
143

Multiplier-based International Data Encryption

Crypto-Core for Multiphase Encryption Design

Guard Kanda, Kwangki Ryoo

 Hanbat National University, Daejeon, South Korea

kkryoo@gmail.com

Abstract. To ensure the continued usage of the International Data Encryption

Algorithm (IDEA), current implementations rely on multiphase encryption where

it is combined with other algorithms such as ROTation (ROT) and Data

Encryption Standard (DES) for maximum security strength. Multiphase

encryption implies that there is a tendency for an increase in hardware area and a

reduction in overall speed. However, high-speed and reduced area algorithms are

much desired. This paper, therefore, proposes an efficient hardware

implementation of the IDEA cipher that is based on arithmetic modulo

multiplication—one of the main computations of the IDEA—on a novel Vedic

multiplier architecture. The increase in efficiency of the IDEA crypto architecture

and the reduction in resources utilization is achieved through an enhancement of

its structural architecture to utilize a fixed set of resources for all eight (8)

identical rounds of computation and the use of a proposed fast and lightweight

Vedic hardware multiplier. The proposed hardware modification and resulting

architecture are designed using the Xilinx ISE and Vivado tools. The architecture

is synthesized using Precision Synthesis Tool (PS) and simulated using Modelsim

SE 10.6d and ISIM simulation tools. The proposed IDEA cipher is 100% more

efficient when designed based on the Vedic multiplier compared to existing

designs. The hardware architecture is implemented on Spartan-6-FGG484 Field

Programmable Gate Array (FPGA) using Verilog HDL. Verified results show that

the proposed Vedic-based IDEA occupied 212 Slices with the Vedic multiplier

only occupying 28 Slices out of the total 212. The proposed architecture operates

at a maximum frequency of 253.3 MHz.

Keywords: IDEA, Vedic Mathematics, Xilinx, FPGA, Hardware Multiplier.

ISSN 1816-6075 (Print), 1818-0523 (Online)

Journal of System and Management Sciences

Vol.12 (2022) No.1, pp.143-157

DOI:10.33168/JSMS.2022.0111

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

144

1. Introduction

To aid in the transfer of information between parties such that only the intended

recipient could access it, the branch of mathematics known as cryptography came

into existence. An unintended recipient who may have complete knowledge of the

mathematical algorithm that was utilized in encrypting a piece of information or

data and the medium through which the information is transferred and not being

able to undo the encryption process is the goal of the cryptography field of study. A

popular secret key cryptographic algorithm back in the days of 1976 was the Data

Encryption Standard, known as DES for short. This crypto algorithm was widely

used in securing an array of financial and commercial applications because it had

then proved to be resistant to the available cryptanalysis. That notwithstanding, it

had a short key length of only 56-bits.

In the year 1990, the IDEA algorithm which is a symmetric block cipher was

proposed by two cryptographers X. Lai and J. L. Massey. It initially was referred to

as the Proposed Encryption Standard (PES) by the same authors (Lai, Massey,

1990). The name again later evolved to Improved Proposed Encryption Standard

(IPES) (Lai et al., 1991) a year later when cryptanalysts Giham and Shamir

provided a demonstration of differential cryptanalysis. Due to the shortness of the

key size of the Data Encryption Standard (DES), it was estimated that its entire 56-

bit long keyspace could be searched within a space of about 22-hours (DES

Challenge III, 1999). The IDEA was originally developed and proposed as a

replacement to the DES algorithm (NESSIE, 2004). This secret key encryption

block cipher algorithm encrypts or decrypts a 64-bit long plaintext or ciphertext

respectively, using a 128-bit wide key. This algorithm is highly secured due to the

non-usage of substitution boxes and lookup tables that are usually found in block

ciphers. Although the IDEA cipher was broken during 2011 based on the meet-in-

the-middle attack (Biham et al., 2015) and again in the year 2012 by the narrow-

bicliques attack (Khovratovich et al., 2012), the security of the IDEA is however

practically not threatened. The structure of the IDEA algorithm is shown in Fig. 1.

