
70

Autoencoders with Reconstruction Error and

Dimensionality Reduction for Credit Card Fraud

Detection

Najmi Rosley 1, Gee-Kok Tong 1+, Keng-Hoong Ng 1, Suraya Nurain Kalid 1

and Kok-Chin Khor 2

1 Multimedia University
2 Universiti Tunku Abdul Rahman

Abstract. The increase in credit card transactions has inevitably caused an

increase in credit card fraud. A total of 157,688 fraud cases occurred in 2018

worldwide, causing a total loss of $24.26 billion. This paper proposes using two

types of autoencoder models to detect credit card fraud. The first type uses

reconstruction error to detect anomalies in the data. The model detects fraud by

defining a threshold in the reconstruction error to flag the transactions as

legitimate or fraud. The second type performs dimensionality reduction to encode

the data and removes noises. The encoded data were then used to train three other

models: K-nearest neighbours (KNN), logistic regression (LR), and support

vector machine (SVM). We then applied these models to a European bank's

imbalanced credit card data set. A comparison was made between the two

autoencoder types and three baseline models: KNN, LR and SVM. The results

showed that both autoencoders gave a good and comparable performance in

detecting credit card frauds.

Keywords: autoencoder, credit card fraud detection, reconstruction error,

dimensionality reduction

ISSN 1816-6075 (Print), 1818-0523 (Online)

Journal of System and Management Sciences

Vol. 12 (2022) No. 6, pp. 70-80

DOI:10.33168/JSMS.2022.0605

Rosley et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 70-80

71

1. Introduction

During the pandemic, credit card transactions have increased dramatically due to

cashless transactions between cardholders and e-commerce companies. Although

they have benefited from these cashless transactions, new problems arise. One of

the problems is the increasing fraudulent transactions. There was a total of 157,688

fraud cases recorded worldwide in 2018. The damages caused by such frauds

totalled $24.26 billion (Credit Card Fraud Statistics, 2021).

This increasing number of credit card frauds has motivated the need to develop

an effective fraud detection system. The system must be able to detect fraudulent

credit transactions accurately and reliably with high true positive and minimal false

negative rates. Much research has been conducted about building a machine

learning model that can detect fraud transactions (Shivamb, 2019), (Misra et al.,

2020), (Al-Shabi, 2019). Nevertheless, the research works suffered from the

problems of poor classification performance, specifically for the minority class.

Most machine learning algorithms used for classifications were designed around the

assumption of an equal number of examples for each data set class. Usually, credit

card transaction data are imbalanced and have more legitimate transactions than

fraudulent ones. As a result, the available public credit card data sets are mostly

highly imbalanced. Such imbalance has become a problem because the performance

of classification algorithms is evaluated using accuracy, but in the case of the

imbalanced data set, the minority class contributes little to the overall accuracy of

the model (Gosain & Sardana, 2017). The imbalance can cause the trained model to

bias toward the majority case.

This research aims to detect credit card frauds in an imbalanced data set from a

European bank (ULB, 2018) with autoencoders. Firstly, we created a supervised

machine learning model - an autoencoder via reconstruction error. Secondly, we

conducted dimensionality reduction using autoencoders to improve the performance

of the supervised machine learning models, i.e., KNN, LR, and SVM. The research

scope shall cover data cleaning, feature selection, hyperparameter tuning,

autoencoder model building, and model evaluation.

2. Related Works

2.1. Autoencoder

Autoencoder is a neural network that learns to recreate the input as an output. A

simple autoencoder consists of the input, the bottleneck and the output layers

(Zhang et al., 2019). The model extracts the main features and distribution of the

input data by decoding and encoding the input data. The main goal of the

autoencoder is to approximate the distribution of the input value as accurately as

possible.

Rosley et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 70-80

72

Fig. 1: The autoencoder diagram. adopted from (Zhang et al., 2019)

The encoder reduces the dimensionality of the input data to a lower

dimensionality. The bottleneck is one of the hidden layers of the autoencoder in

which the compressed data representation is stored. Simple autoencoders only have

one hidden layer, but advanced autoencoders may have more hidden layers. The

decoder decodes or increases the data dimensionality stored in the bottleneck and

tries to reconstruct the input. The reconstruction error will be used to evaluate the

performance of the autoencoder. The reconstruction error measures how well the

input is reconstructed by measuring the input and output difference. The bottleneck

layer holds the latent representation of the input data, and the lower dimensionality

representation of the input data can be obtained by extracting the data from the

bottleneck layer. For imbalanced data classification using autoencoders, most

researchers use two common implementations. The first is by using sampling

techniques such as the work done by (Zhang et al., 2016), in which a cost-sensitive

oversample algorithm is used in conjunction with autoencoders to oversample the

minority class and remove noise from multiple imbalanced medical datasets. The

other implementation is treating the problem as an anomaly detection problem

whereby the model only learns the representation of the majority class. Such as the

research done by (Gerych et al., 2019) to classify depression in an imbalanced

dataset

2.2. Thresholding based on Reconstruction Error of Autoencoders

Much research has been conducted in which the reconstruction error value of the

autoencoder can be used for anomaly detection. The model is trained only using the

normal data. It is to ensure that the reconstruction error for reconstructing normal

data is low, and when reconstructing anomalous data, the reconstruction error shall

be high. Thus, a reconstruction error threshold can be selected to identify anomalies

