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Abstract. This paper proposed a BLE beacon positioning algorithm for an 

accurate indoor navigation system. In this work, an indoor positioning method is 

proposed by joining Particle Swarm Optimization (PSO) and trilateration method 

to determine the optimal number and position of the BLE beacons.  The impacts 

of BLE beacon placement were systematically assessed based on Received Signal 

Strength Indicator (RSSI) obtained from direct measurement. The position of 

BLE then, can be estimated by trilateration technique which considers the 

intersection of at least three BLE signals. The RSSI is analyzed and the path loss 

model is obtained by processing the experiment data. The results show that the 

proposed algorithm is relevant to be implemented in non-line-of-sight (NLOS) 

condition. 

Keywords: indoor positioning system (IPS), particle swarm optimization 

(PSO), trilateration, received signal strength indication (RSSI) 
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1. Introduction  

The demand for Indoor Positioning System (IPS) is becoming more important. 

Global Navigation Satellite System (GNSS) is widely used to provide navigation, 

location and timing information based on signal retrieved from satellite. For most of 

indoor applications, however, the signal experiences great attenuation due to wall 

and signal obstruction, which results in limited positioning accuracy. In such 

circumstances, when a user is indoors and obviously has no line of sight with a 

satellite, indoor positioning system (IPS) has gained more importance in providing 

directions or coordinate based on user or object location. These pervasive 

applications can be seen in shopping complexes, museums, hospitals and production 

lines.  

IPS depends greatly on the availability of precise location. Position estimation 

can be handled by means of technologies such as wireless local area networks 

(WLANs) (Bruno et al., 2014; Jun and Gou-Ping 2017; Yu et al., 2020), Radio 

Frequency Identification (RFID) (Xu et al., 2017; Xu et al., 2018; Rose et al., 2020), 

magnetic-based navigation (Shu et al., 2015; Lee et al., 2018), Bluetooth (Qureshi et 

al., 2019; Natarajan et al., 2016), Zigbee ( Guo et al., 2019), and hybrid approaches 

(Grottke and Blankenbach 2021). Different strengths and weaknesses offered by 

each of the technologies, lead to different challenges of the implementation. It can 

be found that a number of empirical works have been accomplished to prove that 

high positioning accuracy can be achieved by deploying BLE.   

BLE is one of Bluetooth 4.0 protocols (IEEE 802.15.1), which operates at the 

2.4GHz ISM band. A typical IPS requires BLE beacons, which periodically emit 

signals to be received by BLE-enabled device or mobile phone. BLE offers 

excellent robustness, with relatively small size, high security and low footprint on 

the smartphone’s battery and network traffic (Davidson and Piche 2017). BLE is 

also economically attractive due the ability to provide 24Mbps transmission speed 

with higher efficiency (Zafari et al., 2019) and with good accuracy within 700m – 

900m (Qureshi et al., 2019). The users can easily use their own mobile devices, 

whereby Wi-Fi, Bluetooth and 3G/4G signal are readily integrated and compatible 

with BLE’s positioning functionality. 

Realizing IPS leads to some challenges. The greatest challenge is to obtain an 

accurate localization in an indoor environment, which mostly are complicated and 

diverse in terms of spatial and topology layout; the existence of various blockage in 

different size and material, result in severe attenuation in comparison to the outdoor 

environment. The fluctuation is worsen (Ullah et al., 2013; Firdaus et al., 2019),  as 

the movement of people is noticeable. In fact, in an IoT environment, 

communication between wireless networks and devices produces large amount of 

data, thereby, resulting in packet drops, retransmission, link instability and 

inconsistent protocol behavior (Chang 2015). Thus, consideration of environmental 
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factors whose effects might compromise the accuracy of prediction is essential 

during the planning stage of BLE deployment.  

As it is clear that the placement of BLE has a profound impact on the overall 

deployment cost, placement via trial-and-error method should be avoided. Most of 

the empirical works (Pinto et al., 2021; Mendoza-Silva et al., 2019; Domingo-Perez 

et al., 2016; Zhu and Alsharari 2015) highlighted the importance of the right 

placement and the exact number of BLEs. It is worth noting to consider the beacon 

range and positioning method too. The guidelines can be found in (Vy and Shin 

2019; Kriz et al., 2016), which specified the complexity and available deployment 

options. 

 In the context of IPS deployment, most of the optimization efforts aimed to 

find an optimal beacon placement, making the distinction between different 

optimization approaches by using a classification scheme. In view of this research 

work, Particle Swarm Optimization (PSO) and Received Signal Strength Indication 

(RSSI) measurement using trilateration is applied. PSO refers to an optimization 

approach to determine a suitable fitness function of beacon placement. In the case 

of detecting method, measurement of RSSI is attractive to many, as the approach is 

straightforward and practical (Rose et al., 2020; Guo et al., 2019) allowing the 

establishment of one-to-one relationships to ensure the area of interest can be served 

at acceptable signal levels. It does not require sophisticated localization hardware, 

time synchronization and angle measurement (Jun and Gou-Ping 2017). 