The IDEA algorithm is based on three main computations: Multiplication modulo

216 + 1 (⊚), Addition modulo 216 (⊞), and eXclusive-OR (⊕). Although IDEA did

not replace the DES as intended, it was eventually incorporated into the Pretty Good

Privacy (PGP)—an application software program that offers cryptographic privacy

and authentication for data communication such as emails.

The IDEA crypto algorithm operates by taking a 64-bit input block of data and

a 128-bit key. The 64-bit long data is broken into 4 blocks each of length 16-bits.

This is shown as D1-D4 in Fig. 1. Each of the 4 blocks is passed through 8 identical

rounds of arithmetic and logical operations shown in Fig. 1. After the round

operations, the resulting data which is represented as C1’ to C4’ is again passed

through a final phase known as the output transformation round. This phase

involves only arithmetic operations. During each of the 8.5 rounds, 6-sub keys are

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

145

generated in each round as can be seen represented as K1 to K6 in Fig.1.

Vedic mathematics is a primitive technique that was utilized in the era of Vedas.

The term ‘Vedas’ generally refers to the repository of all knowledge from which

Vedic mathematics was reconstructed. This technique comprises a maximum of 16

rules used for varying arithmetic calculations and can be applied to and covers

almost every branch of Mathematics (Kent, Sharma, 2015) Urdhva Tiriyagbhyam—

vertical and crosswise—acts as the basic and most generalized rule for the quick

and simple Vedic multiplication implementation (Sona, Somasundram, 2020). This

general and basic rule is the vertical and crosswise technique.

Fig. 1: Round and Output Transformation of an IDEA Algorithm.

2. Related Literature and Background Study

Several implementations of the IDEA crypto algorithm have been demonstrated

both in literature and in practice. In the year 2000, (Leong et al., 2000) presented a

novel bit-serial architecture that performed the 216+1 modulo multiplication. This

architecture meant that the data was processed in a bitwise fashion, either starting

with the least significant bit or most significant bit and the intercommunication

between operators was executed by way is multiplexors over a single bit wire. In

their design the primitive operators—XOR and Addition modulo 216+1 had a

latency of 1 cycle whereas the modulo multiplication had a latency of 35 cycles due

to the bit-serial nature of the design. The authors also doubled the throughput of the

bit-serial by duplicating the logic of Lyon’s serial-parallel multiplier. This allowed

for a two-stage pipeline of the algorithm whereby two consecutive multiplication

results. However, this approach meant that the design required several latches which

causes a lot of timing issues and also increased the area to an extent although the

resulting architecture ensured that the proposed design occupied a minimal

hardware area. The deeply pipelined architecture proposed allowed the design to

operate at a speed of 125MHz on the Xilinx VirtexXCV300-6 FPGA.

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

146

Not all, (Modugu et al., 2009), presented a novel multiplexor-based compressor,

and modulo carry-lookahead adder were used as the building blocks to implement

2n+1 multiplier design. In that research, it was asserted that CMOS implementation

of a MUX had better performance in terms of power and delay compared to an

XOR. Using the output of the multiplexor and its complement resulted in

compressors with efficient performance. From this research, it was observed that the

use of a carry-save adder improved the propagation delay of the multiplier and such

a technique was adopted in this research. The same authors (Modugu et al., 2010),

again presented a similar approach by using compressors to implement the 216+1

modulo multiplier along with sparse tree-based carry adders with inverted ends.

Furthermore, the authors (Ledda et al., 2019) proposed the combined use of the

middle square method to generate Pseudo-Random Numbers (PRN) that are used

during the key generation phase. During the encryption phase, the original key is

XORed with the plaintext before it is divided into two halves of 64-bits each. After

each parallel round of computation, the texts are combined and a cyclic left shift of

25 bits is performed. This improves the randomness and diffusion by focusing on

enhancement to the number of rounds, the shift operations, bit augmentation, and

adjustment during the algorithm's operation.

