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Abstract. One of the most promising approaches to meet the demand for radio 

spectrum is cognitive radio, which enables secondary users to capture the 

spectrum opportunistically to take advantage of spectrum gaps caused by 

underuse of frequency spectrum. Secondary users have to sense each band 

frequently to minimize interference with prime users, which results in a very high 

computational complexity and hardware cost. Compressive sensing has been 

suggested as one of the ways to quicken scanning. In this paper, the compressive 

spectrum sensing recovery process optimization challenge can be resolved using 

different artificial intelligence algorithms such as a Gravitational Search 

Algorithm and Hybrid Particle Swarm Optimization Gravitational Search 

Algorithm. One of the newest meta-heuristic optimization algorithms is the Grey 

Wolf Optimizer, which can solve the optimization problem of the compressive 

spectrum sensing recovery process. The simulation results in this research 

compared between the performance of algorithms for detecting the spectrum and 

demonstrated the grey wolf optimizer algorithm's performance that the ratio of 

accuracy in the spectrum recovery process reaches to 100 % at a positive Signal-

to-Noise Ratio in comparison to another algorithms, the predictive approach of 

the modified- basis pursuit denoising and the weighted approach. 
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1. Introduction  

The electromagnetic radio spectrum is a natural resource. To better utilize this 

priceless natural resource, Cognitive Radio (CR) is used. In order to provide reliable 

communication and effective utilization of the radio spectrum, Haykin defined CR 

as an intelligent digital radio that comprehends the environment so can operate and 

modify radio parameters accordingly (Haykin, 2005). According to research 

(Akyildiz & Mohanty, 2006), because Primary Users (PUs) or licensed users don't 

always use their channels, the frequency spectrum is underutilized. By utilizing 

available spectrum, Secondary Users (SUs) can access and communicate. SUs must 

continuously scan the spectrum to discover spectrum gaps that are not being used by 

the PUs that are registered by them for preventing PU interference. Detection of a 

broad spectrum improves the likelihood of SU of finding unoccupied bands by 

searching a larger frequency range (Javed & Shabbir, 2019). The Nyquist theorem 

states that high sampling rates are required to sample the spectrum, this place 

hardware limitations based on the required high-speed Analogue to Digital 

Converter (ADC) that produces increasing in communication overhead on the SU 

terminals. 

Compressive sensing (CS) (Candès & Wakin, 2008) has been used effectively 

to reduce the costs associated with data gathering in a variety of application areas, 

including wireless communication (Tian & Giannakis, 2007). It samples the 

spectrum at sub-Nyquist sampling rate using an Analogue to Information Converter 

(AIC) (Kirolos & Baraniuk, 2006). Many approaches were proposed to lower the 

sample rate such that using geo-location database information (Qin & Parini, 2015) 

and many approaches used the primary user channel occupancy as a prior 

information that to increase the spectrum sensing efficiency (Khalfi & Zorba, 2018). 

At SU, a low sample rate and fewer measurements are used to reconstruct the 

spectrum using CS. The initial CS approaches assume that there is only one known 

aspect of the signal, its sparsity (Donoho, 2006). Knowing statistical information of 

the signal could help in CS recovery process. Incorporating regularization terms 

with signal value estimations and partial support information is one method for CS 

that uses side information (Vaswani & Zhan, 2016). Assuming a slow fluctuating 

nature of the signal support in Magnetic Resonance Imaging (MRI), information 

from the prior time instant iteratively aids the reconstruction algorithm in capturing 

the sparse solution with fewer samples. It was suggested in (Vaswani & Lu 2010) to 

use a modified Basis Pursuit (BP) method that merges known support elements 

using a weighted minimization method with zero weights on the known support 

in the noise-free case, and then extending the method for the noisy case, which is 

known as regularized modified Basis Pursuit Denoising (reg-mod-BPDN) (Lu & 

Vaswani, 2011). Channel occupancy modelling can improve spectrum sensing by 

letting SUs anticipate PU occupancy (Barnes & Maharaj, 2014). To estimate the 

idle and busy states holding duration, a time domain occupancy model can be 
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modelled with a continuous time semi-Markov chain (CTSMC) with any 

distributions (López Benítez & Casadevall Palacio, 2010). The frequency domain 

model was built using numerous measurement campaigns, and the appropriate 

model for it was the beta distribution (Wellens & Mähönen, 2010). The Basis 

Pursuit De-Noising (BPDN) optimization problem and the more popular Least 

Absolute Shrinkage and Selection Operator (LASSO) are very similar (Emmanuel 

& Tao, 2005). Several other alternative CS recovery approaches were presented as a 

predictive strategy using modified-BPDN and a forecast of the occupancy the PU's 

patterns (Eltabie & Abdelkader, 2019), Another method in this research that extracts 

occupancy probability for each channel utilizing statistical data about the channel in 

order to solve a weighted compressive sensing reconstruction problem (Khajehnejad 

& Hassibi, 2011). 

