiphase 

encryption implies that there is a tendency for an increase in hardware area and a 

reduction in overall speed. However, high-speed and reduced area algorithms are 

much desired. This paper, therefore, proposes an efficient hardware 

implementation of the IDEA cipher that is based on arithmetic modulo 

multiplication—one of the main computations of the IDEA—on a novel Vedic 

multiplier architecture. The increase in efficiency of the IDEA crypto architecture 

and the reduction in resources utilization is achieved through an enhancement of 

its structural architecture to utilize a fixed set of resources for all eight (8) 

identical rounds of computation and the use of a proposed fast and lightweight 

Vedic hardware multiplier. The proposed hardware modification and resulting 

architecture are designed using the Xilinx ISE and Vivado tools. The architecture 

is synthesized using Precision Synthesis Tool (PS) and simulated using Modelsim 

SE 10.6d and ISIM simulation tools. The proposed IDEA cipher is 100% more 

efficient when designed based on the Vedic multiplier compared to existing 

designs. The hardware architecture is implemented on Spartan-6-FGG484 Field 

Programmable Gate Array (FPGA) using Verilog HDL. Verified results show that 

the proposed Vedic-based IDEA occupied 212 Slices with the Vedic multiplier 

only occupying 28 Slices out of the total 212. The proposed architecture operates 

at a maximum frequency of 253.3 MHz. 
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1. Introduction  

To aid in the transfer of information between parties such that only the intended 

recipient could access it, the branch of mathematics known as cryptography came 

into existence. An unintended recipient who may have complete knowledge of the 

mathematical algorithm that was utilized in encrypting a piece of information or 

data and the medium through which the information is transferred and not being 

able to undo the encryption process is the goal of the cryptography field of study. A 

popular secret key cryptographic algorithm back in the days of 1976 was the Data 

Encryption Standard, known as DES for short. This crypto algorithm was widely 

used in securing an array of financial and commercial applications because it had 

then proved to be resistant to the available cryptanalysis. That notwithstanding, it 

had a short key length of only 56-bits. 

In the year 1990, the IDEA algorithm which is a symmetric block cipher was 

proposed by two cryptographers X. Lai and J. L. Massey. It initially was referred to 

as the Proposed Encryption Standard (PES) by the same authors (Lai, Massey, 

1990). The name again later evolved to Improved Proposed Encryption Standard 

(IPES) (Lai et al., 1991) a year later when cryptanalysts Giham and Shamir 

provided a demonstration of differential cryptanalysis. Due to the shortness of the 

key size of the Data Encryption Standard (DES), it was estimated that its entire 56-

bit long keyspace could be searched within a space of about 22-hours (DES 

Challenge III, 1999). The IDEA was originally developed and proposed as a 

replacement to the DES algorithm (NESSIE, 2004). This secret key encryption 

block cipher algorithm encrypts or decrypts a 64-bit long plaintext or ciphertext 

respectively, using a 128-bit wide key. This algorithm is highly secured due to the 

non-usage of substitution boxes and lookup tables that are usually found in block 

ciphers. Although the IDEA cipher was broken during 2011 based on the meet-in-

the-middle attack (Biham et al., 2015) and again in the year 2012 by the narrow-

bicliques attack (Khovratovich et al., 2012), the security of the IDEA is however 

practically not threatened. The structure of the IDEA algorithm is shown in Fig. 1. 

The IDEA algorithm is based on three main computations: Multiplication modulo 

216 + 1 (⊚), Addition modulo 216 (⊞), and eXclusive-OR (⊕). Although IDEA did 

not replace the DES as intended, it was eventually incorporated into the Pretty Good 

Privacy (PGP)—an application software program that offers cryptographic privacy 

and authentication for data communication such as emails. 

The IDEA crypto algorithm operates by taking a 64-bit input block of data and 

a 128-bit key. The 64-bit long data is broken into 4 blocks each of length 16-bits. 

This is shown as D1-D4 in Fig. 1. Each of the 4 blocks is passed through 8 identical 

rounds of arithmetic and logical operations shown in Fig. 1. After the round 

operations, the resulting data which is represented as C1’ to C4’ is again passed 

through a final phase known as the output transformation round. This phase 

involves only arithmetic operations. During each of the 8.5 rounds, 6-sub keys are 
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generated in each round as can be seen represented as K1 to K6 in Fig.1. 