Penumetcha et al, in their research (Penumetcha et al., 2015), presented two

design approaches—RTL looping and pipelining—of the crypto core

implementation. The first approach which is the RTL looping technique used the

same set of resources from the first round of computation multiple times through

multiplexors from control logic (unit). Through this approach, the latency for each

round is 10 cycles with an overall latency of 86 cycles. For the pipeline approach, a

pipeline of depth 9 stages where the results from one computation are fed to the

next independent blocks sage. This implied that a total of 9stages x 9 operations (81

cycles) were required. The two results presented by (Penumetcha et al., 2015), had

throughputs of 764.59 Mbps and 73.45 Mbps for the pipeline and RTL loop

respectively. It was observed that although most of the aforementioned designs

obtained moderate to high throughput, they were not true efficient when measured

to the area cost. Based on this, the architecture of the proposed Vedic multiplier-

based IDEA crypto algorithm is designed to improve efficiency.

3. Proposed Architecture

3.1. Proposed Modification to the IDEA Cipher

The design rationale behind the IDEA cipher is to have a blend of mathematical

operations that work on the 16-bit sub-blocks of the input data to enhance diffusion

which relates to how a small variation in the key will lead to a large variation in the

ciphertext and confusion which relates to how a small change in the input message

will result in a huge variation in the ciphertext. The IDEA crypto algorithm is

composed of 8-rounds of computation with a final round known as the half-round

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

147

that performs output transformation of the resulting data is shown in Fig.1 and

consists of two modulo multiplication and eXclusive-OR operations. Each round of

the computation is composed of a 16-bit block bitwise XOR module, a 16-bit

modulo 216 addition module and 216+1 modulo multiplication of 16-bit values. This

shows that the computation generally requires a 16-bit word size or Datapath.

Fig. 2: (a) Original IDEA Round (b) Proposed Resource-Sharing IDEA Round

In the transformation of output stage also, two of the previous operations—

modulo addition and multiplication are performed. Required by the IDEA algorithm

for its computation is the generation of partial keys. A total of 52 sets of partial keys,

each of length 16-bit and which is derived from an initial key of length 128-bits is

performed during encryption or decryption. As shown in Table 1, the partial keys

are obtained by performing a 25-bit cyclic shift of the key to the right in each round.

The partial key Ki_j where “i” represents the cyclic shift—one (1) for the initial key

and “j” represents the 16-bit part selection of the resultant key, 1 for bits 127 to 112

and 8 for bits locations 15 to 0. Similarly, for decryption, the partials keys that are

utilized are the multiplicative and additive inverses of the corresponding resulting

keys after the shift in reverse order. For this research, the main aim is to enhance the

architecture to obtain the highest possible throughput for the IDEA cipher in an

FPGA. To achieve this, the design was drastically repartition. With the ordinary

implementation of the algorithm, a total of 34 modulo additions and 34 modulo

multiplications are required for a standard 8-round and a half-round IDEA

algorithm. Hardware multipliers are very critical in hardware design as they directly

impact the operation speed, the area occupied and power consumption of any

hardware system they are found. This implies that a serial implementation of the

IDEA core would mean that the hardware area for the crypto core will be

exponentially high—having 34 different multipliers.

Table 1: IDEA Encryption-Round Subkey Generation

Round Partial Keys Generation Key ID.