Artificial Intelligence (AI) applications in wireless communications have 

recently received a lot of interest. AI has shown considerable success in the areas of 

speech recognition, image recognition, demonstrating its enormous promise in 

solving issues that are difficult to model (Wang & Shi, 2020). AI approaches have 

emerged as a crucial facilitator in the effort to address the rising demand for 

wireless communications. There are many optimization techniques have been used 

in the wireless communication such as Particle Swarm Optimization (PSO) (Marini 

& Walczak, 2015) which a swarm of particles that can move about the parameter 

space is used to illustrate the collection of potential solutions to the optimization 

problem, setting trajectories based on their own and neighbor’s best performances. 

Another technique is a Gravitational Search Algorithm (GSA) which is regarded as 

an innovative optimization method based on the laws of gravity and mass 

interaction (Rashedi & Saryazdi, 2009). PSO and GSA are combined to create a 

new hybrid population-based algorithm called PSOGSA (Mirjalili & Hashim, 2010). 

The major goal is to combine the strength of both algorithms by integrating the 

exploitation capability of PSO with the exploring capability of GSA that uses a low-

level coevolutionary heterogeneous hybrid to combine PSO with GSA. The most 

appropriate technique that we apply in the optimization problem is a Grey Wolf 

Optimizer (GWO) (Mirjalili & Lewis, 2014) which is a brand-new metaheuristic 

algorithm that falls within the third classification. The method of hunting used by 

grey wolves served as the model for this algorithm. The four different subtypes of 

grey wolves: alpha, beta, delta, and omega are utilized to simulate the hierarchy of 

command. In addition, the three fundamental hunting techniques used are looking 

for prey, surrounding prey, and attacking prey.  

In this paper, we consider CR network, and we need to recover the spectrum by 

using optimization techniques such as GSA, PSOGSA and GWO algorithms for 

solving the optimization problem of the spectrum recovery process and show the 

performance of these techniques and then compared the performance of GWO 

https://www.sciencedirect.com/topics/mathematics/particle-swarm-optimization
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algorithm with the predictive of the modified-BPDN approach and the weighted 

approach. 

2. System Model and Research Methodology 

We consider a CR system where a singular SU that senses a sparse wideband 

spectrum of  non-overlapping channels. While assuming that the number of active 

PUs is random, the power level of the PU in each channel is unknown and the 

channel between each PU and the SU is an Additive White Gaussian Noise (AWGN) 

channel. Consider  occupied PUs, whose signals are characterized by  where 

 The signal that received by the SU terminal can be represented as 

follows 

     (1) 

Where is the gain in the channel from the  PU to the SU, ‘*’ indicates 

convolution, and   is the additive white Gaussian noise (AWGN) at the SU. By 

applying Discrete Fourier Transform (DFT) to eq. (1) we can obtain the frequency 

spectrum of the received signal as 

    (2)  

Where is an  diagonal matrix and  are the DFT transformation 

of    respectively. Eq. (2) could be formed in a matrix form as 

            (3) 

Where 𝑆 denotes the transmitted signal and is an  vector that represent 

the received spectrum at the SU. The SU needs to sample the received signal in 

order to capture the spectrum S. In comparison to using an ADC, which requires the 

signal to be sampled at Nyquist rate, an AIC could be used to sample the signal with 

a minimal number of samples. The AIC can sample a sparse spectrum with a 

compression ratio of (  that the number of occupied channels  is substantially 

fewer than the total number of channels . The compression ratio is characterized as 

the number of compressed measurements divided by the total length of the sparse 

signal that collect measurements. 

The samples measurement vector 𝑦 could be represented as  vector where 

( as follows 

     (4) 

where  is the  measurement matrix and 𝐹 −1 is the  inverse DFT 

matrix.  