Vedic mathematics is a primitive technique that was utilized in the era of Vedas. 

The term ‘Vedas’ generally refers to the repository of all knowledge from which 

Vedic mathematics was reconstructed. This technique comprises a maximum of 16 

rules used for varying arithmetic calculations and can be applied to and covers 

almost every branch of Mathematics (Kent, Sharma, 2015) Urdhva Tiriyagbhyam—

vertical and crosswise—acts as the basic and most generalized rule for the quick 

and simple Vedic multiplication implementation (Sona, Somasundram, 2020). This 

general and basic rule is the vertical and crosswise technique.  

 

Fig. 1: Round and Output Transformation of an IDEA Algorithm. 

2.  Related Literature and Background Study  

Several implementations of the IDEA crypto algorithm have been demonstrated 

both in literature and in practice. In the year 2000, (Leong et al., 2000) presented a 

novel bit-serial architecture that performed the 216+1 modulo multiplication. This 

architecture meant that the data was processed in a bitwise fashion, either starting 

with the least significant bit or most significant bit and the intercommunication 

between operators was executed by way is multiplexors over a single bit wire. In 

their design the primitive operators—XOR and Addition modulo 216+1 had a 

latency of 1 cycle whereas the modulo multiplication had a latency of 35 cycles due 

to the bit-serial nature of the design. The authors also doubled the throughput of the 

bit-serial by duplicating the logic of Lyon’s serial-parallel multiplier. This allowed 

for a two-stage pipeline of the algorithm whereby two consecutive multiplication 

results. However, this approach meant that the design required several latches which 

causes a lot of timing issues and also increased the area to an extent although the 

resulting architecture ensured that the proposed design occupied a minimal 

hardware area. The deeply pipelined architecture proposed allowed the design to 

operate at a speed of 125MHz on the Xilinx VirtexXCV300-6 FPGA. 
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Not all, (Modugu et al., 2009), presented a novel multiplexor-based compressor, 

and modulo carry-lookahead adder were used as the building blocks to implement 

2n+1 multiplier design. In that research, it was asserted that CMOS implementation 

of a MUX had better performance in terms of power and delay compared to an 

XOR. Using the output of the multiplexor and its complement resulted in 

compressors with efficient performance. From this research, it was observed that the 

use of a carry-save adder improved the propagation delay of the multiplier and such 

a technique was adopted in this research. The same authors (Modugu et al., 2010), 

again presented a similar approach by using compressors to implement the 216+1 

modulo multiplier along with sparse tree-based carry adders with inverted ends. 

Furthermore, the authors (Ledda et al., 2019) proposed the combined use of the 

middle square method to generate Pseudo-Random Numbers (PRN) that are used 

during the key generation phase. During the encryption phase, the original key is 

XORed with the plaintext before it is divided into two halves of 64-bits each. After 

each parallel round of computation, the texts are combined and a cyclic left shift of 

25 bits is performed. This improves the randomness and diffusion by focusing on 

enhancement to the number of rounds, the shift operations, bit augmentation, and 

adjustment during the algorithm's operation.  

Penumetcha et al, in their research (Penumetcha et al., 2015), presented two 

design approaches—RTL looping and pipelining—of the crypto core 

implementation. The first approach which is the RTL looping technique used the 

same set of resources from the first round of computation multiple times through 

multiplexors from control logic (unit). Through this approach, the latency for each 

round is 10 cycles with an overall latency of 86 cycles. For the pipeline approach, a 

pipeline of depth 9 stages where the results from one computation are fed to the 

next independent blocks sage. This implied that a total of 9stages x 9 operations (81 

cycles) were required. The two results presented by (Penumetcha et al., 2015), had 

throughputs of 764.59 Mbps and 73.45 Mbps for the pipeline and RTL loop 

respectively. It was observed that although most of the aforementioned designs 

obtained moderate to high throughput, they were not true efficient when measured 

to the area cost. Based on this, the architecture of the proposed Vedic multiplier-

based IDEA crypto algorithm is designed to improve efficiency.   