⊚

⊚

⊚

⊚

D4

D3

D2

D1

K4

K3

K2

K1

K5

K6
C4'

C2'

C3'

C1'

(a) (b)

⊚

⊚

⊚

⊚

D4

D3

D2

D1

K3

K2

K1

K5

K6
C4_tmp

C2_tmp

C3_tmp

C1_tmpR1

R2

R3

R6

R5

R4

R8

R7

K4

cycle-1 cycle-2 cycle-3 cycle-4

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

148

1 K1_1, K1_2, K1_3, K1_4, K1_5, K1_6 K1~ K6

2 K1_7, K1_8, K2_1, K2_2, K2_3, K2_4 K7~K12

3 K2_5, K2_6, K2_7, K2_8, K3_1, K3_2 K13~K18

4 K3_3, K3_4, K3_5, K3_6, K3_7, K3_8 K19~K24

5 K4_1, K4_2, K4_3, K4_4, K4_5, K4_6 K25~0

6 K4_7, K4_8, K5_1, K5_2, K5_3, K5_4 K31~K36

7 K5_5, K5_6, K5_7, K5_8, K6_1, K6_2 K37~K42

8 K6_3, K6_4, K6_5, K6_6, K6_7, K6_8 K43~K48

9 K7_1, K7_2, K7_3, K7_4 K49~K52

The first approach to increasing the speed of the IDEA core was to perform a

pipeline approach. Since all the subsequent seven (7) rounds possess the same order

and structure of computation, a single module round that is repeated for all the eight

(8) rounds was designed, registering the results from each complete round and

feeding it back into the single module. As seen in Fig. 2(b), four registers (D-

Flipflop) of size 16-bits each were used to hold the intermediate results labeled C1’,

C2’, C3’, C4’ of a single round computation. This approach drastically reduced the

amount of area required for the implementation of the IDEA crypto core.

Although the pipeline design approach in the paragraph above reduced the

hardware area and increase the speed of execution, it, however, did not attain the

best performance since there was the requirement for a large number of hardware

resources. A typical implementation of the IDEA crypto-core will be integrated

with other cores such as UART, on-chip bus, DMA, and Synthesizable processors.

Therefore, an implementation that requires minimal resources is much desired. To

further increase the performance, the proposed modification to the IDEA crypto

algorithm shown in Fig. 2(b) was presented.

The proposed modification introduced additional registers—eight of them—to

the original algorithm shown in Fig. 2(a) by tweaking and rescheduling s single

around into four independent sections. Each section—labeled cycle-1 to cycle-4—

was defined after careful examination and breaking down or regrouping of the

mathematical computations into smaller blocks that allowed the crypto core

multiple utilization of the computationally intensive and hardware constrained

resources—a design approach that is known as resource sharing. Fig. 2(b) further

shows that the proposed reordering was performed such that each round of

computation will be performed in four sequential computations, each lasting for a

period of one cycle. The Datapath of the proposed architecture was therefore

designed such that a single addition modulo 216 (⊞) and multiplication modulo

216+1 (⊚) computations were utilized in addition to the eight (8) temporal registers

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

149

and multiplexers.

3.2. Proposed 16x16-bit Vedic Multiplier

Aside from addition or multiplication, research has shown that multiplication is the

next most utilized mathematical operation (Wilmshurst, 2010) that is required in

computer arithmetic. Due to its computational complexity, several hardware

processors do have dedicated multipliers and hence multiply instructions for that

matter. In its simplest form, the general approach to the execution of a

multiplication operation is the classic elementary school repeated shift and add

method. Since hardware multipliers can dictate and determine the performance and

throughput of the applications they are found in, the use of an efficient multiplier

architecture is highly desired when designing any multiplier required hardware

architecture. To again increase the performance of the IDEA crypto core, the Vedic

multiplier was designed and implemented in the crypto core.

As depicted in Fig. 3, a decimal computation of the numbers 123x456 is

demonstrated based on the Vedic rules. Beginning with STEP 1, the rightmost digits

of the multiplicand and the multiplier are vertically multiplied—3x6—which results

in 18. Since this is the starting point, there is no carry from any previous step and so

carry is 0. The carry and the result summed together. The rightmost digit is used as

the first partial product and the leftmost digit—which is 1—is kept as a “carry” for

the next step—STEP 2. In STEP 2, we move crosswise and perform computation

where the rightmost two digits for the multiplicand—2 and 3—and that of the

multiplier—5 and 6—are multiplied and summed in a crosswise approach. That is

the result of (6x2) + (5x3) being added to the “carry” from STEP 1 to obtain 28.