Rosley et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 70-80

73

in data. Research by (Salahuddin et al., 2020) used a reconstruction error threshold

to detect anomalies in network traffic that indicate cyberattacks. Another research

by (Ahmad et al., 2020) used an autoencoder to detect anomalies in vibration

signals made by rotating machines. Their model was trained by using only normal

data in which the machines are in a healthy state and working properly. The

research helps maintain machines' health by detecting when the machines

malfunction and need repairs.

2.3. Dimensionality Reduction with Autoencoders

Autoencoders also can be used as a dimensionality reduction model. It is due to the

nature of autoencoders during the encoding phase, in which autoencoders can

identify the important features and remove noises in data. The lower dimensionality

representation of data can be extracted from the bottleneck layer and used to train

other machine learning models. Hence, autoencoders can be used to improve the

performance of other machine learning models. Research by (Misra et al., 2020)

made a fraud detection model for credit card transactions using an autoencoder and

three classification algorithms: Multilayer-Perceptron, K-Nearest Neighbours, and

Logistic Regression. The results showed that ensembling autoencoders and k-

Nearest Neighbour gave the best performance with an accuracy of 0.9995 and an

F1-score of 0.8182. Another research by (Fan et al., 2018) built an ensemble

autoencoder model to detect anomalies in building energy data. The model used an

autoencoder to reduce the data dimension and remove noises for better detection.

The model was trained using unsupervised learning, and the Shapiro Wilk test was

carried out to evaluate the normality of the reconstructed residuals and evaluate the

model's performance. The ensemble model was able to pass the normality test,

which indicates that the models could reconstruct the data accurately.

2.4. Feature selection and Hyperparameter Tuning of Autoencoders

Feature selection refers to selecting the data set features because a large number of

features will slow down the training process and may not necessarily improve an

autoencoder's performance. Besides this, much research has been carried out to

improve the effectiveness and accuracy of autoencoders by using hyperparameter

tuning. Hyperparameter tuning ensures an autoencoder is adequately tuned and set

to give its best performance. A study by (Ordway-West et al., 2018) has

demonstrated that the hyperparameter tuning of autoencoders can be automated

using H20 AI to avoid manual tuning, which is very time-consuming. Besides using

AI, there are Python libraries that help achieve such automation. One such library is

Keras Tuner, used in this research. Research by (Shardlow, 2016) built multiple

machine learning models using different feature analysis techniques to determine

which one gave the best accuracy. The research showed that feature extraction

methods gave neglectable decreases in the model's accuracy compared to the control

experiment, where a classifier using all 325 potential features was trained and tested.

Rosley et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 70-80

74

Contrarily, using the wrapper methods with Ranked Forward Search showed a

considerable improvement in the model's accuracy.

2.5. Related Works Summary

Other researchers have given insight into possible solutions to the credit card fraud

detection problem. The results obtained by other researchers have proven that

autoencoders can overcome the imbalanced data problem with satisfactory results in

other applications. In this research, both methods (sampling method and anomaly

detection method) were tested to measure their effectiveness in overcoming this

problem.

3. Methodology

In the following sections, we shall explain our research framework based on Figure

2.

Fig. 2: Our research framework for credit card fraud detection

Rosley et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 70-80

75

3.1. Data Collection

This research uses the European credit card data set. The European data set was

obtained from Kaggle, a popular platform for finding data sets on various topics

(ULB, 2018). The European credit card data set was formed by collecting two-day

transaction data in September 2013. The data set contains 284,808 transactions. The

data set is imbalanced as it only has 492 transactions labelled as frauds which only

make up 0.172% of the total transactions. Most features available in this data set

had been transformed using Principal Component Analysis (PCA) to hide the

private information. However, some features are not hidden. Firstly, the "time"

feature denotes the number of seconds a transaction has been carried out since the

first transaction. Secondly, the "amount" features details the amount of money used

in the transaction. Lastly, the "class" label indicates the legitimacy of the

transactions. 0 denotes that the transaction is legitimate, and 1 denotes that the

transaction is fraudulent.