3. Proposed Architecture  

3.1. Proposed Modification to the IDEA Cipher  

The design rationale behind the IDEA cipher is to have a blend of mathematical 

operations that work on the 16-bit sub-blocks of the input data to enhance diffusion 

which relates to how a small variation in the key will lead to a large variation in the 

ciphertext and confusion which relates to how a small change in the input message 

will result in a huge variation in the ciphertext. The IDEA crypto algorithm is 

composed of 8-rounds of computation with a final round known as the half-round 
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that performs output transformation of the resulting data is shown in Fig.1 and 

consists of two modulo multiplication and eXclusive-OR operations. Each round of 

the computation is composed of a 16-bit block bitwise XOR module, a 16-bit 

modulo 216 addition module and 216+1 modulo multiplication of 16-bit values. This 

shows that the computation generally requires a 16-bit word size or Datapath. 

 

Fig. 2: (a) Original IDEA Round (b) Proposed Resource-Sharing IDEA Round 

In the transformation of output stage also, two of the previous operations—

modulo addition and multiplication are performed. Required by the IDEA algorithm 

for its computation is the generation of partial keys. A total of 52 sets of partial keys, 

each of length 16-bit and which is derived from an initial key of length 128-bits is 

performed during encryption or decryption. As shown in Table 1, the partial keys 

are obtained by performing a 25-bit cyclic shift of the key to the right in each round. 

The partial key Ki_j where “i” represents the cyclic shift—one (1) for the initial key 

and “j” represents the 16-bit part selection of the resultant key, 1 for bits 127 to 112 

and 8 for bits locations 15 to 0. Similarly, for decryption, the partials keys that are 

utilized are the multiplicative and additive inverses of the corresponding resulting 

keys after the shift in reverse order. For this research, the main aim is to enhance the 

architecture to obtain the highest possible throughput for the IDEA cipher in an 

FPGA. To achieve this, the design was drastically repartition. With the ordinary 

implementation of the algorithm, a total of 34 modulo additions and 34 modulo 

multiplications are required for a standard 8-round and a half-round IDEA 

algorithm. Hardware multipliers are very critical in hardware design as they directly 

impact the operation speed, the area occupied and power consumption of any 

hardware system they are found. This implies that a serial implementation of the 

IDEA core would mean that the hardware area for the crypto core will be 

exponentially high—having 34 different multipliers.   

 
Table 1: IDEA Encryption-Round Subkey Generation 

Round Partial Keys Generation Key ID. 

⊚

⊚

⊚

⊚

D4

D3

D2

D1

K4

K3

K2

K1

K5

K6
C4'

C2'

C3'

C1'

(a) (b)

⊚

⊚

⊚

⊚

D4

D3

D2

D1

K3

K2

K1

K5

K6
C4_tmp

C2_tmp

C3_tmp

C1_tmpR1

R2

R3

R6

R5

R4

R8

R7

K4

cycle-1 cycle-2 cycle-3 cycle-4
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1 K1_1, K1_2, K1_3, K1_4, K1_5, K1_6 K1~ K6 

2 K1_7, K1_8, K2_1, K2_2, K2_3, K2_4 K7~K12 

3 K2_5, K2_6, K2_7, K2_8, K3_1, K3_2 K13~K18 

4 K3_3, K3_4, K3_5, K3_6, K3_7, K3_8 K19~K24 

5 K4_1, K4_2, K4_3, K4_4, K4_5, K4_6 K25~0 

6 K4_7, K4_8, K5_1, K5_2, K5_3, K5_4 K31~K36 

7 K5_5, K5_6, K5_7, K5_8, K6_1, K6_2 K37~K42 

8 K6_3, K6_4, K6_5, K6_6, K6_7, K6_8 K43~K48 

9 K7_1, K7_2, K7_3, K7_4 K49~K52 

 

The first approach to increasing the speed of the IDEA core was to perform a 

pipeline approach. Since all the subsequent seven (7) rounds possess the same order 

and structure of computation, a single module round that is repeated for all the eight 

(8) rounds was designed, registering the results from each complete round and 

feeding it back into the single module. As seen in Fig. 2(b), four registers (D-

Flipflop) of size 16-bits each were used to hold the intermediate results labeled C1’, 

C2’, C3’, C4’ of a single round computation. This approach drastically reduced the 

amount of area required for the implementation of the IDEA crypto core.  