Similarly, the next digit of the partial product is the rightmost digit of the result—

which is 8—which is placed to the left of the previous partial product. The leftmost

digit of the result—which is 2—becomes the “carry” for the next step. STEP 3 uses

the next 3 right-most digits, 123 for the multiplicand and 456 for the multiplier, and

makes a vertical and crosswise multiplication. This multiplication becomes [(1x6) +

(5x2) + (4x3)] which is subsequently added to the “carry” from the previous step to

get a result of 30 where the 0 is added to the leftmost side of the partial product and

the 3 used as the “carry” for the next step. At the end of STEP 5, the final partial

product can be built giving the final product of 56088. From Fig. 3, the algorithm

can be generalized to any NxN decimal number. A maximum number of 2n-1

partial products are required to generate the final sum.

For a 3x3 digit number, a maximum total of 5 partial products represented as

steps are required to obtain the resulting product. Fig. 4 illustrates the same

procedure but in the binary domain which shows the computation of 2x3 ≡ (10x11

= 110). A 2-bit by 2-bit number multiplication requires six (6) AND gates and two

(2) XOR gates. In designing the 16x16 bit Vedic multiplier, we implemented the

bottom-up approach. The 2x2 bit was used in designing a 4x4-bit Vedic multiplier.

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

150

Fig. 3: Vedic Multiplication Steps in Decimal Domain

Fig. 4: Vedic Multiplication Steps in Binary Domain with Logic Schematic

STEP 1
1 2 3

4 5 6

Result = 1 8

Pre Carry = 0
1 8

8

Carry

STEP 2
1 2 3

4 5 6

Result = 2 7

Pre Carry = 1
2 8

8

Carry

8

STEP 3

1 2 3

4 5 6

Result = 2 8

Pre Carry = 2
3 0

8

Carry

80

STEP 4

1 2 3

4 5 6

Result = 1 3

Pre Carry = 3
1 6

8

Carry

806

STEP 5
1 2 3

4 5 6

Result = 0 4

Pre Carry = 1
0 5

8

Carry

8065

12310 X 45610 = 5608810 Decimal Computation

STEP 1
1 0

1 1

0

0

STEP 2
1 0

1 1

10

1

1
1

STEP 3
1 0

1 1

1

0

11 0

STEP 1

A1 A0

B1 B0

0

0

STEP 2

A1 A0

B1 B0

10

1

1
1

STEP 3

A1 A0

B1 B0

1

0

Q0Q1Q2Q3

A0
B0

A0
B1

A1
B0

A1
B1

Q0

Q1

Q2

Q3

102 X 112 = 1102 Binary Computation

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

151

Fig. 5: Vedic Multiplication Steps in Decimal Domain

Fig. 6: Vedic Multiplication Steps in Decimal Domain

As shown in Fig. 6, a 4x4-bit Vedic multiplier was implemented using four (4)

of the 2x2 multipliers and 2 4-bit Carry-Save Adders (CSA). The CSA architecture

in Fig. 5 was parametrized module to aid in various bit length implementation with

a single module. The CAS was chosen over other adders for reasons that, its carry is

not propagated through the design but stored and added in the final stage of the

addition. This reduces the delay or increases the speed of the multiplier architecture.

Four (4) of the 4x4 Vedic multiplier and two (2) 8-bit adders are combined to

design an 8x8 Vedic adder shown in Fig. 7. In like manner, Fig. 8 is an architecture

depicting four (4) of the 8x8 Vedic multipliers and two (2) 16-bit carry-save adders

are utilized in designing the 16x16-bit Vedic multiplier. Using a parameterized

design approach, the initial base design of 2x2 Vedic multiplier and 4-bit carry-save

adders were instantiated appropriately to result in any NxN Vedic multiplier.