3.2. Data Pre-processing

Data pre-processing was performed to ensure that the data was clean, consistent,

and meaningful for training the autoencoders. The outliers were removed from the

legitimate data to avoid overfitting in the model training phase. The outliers were

identified by calculating the Z-score of the data. Only data with a z-score of less

than three were kept. Then, the data were normalised using min-max scaling to

ensure that the data had the same scale. Normalisation is necessary because the

model may bias toward features with larger values.

3.3. Feature Selection with Boruta

Boruta was used in this research as a means for feature selection. The features were

fitted using a random forest classification in Boruta. The feature selection process

was repeated ten times to ensure that the most accurate combination of features was

obtained. Only features with an importance score of 0.5 or higher were kept and

used to train the autoencoder for each iteration.

3.4. Hyperparameter Tuning

Table 1: Hyperparameter tuning range and the best values for the autoencoders

Hyperparameters Range Best Value

Number of neurons in

hidden layer
10 - 20 10

Epochs 10 - 30 30

Batch Size 32 - 128 32

Rosley et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 70-80

76

The hyperparameter tuning of autoencoders was performed using the Bayesian

search function in Sklearn. The hyperparameters tuned were the number of nodes in

the hidden layers, the activation function, the EPOCH, and the batch size. The

hyperparameter tuning range and the best values are shown in Table 1.

3.5. Model Training

Two models were trained in this research using two different datasets: (i) the

reconstruction error thresholding model and (ii) the dimensionality reduction model.

The thresholding model was trained using only legitimate transaction data, while

the dimensionality reduction model was trained using the entire dataset. Thus, their

hyperparameters were tuned separately.

3.6. Reconstruction Error

After data pre-processing and feature selection with Boruta, the data were split into

train and test sets (80-20 split). Only the legitimate transactions from the training

data were used to train an autoencoder; this ensures a low reconstruction error for

legitimate transactions. After that, the autoencoder was used to predict the test set,

and from there, we can plot out the reconstruction error for the fraud and legitimate

transactions. The classification threshold is selected using the precision-recall curve

to maximise the precision and recall scores of the model.

3.7. Dimensionality Reduction

This autoencoder type reduces the data set dimension and yields encoded data.

The autoencoder was used in conjunction with these three machine learning models:

k-Nearest Neighbours (KNN), Support Vector Machine (SVM), and Logistic

Regression (LR). These three models were trained using the encoded data. SVM,

KNN and LR were chosen as they are the popular machine learning methods used

by other researchers for credit card fraud detection. (Awoyemi et al., 2017),

(Thennakoon et al., 2019), (Preeti 2019).

3.8. Model Evaluation

All the autoencoders were compared with the performance of the baseline models:

KNN, SVM, and LR, to determine if the autoencoders could help improve credit

card fraud detection. The baseline models were trained using the data set reduced by

Boruta but unencoded.

All models were evaluated using measures resulting from the confusion matrix:

accuracy, precision, recall and F1. Of these four measures, recall is used to evaluate

the performance of the models, particularly in detecting minority credit card fraud

in the data set.

Rosley et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 70-80

77

4. Results and Discussions

Figure 3 shows the precision-recall curve that selects the threshold from the

reconstruction errors of two data sets. The blue line represents the data set whereby

the outliers in the legitimate transaction data had been removed, while the orange

line represents the original credit card data set with outliers. The data set with the

outliers removed performed better as it can produce high recall and precision values.

For this research, a reconstruction error threshold of 0.074 was used to classify

between the fraud and legitimate transactions.

Fig. 3: The Precision-recall curve

Table 2 compares the model performance using accuracy, precision, recall, and

F1 score. All models showed no significant difference in accuracy, precision, and

F1 score. Thus, we relied on the recall measure to differentiate the performance of

the models. The autoencoders that used reconstruction error performed relatively

well compared to others, with the highest recall of 0.879121. However, its

performance was not much different from the autoencoders that performed

dimensionality reduction and were used in conjunction with KNN, LR and SVM.

Baseline models generally showed a below-average performance, except for KNN.

Rosley et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 70-80

78

Table 2. Performance comparison between the autoencoders and the baseline models

Models Accuracy Precision Recall F1

Autoencoder (Reconstruction Error) 0.999775 1.0 0.879121 0.935673

Autoencoder (Dimensionality

Reduction) + KNN

0.999673 1.0 0.850467 0.919191

Autoencoder (Dimensionality

Reduction) + LR

0.999693 1.0 0.827586 0.905660

Autoencoder (Dimensionality

Reduction) + SVM

0.999673 1.0 0.816091 0.898734

Baseline KNN 0.999632 1.0 0.831776 0.908163

Baseline LR 0.999469 1.0 0.757009 0.861702

Baseline SVM 0.999550 1.0 0.794393 0.885417

5. Conclusion

In conclusion, the autoencoders that (i) used reconstruction error and (ii) performed

dimensionality reduction gave a good performance in detecting credit card fraud. It

is due to the autoencoders' feature extraction capability to learn the data's inner

representations.

