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Abstract. The increase in credit card transactions has inevitably caused an 

increase in credit card fraud. A total of 157,688 fraud cases occurred in 2018 

worldwide, causing a total loss of $24.26 billion. This paper proposes using two 

types of autoencoder models to detect credit card fraud. The first type uses 

reconstruction error to detect anomalies in the data. The model detects fraud by 

defining a threshold in the reconstruction error to flag the transactions as 

legitimate or fraud. The second type performs dimensionality reduction to encode 

the data and removes noises. The encoded data were then used to train three other 

models: K-nearest neighbours (KNN), logistic regression (LR), and support 

vector machine (SVM). We then applied these models to a European bank's 

imbalanced credit card data set. A comparison was made between the two 

autoencoder types and three baseline models: KNN, LR and SVM. The results 

showed that both autoencoders gave a good and comparable performance in 

detecting credit card frauds. 
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1. Introduction  

During the pandemic, credit card transactions have increased dramatically due to 

cashless transactions between cardholders and e-commerce companies. Although 

they have benefited from these cashless transactions, new problems arise. One of 

the problems is the increasing fraudulent transactions. There was a total of 157,688 

fraud cases recorded worldwide in 2018. The damages caused by such frauds 

totalled $24.26 billion (Credit Card Fraud Statistics, 2021). 

This increasing number of credit card frauds has motivated the need to develop 

an effective fraud detection system. The system must be able to detect fraudulent 

credit transactions accurately and reliably with high true positive and minimal false 

negative rates. Much research has been conducted about building a machine 

learning model that can detect fraud transactions (Shivamb, 2019), (Misra et al., 

2020), (Al-Shabi, 2019). Nevertheless, the research works suffered from the 

problems of poor classification performance, specifically for the minority class. 

Most machine learning algorithms used for classifications were designed around the 

assumption of an equal number of examples for each data set class. Usually, credit 

card transaction data are imbalanced and have more legitimate transactions than 

fraudulent ones. As a result, the available public credit card data sets are mostly 

highly imbalanced. Such imbalance has become a problem because the performance 

of classification algorithms is evaluated using accuracy, but in the case of the 

imbalanced data set, the minority class contributes little to the overall accuracy of 

the model (Gosain & Sardana, 2017). The imbalance can cause the trained model to 

bias toward the majority case. 

This research aims to detect credit card frauds in an imbalanced data set from a 

European bank (ULB, 2018) with autoencoders. Firstly, we created a supervised 

machine learning model - an autoencoder via reconstruction error. Secondly, we 

conducted dimensionality reduction using autoencoders to improve the performance 

of the supervised machine learning models, i.e., KNN, LR, and SVM. The research 

scope shall cover data cleaning, feature selection, hyperparameter tuning, 

autoencoder model building, and model evaluation.  

2. Related Works 

2.1. Autoencoder 

Autoencoder is a neural network that learns to recreate the input as an output. A 

simple autoencoder consists of the input, the bottleneck and the output layers 

(Zhang et al., 2019). The model extracts the main features and distribution of the 

input data by decoding and encoding the input data. The main goal of the 

autoencoder is to approximate the distribution of the input value as accurately as 

possible.   
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Fig. 1: The autoencoder diagram. adopted from (Zhang et al., 2019) 

The encoder reduces the dimensionality of the input data to a lower 

dimensionality. The bottleneck is one of the hidden layers of the autoencoder in 

which the compressed data representation is stored. Simple autoencoders only have 

one hidden layer, but advanced autoencoders may have more hidden layers. The 

decoder decodes or increases the data dimensionality stored in the bottleneck and 

tries to reconstruct the input. The reconstruction error will be used to evaluate the 

performance of the autoencoder. The reconstruction error measures how well the 

input is reconstructed by measuring the input and output difference. The bottleneck 

layer holds the latent representation of the input data, and the lower dimensionality 

representation of the input data can be obtained by extracting the data from the 

bottleneck layer. For imbalanced data classification using autoencoders, most 

researchers use two common implementations. The first is by using sampling 

techniques such as the work done by (Zhang et al., 2016), in which a cost-sensitive 

oversample algorithm is used in conjunction with autoencoders to oversample the 

minority class and remove noise from multiple imbalanced medical datasets. The 

other implementation is treating the problem as an anomaly detection problem 

whereby the model only learns the representation of the majority class. Such as the 

research done by (Gerych et al., 2019) to classify depression in an imbalanced 

dataset 

2.2. Thresholding based on Reconstruction Error of Autoencoders 

Much research has been conducted in which the reconstruction error value of the 

autoencoder can be used for anomaly detection. The model is trained only using the 

normal data. It is to ensure that the reconstruction error for reconstructing normal 

data is low, and when reconstructing anomalous data, the reconstruction error shall 

be high. Thus, a reconstruction error threshold can be selected to identify anomalies 
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in data. Research by (Salahuddin et al., 2020) used a reconstruction error threshold 

to detect anomalies in network traffic that indicate cyberattacks. Another research 

by (Ahmad et al., 2020) used an autoencoder to detect anomalies in vibration 

signals made by rotating machines. Their model was trained by using only normal 

data in which the machines are in a healthy state and working properly. The 

research helps maintain machines' health by detecting when the machines 

malfunction and need repairs. 