3. The Behavior Model of the PU 

To simulate the observed durations of busy and idle periods, (Lopez-Benitez & 

Casadevall, 2013) demonstrated that the Generalized Pareto (GP) distribution is a 
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well-suited fit for channel occupancy modelling for numerous radio technologies, 

especially in low-time resolution data which the Cumulative Distribution Function 

(CDF) of the state holding time  under this distribution is given by:  

   (5) 

Where  is the length of the time period and are the location, scale, and 

shape parameters, respectively. These characteristics meet that.: for ,  

and for ,  . 

The following formula can be used to determine the state holding times' average 

 according to GP distribution: 

      (6) 

We employed a Continuous-Time Semi-Markov Chain (CTSMC) (López-

Benítez & Casadevall, 2012) to simulate the behavior of the PU in each channel, in 

which the time index is supposed to be continuous. We suppose that a sparse 

spectrum of  nonoverlapping frequency channels. The channels were grouped into 

 groups and each channel has a Duty Cycle (DC) 𝜓𝑖 where 𝜓𝑖 ∈ { 1, 2, 3, …, 

} and in order to create a sparse domain, we establish a low average DC, which 

can be defined as the average probability of the channel being busy throughout time 

and represented by 

        (7) 

Where   is the mean value of busy periods and  is the mean of 

idle periods. The wideband spectrum is divided into multiple band blocks based on 

their frequency. the Beta distribution was found to be the best fit to model a group's 

DC (Wellens & Mähönen, 2010). The probability density function of the Beta 

distribution is formed as 

      (8) 

    (9) 
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Fig. 1: DCs for Beta distribution parameters at  

Figure 1. shows the simulated PU traffic pattern for parameters 

over 100-time instances. For CTSMC model, the state s0 

denoted as the channel being idle and hence available for the SU to use it and the 

state s1 on the other hand, indicates that the channel is active with PU and a sample 

period as demonstrated in Figure 2, can provide a series of states s1 and s0 for the 

channel when it is active or inactive. 
 

 

 

 

 

 

 

 
 

Fig. 2: Channel conditions over a period 

4. Spectrum Recovery 

There would be an infinite number of solutions for the system equation (4) 

because the number of rows is lower than the number of columns  of the sensing 

matrix, but we are only interested in the sparsest solution that is the minimization of 

 which is an NP-hard problem. Relaxing the problem to a  

minimization, this usually leads to the sparsest solution, by solving the following 

convex BP optimization problem as in (Chen & Saunders, 2001). 

     (10) 

This problem is converted to a Lagrange variant known as the BPDN that 

assuming a noisy observation environment as following 

     (11) 

            s1      s1 s0 

T busy T idle T busy 
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Where  is a penalty parameter that can be utilized to compare and contrast 

between spectrum sparsity enforcement and  norm term minimization. 

The CR detects a compressed collection of spectrum measurements and 

recursively recovers the spectrum. Several methods for CS spectrum recovery were 

presented such as the BP denoising (BPDN) approach (Emmanuel & Tao, 2005) 

and the Modified BPDN (mod-BPDN) approach (Lu & Vaswani, 2010). In 

approach (Emmanuel & Tao, 2005) by assuming that the values of DC for each 

channel of the spectrum are known, the PU arrival and leaving could be simplified 

by a two-state discrete time Markov chain (DTMC) and the transition probabilities 

of the transition matrix could be described to forecast each channel's upcoming state 

by: 

                                              (12) 

By forecasting a partial support information from the preceding sensing instant, 

they employ the statistical occupancy model for the Modified BPDN (mod-BPDN) 

approach to enhance the performance of the CS spectrum recovery (Eltabie & 

Abdelkader, 2019). Consider Supp (St), which represents the spectrum support in 

time and  represent the index of this support. The (mod-BPDN) recovery 

problem (Lu & Vaswani, 2010) could be represented by: 

                                                                                    (13) 

Another approach in this research is employing a weighted CS technique as an 

alternative to such channel band prediction, where applying a weight to each 

channel based on its occupancy using the channel occupancy model. The weighted 

optimization problem could be formed as: 

                                                                                    (14) 

Where  is a weighted  norm provided by: 

                                                                                            (15) 

In the optimization problem (15), the weights selected represent the likelihood 

of an idle channel.  

5. Optimization Process 

5.1. Gravitational Search Algorithm 

The performance of agents is determined by their mass, which is treated as an object. 

Gravity acts as an attraction between all the items, and this attraction generates an 

overall movement of all objects in the direction of the items having higher mass. As 

a result, gravitational pull serves as a direct channel of communication between 

masses.  
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• The gravitational law: Every particle pulls in the opposite direction of 

every other particle and the gravitational force between two particles is 

inversely proportional to their separation and directly proportional to the 

sum of their respective masses. 