Although the pipeline design approach in the paragraph above reduced the 

hardware area and increase the speed of execution, it, however, did not attain the 

best performance since there was the requirement for a large number of hardware 

resources. A typical implementation of the IDEA crypto-core will be integrated 

with other cores such as UART, on-chip bus, DMA, and Synthesizable processors. 

Therefore, an implementation that requires minimal resources is much desired. To 

further increase the performance, the proposed modification to the IDEA crypto 

algorithm shown in Fig. 2(b) was presented. 

The proposed modification introduced additional registers—eight of them—to 

the original algorithm shown in Fig. 2(a) by tweaking and rescheduling s single 

around into four independent sections. Each section—labeled cycle-1 to cycle-4—

was defined after careful examination and breaking down or regrouping of the 

mathematical computations into smaller blocks that allowed the crypto core 

multiple utilization of the computationally intensive and hardware constrained 

resources—a design approach that is known as resource sharing. Fig. 2(b) further 

shows that the proposed reordering was performed such that each round of 

computation will be performed in four sequential computations, each lasting for a 

period of one cycle. The Datapath of the proposed architecture was therefore 

designed such that a single addition modulo 216 (⊞) and multiplication modulo 

216+1 (⊚) computations were utilized in addition to the eight (8) temporal registers 
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and multiplexers. 

3.2. Proposed 16x16-bit Vedic Multiplier  

Aside from addition or multiplication, research has shown that multiplication is the 

next most utilized mathematical operation (Wilmshurst, 2010) that is required in 

computer arithmetic. Due to its computational complexity, several hardware 

processors do have dedicated multipliers and hence multiply instructions for that 

matter. In its simplest form, the general approach to the execution of a 

multiplication operation is the classic elementary school repeated shift and add 

method. Since hardware multipliers can dictate and determine the performance and 

throughput of the applications they are found in, the use of an efficient multiplier 

architecture is highly desired when designing any multiplier required hardware 

architecture. To again increase the performance of the IDEA crypto core, the Vedic 

multiplier was designed and implemented in the crypto core. 

As depicted in Fig. 3, a decimal computation of the numbers 123x456 is 

demonstrated based on the Vedic rules. Beginning with STEP 1, the rightmost digits 

of the multiplicand and the multiplier are vertically multiplied—3x6—which results 

in 18. Since this is the starting point, there is no carry from any previous step and so 

carry is 0. The carry and the result summed together. The rightmost digit is used as 

the first partial product and the leftmost digit—which is 1—is kept as a “carry” for 

the next step—STEP 2. In STEP 2, we move crosswise and perform computation 

where the rightmost two digits for the multiplicand—2 and 3—and that of the 

multiplier—5 and 6—are multiplied and summed in a crosswise approach. That is 

the result of (6x2) + (5x3) being added to the “carry” from STEP 1 to obtain 28. 

Similarly, the next digit of the partial product is the rightmost digit of the result—

which is 8—which is placed to the left of the previous partial product. The leftmost 

digit of the result—which is 2—becomes the “carry” for the next step. STEP 3 uses 

the next 3 right-most digits, 123 for the multiplicand and 456 for the multiplier, and 

makes a vertical and crosswise multiplication. This multiplication becomes [(1x6) + 

(5x2) + (4x3)] which is subsequently added to the “carry” from the previous step to 

get a result of 30 where the 0 is added to the leftmost side of the partial product and 

the 3 used as the “carry” for the next step. At the end of STEP 5, the final partial 

product can be built giving the final product of 56088. From Fig. 3, the algorithm 

can be generalized to any NxN decimal number. A maximum number of 2n-1 

partial products are required to generate the final sum. 