We see the possibility of employing autoencoders on imbalanced data sets and

obtaining good detection performance. In future, we shall further evaluate the

performance of autoencoders using more imbalanced credit card data sets.

Acknowledgement

The Ministry of Higher Education Malaysia supported this work under Grant

FRGS/1/2019/SS01/MMU/03/11.

References

Ahmad, S., Styp-Rekowski, K., Nedelkoski, S., & Kao, O. (2020). Autoencoder-

based condition monitoring and anomaly detection method for rotating machines.

2020 IEEE International Conference on Big Data (Big Data).

DOI:10.1109/bigdata50022.2020.9378015

Al-Shabi, M. A. (2019). Credit card fraud detection using Autoencoder model in

unbalanced datasets. Journal of Advances in Mathematics and Computer Science,

1–16. DOI:10.9734/jamcs/2019/v33i530192

Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017). Credit card fraud

detection using machine learning techniques: A comparative analysis. 2017

International Conference on Computing Networking and Informatics (ICCNI).

DOI:10.1109/iccni.2017.8123782

Rosley et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 70-80

79

Credit Card Fraud Statistics. Shift Credit Card Processing. (2021, September 29).

Retrieved April 11, 2022, from https://shiftprocessing.com/credit-card-fraud-

statistics/

Fan, C., Xiao, F., Zhao, Y., & Wang, J. (2018). Analytical investigation of

autoencoder-based methods for unsupervised anomaly detection in building energy

data. Applied Energy, 211, 1123–1135. DOI:10.1016/j.apenergy.2017.12.005

Gerych, W., Agu, E., & Rundensteiner, E. (2019). Classifying depression in

imbalanced datasets using an autoencoder- based anomaly detection approach. 2019

IEEE 13th International Conference on Semantic Computing (ICSC).

DOI:10.1109/icosc.2019.8665535

Gosain, A., & Sardana, S. (2017). Handling class imbalance problem using

oversampling techniques: A Review. 2017 International Conference on Advances in

Computing, Communications and Informatics (ICACCI).

DOI:10.1109/icacci.2017.8125820

Misra, S., Thakur, S., Ghosh, M., & Saha, S. K. (2020). An autoencoder based

model for detecting fraudulent credit card transaction. Procedia Computer Science,

167, 254–262. DOI:10.1016/j.procs.2020.03.219

Ordway-West, E., Parveen, P., & Henslee, A. (2018). AUTOENCODER evaluation

and hyper-parameter tuning in an unsupervised setting. 2018 IEEE International

Congress on Big Data (BigData Congress).

DOI:10.1109/bigdatacongress.2018.00034

Preeti, S. & A. (2019). Analysis of various credit card fraud detection techniques.

International Journal of Computer Sciences and Engineering, 7(6), 1212–1216.

DOI:10.26438/ijcse/v7i6.12121216

Salahuddin, M. A., Faizul Bari, M., Alameddine, H. A., Pourahmadi, V., & Boutaba,

R. (2020). Time-based anomaly detection using autoencoder. 2020 16th

International Conference on Network and Service Management (CNSM).

DOI:10.23919/cnsm50824.2020.9269112

Shardlow, M. (2016). An Analysis of Feature Selection Techniques.

Shivamb. (2019, January 18). Semi supervised classification using autoencoders.

Kaggle. Retrieved October 13, 2021, from https://www.kaggle.com/shivamb/semi-

supervised-classification-using-autoencoders

Rosley et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 70-80

80

Thennakoon, A., Bhagyani, C., Premadasa, S., Mihiranga, S., & Kuruwitaarachchi,

N. (2019). Real-time credit card fraud detection using machine learning. 2019 9th

International Conference on Cloud Computing, Data Science & Engineering

(Confluence). DOI:10.1109/confluence.2019.8776942

ULB, M. L. G.-. (2018, March 23). Credit card fraud detection. Kaggle. Retrieved

April 11, 2022, from https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

Zhang, C., Gao, W., Song, J., & Jiang, J. (2016). An imbalanced data classification

algorithm of improved autoencoder Neural Network. 2016 Eighth International

Conference on Advanced Computational Intelligence (ICACI).

DOI:10.1109/icaci.2016.7449810

Zhang, G., Liu, Y., & Jin, X. (2019). A survey of autoencoder-based recommender

systems. Frontiers of Computer Science, 14(2), 430–450. DOI:10.1007/s11704-

018-8052-6