• Movement law: Any mass's present velocity is equal to the product of its 

variation in velocity and the proportion of its prior velocity (Rashedi & 

Saryazdi, 2009). The following are the several steps of the suggested 

algorithm:  

a) Identifying the search space. 

b) Initialization using random numbers. 

c) Assessment of agents' fitness. 

d) update the gravitational and inertial masses. 

e) the overall force in various directions being calculated. 

f) acceleration and speed calculations. 

g) Positioning the agents. 

h) In order to reach the stop criterion, repeat steps c through g. 

i) End. 

5.2. Hybrid PSOGSA  

• PSO and GSA are combined to create a new hybrid population-based 

algorithm called PSOGSA (Mirjalili & Hashim, 2010). The major goal is to 

combine the strength of both algorithms by integrating the exploitation 

capability of PSO with the exploring capability of GSA that uses a low-level 

coevolutionary heterogeneous hybrid to combine PSO with GSA. The 

fundamental concept behind PSOGSA is to integrate PSO's social thinking 

(gbest) capabilities with GSA's local search functionality. 

• The PSOGSA update process takes into account the fitness. The brokers 

approach sensible answers entice the other agents that are scouring the 

search arena by offering incentives to them. When every agent is close to an 

excellent answer, they move very slowly. In this instance, the gBest aid in 

their exploitation of the world's best. PSOGSA uses a memory (gBest) to store 

the top solution thus far, making it available at any moment. The best answer 

found thus far can be seen by each agent, and they will all tend to it (Magdy & 

Hamed, 2015). The PSOGSA process is depicted by the figure 3. 
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Fig. 3: PSOGSA's fundamental flowchart 

5.3. GWO Algorithm 

The GWO optimization method begins with the creation of a random grey wolf 

population (candidate solutions). The wolves α, , and  appreciate the likely where 

the prey is located across the iterations (optimum solution). Grey wolves adjust their 

positions according on how far away they are from their prey (Bozorg-Haddad, 

2018). 

 We can solve the optimization problem by using GWO which was introduced 

by Mirjalili as one of the brand-new meta-heuristic techniques for optimization. The 

leadership hierarchy is simulated using four different breeds of grey wolves, 

including alpha, beta, delta, and omega. Additionally, the three essential 

components of hunting including looking for prey, surrounding prey and attacking 

prey are used. 

In the GWO algorithm, the concept of social hierarchy aids in grading and 

saving the best answers up to the current iteration. The following is a summary of 

some notes: 

• The encircling mechanism creates a two-dimensional circle-shaped neighbor 

and the solution. 

• Grey wolves (candidate solutions) use the random parameters to build 

different hyper-spheres with random radii. 

• The GWO algorithm's hunting technique allows grey wolves (candidate 

solutions) to choose the most likely location of the prey (optimum solution). 

Create a starting 

population. 

 

 

Identify the 

fitness of each 

agent. 

 

To the population's 

benefit, update gbest. 

 

For all agents, 

compute forces and 

accelerations. 

 

Position and speed 

updates. 

 

Identify the fitness of 

each agent. 

 

Achieving the 

final standard. 

 

 

Provide the 

finest solution. 
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• The adjustable values of the parameters in the GWO algorithm ensure 

exploration and exploitation, as well as a smooth transition between 

exploration and exploitation. 
 

GWO pseudocode: 

Start 

Create the grey wolf colony from scratch. 

Initialize the parameters (number of grey wolves, number of iterations, etc.) 

Determine the search agents' fitness values and assign them a grade. 

t=0 

While (t < Max number of iterations) 

For every searcher 

 Update the search agent's position at the moment. 

End for 

Update the parameters (number of grey wolves, number of iterations, etc.) 

Determine the search agents' fitness values and assign them a grade. 

t=t+1 

End while  

 End 

6. Simulation Results and Discussions  

Consider a spectrum with  sub-channels, Beta distribution model is assumed 

to sample the DC values  for the  subchannels by the parameters 

 of the E-GSM 900 UL band (López-Benítez & Casadevall, 

2012) that result the average DC value of 0.1. we generate the generalized Pareto 

(GP) distribution to simulate the apparent durations of the busy and idle times by 

the parameters  the DC value 

of each channel is used to determine additional parameters for the idle state holding 

times as:  An additive white Gaussian noise 

corrupts the received signal ,the Signal to Noise Ratio (SNR) is defined as the signal 

power over the whole bandwidth normalized by the noise power.  the compression 

ratio (cr) is the proportion of the number of measurements  to the signal's 

dimension . The simulation results are presented in the following figures. 