FAFAFAFA

A0A1A2A3 B0C0B1C1B2C2B3C3

Carry Save Adder
X0Y0X1Y1X2Y2X3Y3

Sum0Sum1Sum2Sum3Sum4

1'b0

Cout

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

152

Fig. 7: Block Diagram of Proposed 8x8 Vedic Multiplier

Fig. 8: Block Diagram of Proposed 16x16 Vedic Multiplier

Fig. 9 is a timing simulation of the proposed and implemented 16x16-bit Vedic

multiplier. The Simulation shows the 16-bit CSA with four 16-bit inputs W, X, Y,

and Z which are the partial products obtained during the Vedic multiplication. The

output of the addition becomes the output of the whole multiplication. Also shown

in the simulation are the four 8x8-bit Vedic multipliers utilized in the 16x16-bit

Vedic multiplier alongside their partial products which are fed into the CSAs.

Two 16-bit unsigned random numbers were generated in the testbench. These two

numbers were passed through the Proposed Vedic multiplier. Also, the generated

random numbers are multiplied using the multiplication operator in Verilog. The

two results are compared to check equality. Simulating all the possible

combinations of multiplicand—a and multiplier—b between the range 16’h0001

and 16’hFFFF for both values resulted in a 100% accuracy of the resulting

products.

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

153

Fig. 9: Timing Simulation of the Proposed 16x16 Vedic Multiplier

4. Experimental Hardware Test Results and Discussion

The proposed hardware-friendly approach of the IDEA algorithm was implemented

with the proposed modifications in the previous section. The proposed modified

architecture had three main modules namely the IDEA_Controller, the

Key_Scheduler, and the IDEA_Round_Datapath modules. Also, four registers of

size 16-bit and labeled REG_D1, REG_D2, REG_D3, and REG_D4 and four 2-to-

1 multiplexers were used to obtain the pipeline architecture that allowed the

resource sharing architecture to be realized. The IDEA_Round_Datapath is made

up of eight (8) 16-bit wide registers that allowed a single modular multiplication

based on the Vedic multiplier, a single modular addition, five eXclusive-OR

computations, and four (4) 4-to-1 multiplexers. The Key_Scheduler generates the

keys for each round. It takes as input the original key and the round number. As

seen in Fig. 10, six (6) subkeys of size 16-bits each, labeled K1 to K6 are generated

for each round. The final submodule that was designed was the IDEA_Controller.

This module generates the round count, the start, mux select signal to control all the

other modules in the proposed crypto core. A single round, therefore, requires a

minimum of 5 clock cycles to complete one round—that is four (4) for the round

and one for the temporal data turn around. For the eight required rounds, a total of

40 clock cycles is required. Additionally, an extra two (2) clock cycle is required

for the final half-round which is for the output transformation, resulting in a total of

42 clock cycles for this architecture. It must be noted that a minimum of about 34

clock cycles can be utilized in the completion of an eight and a half-round cipher

core. After the computation, the cipher data is output through the registers labeled

ED1, ED2, ED3, and ED4. The proposed architecture was implemented using

Verilog HDL on Xilinx ISE version 14.7. The design was synthesized using Mentor

Graphics’ Precision RTL synthesis (PS) tool and simulated with the ModelSim

Standard Edition version 10.6d. Fig. 11 shows the simulation of the proposed IDEA

core based on the Vedic Multiplier for the modulo multiplication. Table 2 lists

sample test vectors for the IDEA core. These vectors include the input data, the

encryption key, and the corresponding or resulting cipher data. The values from the

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

154

data and key columns of the first row in Table 2 are set as input to the simulation

shown in Fig. 11.