2.3. Dimensionality Reduction with Autoencoders 

Autoencoders also can be used as a dimensionality reduction model. It is due to the 

nature of autoencoders during the encoding phase, in which autoencoders can 

identify the important features and remove noises in data. The lower dimensionality 

representation of data can be extracted from the bottleneck layer and used to train 

other machine learning models. Hence, autoencoders can be used to improve the 

performance of other machine learning models. Research by (Misra et al., 2020) 

made a fraud detection model for credit card transactions using an autoencoder and 

three classification algorithms: Multilayer-Perceptron, K-Nearest Neighbours, and 

Logistic Regression. The results showed that ensembling autoencoders and k-

Nearest Neighbour gave the best performance with an accuracy of 0.9995 and an 

F1-score of 0.8182. Another research by (Fan et al., 2018) built an ensemble 

autoencoder model to detect anomalies in building energy data. The model used an 

autoencoder to reduce the data dimension and remove noises for better detection. 

The model was trained using unsupervised learning, and the Shapiro Wilk test was 

carried out to evaluate the normality of the reconstructed residuals and evaluate the 

model's performance. The ensemble model was able to pass the normality test, 

which indicates that the models could reconstruct the data accurately. 

2.4. Feature selection and Hyperparameter Tuning of Autoencoders 

Feature selection refers to selecting the data set features because a large number of 

features will slow down the training process and may not necessarily improve an 

autoencoder's performance. Besides this, much research has been carried out to 

improve the effectiveness and accuracy of autoencoders by using hyperparameter 

tuning. Hyperparameter tuning ensures an autoencoder is adequately tuned and set 

to give its best performance. A study by (Ordway-West et al., 2018) has 

demonstrated that the hyperparameter tuning of autoencoders can be automated 

using H20 AI to avoid manual tuning, which is very time-consuming. Besides using 

AI, there are Python libraries that help achieve such automation. One such library is 

Keras Tuner, used in this research. Research by (Shardlow, 2016) built multiple 

machine learning models using different feature analysis techniques to determine 

which one gave the best accuracy. The research showed that feature extraction 

methods gave neglectable decreases in the model's accuracy compared to the control 

experiment, where a classifier using all 325 potential features was trained and tested. 
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Contrarily, using the wrapper methods with Ranked Forward Search showed a 

considerable improvement in the model's accuracy. 

2.5. Related Works Summary 

Other researchers have given insight into possible solutions to the credit card fraud 

detection problem. The results obtained by other researchers have proven that 

autoencoders can overcome the imbalanced data problem with satisfactory results in 

other applications. In this research, both methods (sampling method and anomaly 

detection method) were tested to measure their effectiveness in overcoming this 

problem. 

3. Methodology 

In the following sections, we shall explain our research framework based on Figure 

2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Our research framework for credit card fraud detection 
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3.1. Data Collection 

This research uses the European credit card data set. The European data set was 

obtained from Kaggle, a popular platform for finding data sets on various topics 

(ULB, 2018). The European credit card data set was formed by collecting two-day 

transaction data in September 2013. The data set contains 284,808 transactions. The 

data set is imbalanced as it only has 492 transactions labelled as frauds which only 

make up 0.172% of the total transactions. Most features available in this data set 

had been transformed using Principal Component Analysis (PCA) to hide the 

private information. However, some features are not hidden. Firstly, the "time" 

feature denotes the number of seconds a transaction has been carried out since the 

first transaction. Secondly, the "amount" features details the amount of money used 

in the transaction. Lastly, the "class" label indicates the legitimacy of the 

transactions. 0 denotes that the transaction is legitimate, and 1 denotes that the 

transaction is fraudulent. 

3.2. Data Pre-processing 

Data pre-processing was performed to ensure that the data was clean, consistent, 

and meaningful for training the autoencoders. The outliers were removed from the 

legitimate data to avoid overfitting in the model training phase. The outliers were 

identified by calculating the Z-score of the data. Only data with a z-score of less 

than three were kept. Then, the data were normalised using min-max scaling to 

ensure that the data had the same scale. Normalisation is necessary because the 

model may bias toward features with larger values. 

3.3. Feature Selection with Boruta 

Boruta was used in this research as a means for feature selection. The features were 

fitted using a random forest classification in Boruta. The feature selection process 

was repeated ten times to ensure that the most accurate combination of features was 

obtained. Only features with an importance score of 0.5 or higher were kept and 

used to train the autoencoder for each iteration. 