For a 3x3 digit number, a maximum total of 5 partial products represented as 

steps are required to obtain the resulting product.  Fig. 4 illustrates the same 

procedure but in the binary domain which shows the computation of 2x3 ≡ (10x11 

= 110). A 2-bit by 2-bit number multiplication requires six (6) AND gates and two 

(2) XOR gates. In designing the 16x16 bit Vedic multiplier, we implemented the 

bottom-up approach. The 2x2 bit was used in designing a 4x4-bit Vedic multiplier. 
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Fig. 3: Vedic Multiplication Steps in Decimal Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4:  Vedic Multiplication Steps in Binary Domain with Logic Schematic 
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Fig. 5: Vedic Multiplication Steps in Decimal Domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Vedic Multiplication Steps in Decimal Domain 

 

As shown in Fig. 6, a 4x4-bit Vedic multiplier was implemented using four (4) 

of the 2x2 multipliers and 2 4-bit Carry-Save Adders (CSA). The CSA architecture 

in Fig. 5 was parametrized module to aid in various bit length implementation with 

a single module. The CAS was chosen over other adders for reasons that, its carry is 

not propagated through the design but stored and added in the final stage of the 

addition. This reduces the delay or increases the speed of the multiplier architecture. 

Four (4) of the 4x4 Vedic multiplier and two (2) 8-bit adders are combined to 

design an 8x8 Vedic adder shown in Fig. 7. In like manner, Fig. 8 is an architecture 

depicting four (4) of the 8x8 Vedic multipliers and two (2) 16-bit carry-save adders 

are utilized in designing the 16x16-bit Vedic multiplier. Using a parameterized 

design approach, the initial base design of 2x2 Vedic multiplier and 4-bit carry-save 

adders were instantiated appropriately to result in any NxN Vedic multiplier.   
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Fig. 7: Block Diagram of Proposed 8x8 Vedic Multiplier 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Block Diagram of Proposed 16x16 Vedic Multiplier 

 

Fig. 9 is a timing simulation of the proposed and implemented 16x16-bit Vedic 

multiplier. The Simulation shows the 16-bit CSA with four 16-bit inputs W, X, Y, 

and Z which are the partial products obtained during the Vedic multiplication. The 

output of the addition becomes the output of the whole multiplication. Also shown 

in the simulation are the four 8x8-bit Vedic multipliers utilized in the 16x16-bit 

Vedic multiplier alongside their partial products which are fed into the CSAs. 

Two 16-bit unsigned random numbers were generated in the testbench. These two 

numbers were passed through the Proposed Vedic multiplier. Also, the generated 

random numbers are multiplied using the multiplication operator in Verilog. The 

two results are compared to check equality. Simulating all the possible 

combinations of multiplicand—a and multiplier—b between the range 16’h0001 

and 16’hFFFF for both values resulted in a 100% accuracy of the resulting 

products. 
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Fig. 9: Timing Simulation of the Proposed 16x16 Vedic Multiplier 

4. Experimental Hardware Test Results and Discussion 

The proposed hardware-friendly approach of the IDEA algorithm was implemented 

with the proposed modifications in the previous section. The proposed modified 

architecture had three main modules namely the IDEA_Controller, the 

Key_Scheduler, and the IDEA_Round_Datapath modules. Also, four registers of 

size 16-bit and labeled REG_D1, REG_D2, REG_D3, and REG_D4 and four 2-to-

1 multiplexers were used to obtain the pipeline architecture that allowed the 

resource sharing architecture to be realized. The IDEA_Round_Datapath is made 

up of eight (8) 16-bit wide registers that allowed a single modular multiplication 

based on the Vedic multiplier, a single modular addition, five eXclusive-OR 

computations, and four (4) 4-to-1 multiplexers. The Key_Scheduler generates the 

keys for each round. It takes as input the original key and the round number. As 

seen in Fig. 10, six (6) subkeys of size 16-bits each, labeled K1 to K6 are generated 

for each round. The final submodule that was designed was the IDEA_Controller. 

This module generates the round count, the start, mux select signal to control all the 

other modules in the proposed crypto core. A single round, therefore, requires a 

minimum of 5 clock cycles to complete one round—that is four (4) for the round 

and one for the temporal data turn around. For the eight required rounds, a total of 

40 clock cycles is required.  Additionally, an extra two (2) clock cycle is required 

for the final half-round which is for the output transformation, resulting in a total of 

42 clock cycles for this architecture. It must be noted that a minimum of about 34 

clock cycles can be utilized in the completion of an eight and a half-round cipher 

core.  After the computation, the cipher data is output through the registers labeled 

ED1, ED2, ED3, and ED4. The proposed architecture was implemented using 

Verilog HDL on Xilinx ISE version 14.7. The design was synthesized using Mentor 

Graphics’ Precision RTL synthesis (PS) tool and simulated with the ModelSim 

Standard Edition version 10.6d. Fig. 11 shows the simulation of the proposed IDEA 

core based on the Vedic Multiplier for the modulo multiplication. Table 2 lists 

sample test vectors for the IDEA core. These vectors include the input data, the 

encryption key, and the corresponding or resulting cipher data. The values from the 
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data and key columns of the first row in Table 2 are set as input to the simulation 

shown in Fig. 11.  