The convenience of calculations, the anonymous nature of the participants, and the

absence of a state monopoly on the issue made the cryptocurrency a rather

expensive asset in the property of the owner. Unlike a generally accepted e-wallet,

which requires an actual transfer of money to a certain currency (for example,

through a bank), cryptocurrency is focused on the vast Internet network and is in no

way connected to one of the existing conventional currencies.

Table 2: Sample Test Vectors from IDEA Core

Input Data Key Cipher

64’h0000000000000000 128’h1F2F3F0F3000195702552020000A1988 64’h230CF227D574B5D2

64’h0000000000000000 128’h1F2F3F0F3000195702552020000A1984 64’hC7E98EC16C93581

64'h0123456789ABCDEF 128’h0F2F3F0F3000195702552020000A1988 64’hB30512ACDD5EBAC7

64'hDEADBEEFFEEDDEED 128’h0000000000000000000000000000000001 64’h576E7FC507C9250C

Throughput = [(Frequency x Number of bits)] ⁄ [(Number of Clock Cycles)] (1)

Efficiency = [Throughput (Mbps)] ⁄ [Area (Slices)] (2)

The design was tested on the COMBO-II DLD board from Hanback Electronics

which is fitted with the XC6SLX45 Spartan-6 FPGA chip. The board was operated

at a clock frequency of 50MHz. The performance of the proposed design was

measured and compared to that of some existing designs. Equations (1) and (2)

were used in computing and determining the throughput and efficiency of the

proposed design. Processing 64-bits of data during a clock cycle of 42 will yield a

throughput of 385.5 megabits per second. Although the throughput is reduced

compared to the architectures in (Ledda et al., 2019) and (Penumetcha et al., 2015),

the overall efficiency is better compared to the design in (Ledda et al., 2019)

because the area occupied by the proposed design is smaller and is associated with

the Vedic modular multiplier designed. This makes the proposed design about

800% more efficient than (Ledda et al., 2019) and over 180% more efficient than

the efficient design of (Penumetcha et al., 2015). Additionally, the 16x16-bit Vedic

multiplier occupied only 28 Slices out of the 212 for the entire encryption core.

Table 3 summarizes the hardware results and performance in comparison with other

existing designs.

5. Conclusion

This paper proposes a modification of the IDEA algorithm for its usage in hardware.

The proposed modification results in a reduction in the area required to implement

the IDEA algorithm.

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

155

Fig. 10: Block Diagram of the Proposed Resource-Sharing IDEA Architecture

Fig. 11: Timing Simulation of the Proposed Efficient IDEA Algorithm

This is attained by carefully sectioning the algorithm into four main cycles

IDEA_
Controller

IDEA_Round_Datapath

Key_Scheduler

REG_D1

REG_D2

REG_D3

REG_D4

128-bit Key

D2 D1D3D4

D2 D1D3D4

K1 K2 K3 K4 K5 K6

C1_tmp

C3_tmp

C2_tmp

C4_tmp

ED1

ED2

ED3

ED4

start

start

r_result

o_trnsfm

d_sel

round

resetb

clk

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

156

where a portion of the algorithm is executed in each cycle and the temporal results

are held in registers. This approach allowed the use of only 8 registers which

accounted for the reduced hardware area.

The design also operates at 253.3 MHz clock frequency and had an efficiency

or performance of 1.81 making the proposed design 800% more efficient compared

to (Ledda et al., 2019) and 180% more efficient than the pipeline implementation of

(Penumetcha et al., 2015). Although the IDEA algorithm is not widely used as other

algorithms such as AES, it is still part of the Pretty Good Privacy email encrypting

protocol (Open PGP, 2016). Having gains and improvement in efficiency, the

proposed architecture enables an efficient multiphase cryptosystem design. Not all,

the proposed architecture also serves as an excellent crypto algorithm for teaching

and learning. In the next stage of this research, the decryption core will be

implemented to create a complete and unified IDEA crypto core. This is necessary

because the decryption process requires multiplicative inverse operations which are

computationally intensive to implement on hardware.