3.4. Hyperparameter Tuning 

Table 1: Hyperparameter tuning range and the best values for the autoencoders 

Hyperparameters Range Best Value 

Number of neurons in 

hidden layer 
10 - 20 10 

Epochs 10 - 30 30 

Batch Size 32 - 128 32 
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The hyperparameter tuning of autoencoders was performed using the Bayesian 

search function in Sklearn. The hyperparameters tuned were the number of nodes in 

the hidden layers, the activation function, the EPOCH, and the batch size. The 

hyperparameter tuning range and the best values are shown in Table 1. 

3.5. Model Training  

Two models were trained in this research using two different datasets: (i) the 

reconstruction error thresholding model and (ii) the dimensionality reduction model. 

The thresholding model was trained using only legitimate transaction data, while 

the dimensionality reduction model was trained using the entire dataset. Thus, their 

hyperparameters were tuned separately. 

3.6. Reconstruction Error 

After data pre-processing and feature selection with Boruta, the data were split into 

train and test sets (80-20 split). Only the legitimate transactions from the training 

data were used to train an autoencoder; this ensures a low reconstruction error for 

legitimate transactions. After that, the autoencoder was used to predict the test set, 

and from there, we can plot out the reconstruction error for the fraud and legitimate 

transactions. The classification threshold is selected using the precision-recall curve 

to maximise the precision and recall scores of the model. 

3.7. Dimensionality Reduction 

This autoencoder type reduces the data set dimension and yields encoded data. 

The autoencoder was used in conjunction with these three machine learning models: 

k-Nearest Neighbours (KNN), Support Vector Machine (SVM), and Logistic 

Regression (LR). These three models were trained using the encoded data. SVM, 

KNN and LR were chosen as they are the popular machine learning methods used 

by other researchers for credit card fraud detection. (Awoyemi et al., 2017), 

(Thennakoon et al., 2019), (Preeti 2019). 

3.8. Model Evaluation  

All the autoencoders were compared with the performance of the baseline models: 

KNN, SVM, and LR, to determine if the autoencoders could help improve credit 

card fraud detection. The baseline models were trained using the data set reduced by 

Boruta but unencoded. 

All models were evaluated using measures resulting from the confusion matrix: 

accuracy, precision, recall and F1. Of these four measures, recall is used to evaluate 

the performance of the models, particularly in detecting minority credit card fraud 

in the data set. 
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4. Results and Discussions 

Figure 3 shows the precision-recall curve that selects the threshold from the 

reconstruction errors of two data sets. The blue line represents the data set whereby 

the outliers in the legitimate transaction data had been removed, while the orange 

line represents the original credit card data set with outliers. The data set with the 

outliers removed performed better as it can produce high recall and precision values. 

For this research, a reconstruction error threshold of 0.074 was used to classify 

between the fraud and legitimate transactions. 

  

 

 

 

 

 

 

 

 

 

Fig. 3: The Precision-recall curve 

Table 2 compares the model performance using accuracy, precision, recall, and 

F1 score. All models showed no significant difference in accuracy, precision, and 

F1 score. Thus, we relied on the recall measure to differentiate the performance of 

the models. The autoencoders that used reconstruction error performed relatively 

well compared to others, with the highest recall of 0.879121. However, its 

performance was not much different from the autoencoders that performed 

dimensionality reduction and were used in conjunction with KNN, LR and SVM. 

Baseline models generally showed a below-average performance, except for KNN. 
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Table 2. Performance comparison between the autoencoders and the baseline models 

Models Accuracy Precision Recall F1 

Autoencoder (Reconstruction Error) 0.999775 1.0 0.879121 0.935673 

Autoencoder (Dimensionality 

Reduction) + KNN 

0.999673 1.0 0.850467 0.919191 

Autoencoder (Dimensionality 

Reduction) + LR 

0.999693 1.0 0.827586 0.905660 

Autoencoder (Dimensionality 

Reduction) + SVM 

0.999673 1.0 0.816091 0.898734 

Baseline KNN 0.999632 1.0 0.831776 0.908163 

Baseline LR 0.999469 1.0 0.757009 0.861702 

Baseline SVM 0.999550 1.0 0.794393 0.885417 

5. Conclusion 

In conclusion, the autoencoders that (i) used reconstruction error and (ii) performed 

dimensionality reduction gave a good performance in detecting credit card fraud. It 

is due to the autoencoders' feature extraction capability to learn the data's inner 

representations.  

We see the possibility of employing autoencoders on imbalanced data sets and 

obtaining good detection performance. In future, we shall further evaluate the 

performance of autoencoders using more imbalanced credit card data sets. 
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