The convenience of calculations, the anonymous nature of the participants, and the 

absence of a state monopoly on the issue made the cryptocurrency a rather 

expensive asset in the property of the owner. Unlike a generally accepted e-wallet, 

which requires an actual transfer of money to a certain currency (for example, 

through a bank), cryptocurrency is focused on the vast Internet network and is in no 

way connected to one of the existing conventional currencies. 

 
Table 2: Sample Test Vectors from IDEA Core 

Input Data Key Cipher 

64’h0000000000000000 128’h1F2F3F0F3000195702552020000A1988 64’h230CF227D574B5D2 

64’h0000000000000000 128’h1F2F3F0F3000195702552020000A1984 64’hC7E98EC16C93581 

64'h0123456789ABCDEF 128’h0F2F3F0F3000195702552020000A1988 64’hB30512ACDD5EBAC7 

64'hDEADBEEFFEEDDEED 128’h0000000000000000000000000000000001 64’h576E7FC507C9250C 

 

Throughput = [(Frequency x Number of bits)] ⁄ [(Number of Clock Cycles)]       (1) 

 

Efficiency = [Throughput (Mbps)] ⁄ [Area (Slices)]                                                (2) 

 

The design was tested on the COMBO-II DLD board from Hanback Electronics 

which is fitted with the XC6SLX45 Spartan-6 FPGA chip. The board was operated 

at a clock frequency of 50MHz.  The performance of the proposed design was 

measured and compared to that of some existing designs. Equations (1) and (2) 

were used in computing and determining the throughput and efficiency of the 

proposed design. Processing 64-bits of data during a clock cycle of 42 will yield a 

throughput of 385.5 megabits per second. Although the throughput is reduced 

compared to the architectures in (Ledda et al., 2019) and (Penumetcha et al., 2015), 

the overall efficiency is better compared to the design in (Ledda et al., 2019) 

because the area occupied by the proposed design is smaller and is associated with 

the Vedic modular multiplier designed. This makes the proposed design about 

800% more efficient than (Ledda et al., 2019) and over 180% more efficient than 

the efficient design of (Penumetcha et al., 2015). Additionally, the 16x16-bit Vedic 

multiplier occupied only 28 Slices out of the 212 for the entire encryption core. 

Table 3 summarizes the hardware results and performance in comparison with other 

existing designs. 

5. Conclusion 

This paper proposes a modification of the IDEA algorithm for its usage in hardware. 

The proposed modification results in a reduction in the area required to implement 

the IDEA algorithm.  
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Fig. 10: Block Diagram of the Proposed Resource-Sharing IDEA Architecture 

 

Fig. 11: Timing Simulation of the Proposed Efficient IDEA Algorithm 
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where a portion of the algorithm is executed in each cycle and the temporal results 

are held in registers. This approach allowed the use of only 8 registers which 

accounted for the reduced hardware area. 

The design also operates at 253.3 MHz clock frequency and had an efficiency 

or performance of 1.81 making the proposed design 800% more efficient compared 

to (Ledda et al., 2019) and 180% more efficient than the pipeline implementation of 

(Penumetcha et al., 2015). Although the IDEA algorithm is not widely used as other 

algorithms such as AES, it is still part of the Pretty Good Privacy email encrypting 

protocol (Open PGP, 2016). Having gains and improvement in efficiency, the 

proposed architecture enables an efficient multiphase cryptosystem design. Not all, 

the proposed architecture also serves as an excellent crypto algorithm for teaching 

and learning. In the next stage of this research, the decryption core will be 

implemented to create a complete and unified IDEA crypto core. This is necessary 

because the decryption process requires multiplicative inverse operations which are 

computationally intensive to implement on hardware. 
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