References

Barbarosoglu, G. & Pinhas, D. (1995). Capital rationing in the public sector using
the analytic hierarchy process. The Engineering Economist, 40, 315-341.

Lai, X. Massay, J. (1999). A proposal for a new block encryption
standard. Advances in Cryptology, Proceedings of Eurocrypt, 389-404.

Lai, X. Massay, J. Murphy, S. (1991). Markov ciphers and differential cryptanalysis.
In Advances in Cryptology, Proceedings of Eurocrypt, 17-38.

DES Challenge III broken in record 22 hours (1999). WEB: http://cs-
exhibitions.uni-klu.ac.at/index.php?id=263.

NESSIE Submissions (2004). Encryption-the IDEA Algorithm. WEB:
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions.html

Biham, E., Dunkelman, O., Keller, N., Shamir, A. (2015). New Attacks on IDEA
with at Least 6 Rounds. Journal of Cryptology, 28(2), 209-239.

Khovratovich, D., Leurent, G., Rechberger, C. (2012). Narrow-Bicliques:
Cryptanalysis of Full IDEA. Advances in Cryptology – EUROCRYPT 2012,
Lecture Notes in Computer Science, 7237, 392-410.

Kant, A., Sharma, S. (2015). Application of Vedic multiplier designs – A review.
4th International Conference on Reliability, Infocom Technologies and
Optimizations (ICRITO), 1-6.

Sona, M.K., Somasundram, V. (2020). Vedic Multiplier Implementation in VLSI.
Materials Today: Proceedings, 24(4), 2219-2230

Kanda and Ryoo / Journal of System and Management Sciences Vol. 12 (2022) No. 1, pp. 143-157

157

Abdullah, D., Rahim, R., Andysah, P.U.S., Ananda, FU., Zahratul, F., Malahayati,
M., Harun, H. (2018) Super-Encryption Cryptography with IDEA and WAKE
Algorithm. Journal of Physics, 1019, 208-211.

Hassan, M.S., Hamza, G.G. (2021). Real-time FPGA implementation of
concatenated AES and IDEA cryptography system. Indonesian Journal of
Electrical Engineering and Computer Science, 22(1), 71-82

Leong, M.P., Cheung, O.Y.H., Tsoi, K.H., Leong, P.H.W. (2000). A bit-serial
implementation of the international data encryption algorithm IDEA, Proceedings
2000 IEEE Symposium on Field-Programmable Custom Computing Machines, 122-
131.

Modugu, R., Park, N., Choi, M. (2009). A Fast Low-Power Modulo 2n+1 Multiplier
Design. IEEE International Instrumentation and Measurement Technology
Conference, 951-956.

Modugu, R., Kim, Y., Choi, M. (2010). Design and performance measurement of
efficient IDEA (International Data Encryption Algorithm) crypto-hardware using
novel modular arithmetic components. 2010 IEEE Instrumentation & Measurement
Technology Conference Proceedings, 1222-1227.

Ledda, M.K.C., Gerardo, B.D., Hernandez, A. A. (2019). Enhancing IDEA
Algorithm using Circular Shift and Middle Square Method. 17th International
Conference on ICT and Knowledge Engineering (ICT&KE), 1-6.

 Penumetcha, D.V., Jiafeng, X., Saiyu, R. (2015). FPGA design space exploration
of IDEA cryptography IP core. IEEE 58th International Midwest Symposium on
Circuits and Systems (MWSCAS), 1-4.

Wilmshurst, T. (2010). CHAPTER 11 - Data acquisition and manipulation.
Designing Embedded Systems with PIC Microcontrollers (Second Edition),
Newness, 339-369.

Open Pretty Good Privacy. (2016). WEB: https://www.openpgp.org/about/history/