As we apply different algorithms of optimization such as GSA and PSOGSA in 

our simulation to solve the minimization problem of the spectrum recovery process 

with number of agents equal to 30 and maximum number of iterations equal to 500, 

the performance of the algorithms didn’t achieve the target of detection 

enhancement as shown in figure.4, as the probability of detection didn’t reach a 

high rate. So, we had to resort to another technique of optimization to solve this 

minimization problem. 
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Fig. 4: Probability of detection for GSA and PSOGSA algorithms at various SNR levels in 

dB at probability of false alarm =0.1 and at compression ratio of cr =0.75 

Then we consider in our simulation of the GWO algorithm with the number of 

search agents equal to 30 and the maximum number of iterations equal to 500.The 

detection accuracy with different SNR values is shown in Figure.5 at cr equal to 0.2 

and 0.75. the results show that the GWO algorithm achieves superior performance 

for the detection probability compared with predictive and weighted approaches 

(Eltabie & Abdelkader, 2019). At cr equal to 0.2 and SNR equal to -25 the 

probability of detection (Pd) was very low until SNR reaches to -20 that Pd begin to 

increase and achieves the maximum value at SNR equal to -15. At cr equal to 0.75, 

the Pd achieves perfect accuracy for more range of SNR. 

In the Figure.6. the variation in detection at various compression ratio levels at 

the same probability of false alarm of 0.1 at SNR equal to -25 dB and 25 dB. As 

shown when SNR equal to -25 the Pd of the GWO algorithm was very low and 

couldn’t improve by increasing cr. But at SNR equal to 20 dB, the GWO algorithm 

achieves the highest level of detection compared with predictive and weighted 

approaches that Pd reaches to the maximum value over all range of the compression 

ratio in the GWO algorithm. 

 
                          (a)                                                                          (b) 

Fig. 5: Probability of detection at various SNR levels in dB at probability of false alarm =0.1 

and at compression ratio of (a) cr =0.2 and (b) cr =0.75 
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                             (a)                                                                               (b) 

Fig. 6: Probability of detection at various compression ratios at probability of false alarm 

=0.1. and at (a) SNR = -25 dB and (b) SNR= 20 dB 

The Pd for the spectrum recovery process at cr equal to 0.75, using predictive 

scheme and weighted scheme was better than another optimization techniques at 

SNR equal to -25 dB. But when SNR begins to come up, the performance of GWO 

algorithm improve and Pd reaches the max value at SNR equal to -20 and over a 

long range of SNR from -20 to 20 dB as shown in table.1. And as shown the 

performance of GSA and PSOGSA didn’t improve at any value of SNR, while the 

Pd for the predictive scheme and weighted scheme reaches the max at SNR equal to 

20 dB only. 

Table 1: Pd for the spectrum recovery process using GSA, PSOGSA, predictive scheme, 

weighted scheme and GWO algorithm at cr = 0.75 

Algorithm 

SNR 

-25 -20 -15 -10 -5 0 5 10 20 

GSA 0.169 0.155 0.143 0.151 0.160 0.173 0.167 0.173 0.158 

PSOGSA 0.185 0.178 0.163 0.179 0.209 0.213 0.204 0.205 0.200 

Predictive 

Scheme 
0.420 0.200 0.200 0.340 0.590 0.850 0.960 0.990 1.000 

Weighted 

Scheme 
0.400 0.200 0.210 0.350 0.600 0.830 0.960 0.990 1.000 

GWO 0.120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7. Conclusion  

In this paper, we incorporate AI based on GSA, PSOGSA and GWO algorithm to 

solve the minimization problem for the spectrum recovery process in compressive 

sensing. Additionally, it is compared to the predictive method, which forecasts 

traffic for the PU and uses it as background information for compressive sensing 

and the weighted algorithm, which solving the minimization recovery problem by 

extracting the value of DC for each band. The simulation results and discussions 
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showed that the GWO algorithm has more performance and capability to solve the 

minimization problem for the spectrum recovery process, that the ratio of accuracy 

reaches to 100 % at a long range of SNR from -20 dB to 20 dB in comparison to 

another algorithms, that the predictive scheme and the weighted scheme reached to 

this accuracy only at SNR equal to 20.  As can be seen, our proposed technique 

achieves superior performance compared with another approaches. 
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