Nevertheless, RSSI measurement is susceptible to environmental factors, which is 

likely to produce more error as compared to other ranging techniques. This signifies, 

thorough understanding of the environment, allowing us to control the system 

design in making sure both coverage and capacity objectives are met (Khaled and 

Talbi 2019). Moreover, it is found that limited accurate radio propagation 

particularly for WSN (El-Mouaffak and El Alaoui 2020) and some of the works are 

outdated due to the rapid evolution of sensors (Brena et al., 2017). As such, work to 

re-affirm and reassess the radio propagation model for BLE deployment is essential. 

The contribution of this paper is twofold. The primary focus is to determine the 

optimized number and location of BLEs to be deployed in indoor environment 

based on PSO and trilateration techniques. As such, mobile application framework 

for 2D smart campus navigation map was developed from CAD floor plan. The 

accuracy of the proposed model is validated by conducting measurements in Faculty 

of Engineering and Technology, Multimedia University, Melaka. Secondly, the 

characteristics of prevailing propagation mechanism in indoor environment are 

investigated too. The paper is organized as follows. The propagation model is 

described in Section II. Second, the proposed PSO algorithm is outlined and 

elaborated in Section 3. Evaluation and result discussion of the proposed technique 

is summarized in Section 4. 
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2. Related works 

Localization accuracy is regarded by many as the most important criteria of IPS 

implementation. Typically, IPS have been employed for various applications to 

meet specific goals, including tracking of objects, providing specific location 

information and monitoring purposes (Grottke and Blankenbach 2021).  In fact, the 

maturity of indoor positioning technologies has gradually been put forward to 

obtain positioning accuracy in the range of ten of centimeters to several meters. The 

systematic reviews on technology adoption, localization techniques and concept, as 

well as fundamental limits and challenges can be found in detail in (Zafari et al., 

2019; Brena et al., 2017; Obeidat et al., 2021; Geok 2021; Hassan et al., 2020).   

For brevity, this section only describes the optimization technique that have 

been used to trade-off between improving the IPS localization accuracy and 

computational effort. Accordingly, there are two mainstream positioning algorithms, 

namely deterministic and probabilistic methods (Pinto et al., 2021). The 

deterministic method consists of two coarse steps. The first step is an offline phase, 

in which RSS are collected from a pre-built fingerprint dataset; the latter step is an 

online phase, whereby machine learning and algorithms data are fed into localizer 

for position estimation by comparing preprocessed RSSI readings and measured 

RSSI in real time. Fingerprinting, as pointed out by Mendoza-Silva et al. (2019) 

performed better in small area as compared to proximity or lateration. However, 

applying this approach to practice is difficult due to smartphones are moving 

objects (Grottke and Blankenbach 2021). For multi-fingerprinting information, 

usage of random forest and particle filter algorithm achieves higher precision (Jiang 

2020).  

The probabilistic method, on the other hand, is in form of a propagation model-

based system to describe the environment by considering random component that 

causes change of RSS over a specific environment. In (Domingo-Perez 2016), the 

work starts up by considering the presence of the obstacle that possibly cause 

blockage between the target and sensors. Speciation and structural mutations were 

added to non-dominated sorting genetic algorithm (NSGA-II) based on Pareto 

optimal solutions obtained. The computation using an evolutionary algorithm omits 

the hassle in dealing with complicated algebraic derivatives; in this case, is relevant 

to improve the prediction, especially in NLOS condition. Similar goal was achieved 

in (Pinto et al., 2021) using an enhanced probability method. Other proven methods 

include optimization of calculated distance (Zhu and Alsharari 2015), filtering and 

calibration of measured RSSI (Nguyen et al., 2017) to eliminate the abnormal data. 

Trusted-range model (Vy and Shin 2019) makes use of reliable of RSS range from 

nearest neighbor nodes by classifying RSS obtained into a certain level of range. 

Finding shows the model performed better as compared to conventional 

triangulation, especially in a short-range communication. Higher accuracy can be 

achieved by deploying a higher density of beacon nodes (Kriz et al., 2016). 
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In summary, various research findings related to optimization approach to 

represent the ways the positioning technology is applied. Table 1 summarizes a 

number of relevant research works that focus on the optimization and detection 

method. 

Table 1: Review of existing BLE IPS optimization algorithm and detection method 

Ref 
Optimization 

method 

Detection 

method 
Environment Accuracy Beacons 

Remarks/ 

Limitation 

[12] 

Grid particle 

filter and 

Bayesian 

filter 

Fingerprinting/ 

lateration 
- 

Accuracy 

increases 

up to 

67% 

- 

Fingerprinting 

requires pre-

measurement 

signal map data. 

[19] 
BLE RSS 

database 

Weighted 

centroid 

method, k-

Nearest 

Neighbors 

(kNN) 

Library; 

office open 

space 

WC 

(4.43-

4.88m); 

 

105 (4, 

12, 

20dBm) 

The database 

needs to be 

updated to 

include other 

location and 

collection 

orientation. 

[22] 

Trusted- 

ranges 

model 

Trusted- 

ranges model 

8x10 m2, 

lobby 
 

4 

(4dBm) 

Further 

investigation on 

interference 

cause by 

obstacle. 

[30] 

Random 

forest and 

particle filter 

Multi-

fingerprinting 
14x18 m2, 

1.9~2.3m 

(RF) 

1~1.4m 

(PF) 

6 

The method 

achieves high 

accuracy with 

low cost. 

Application at 

large indoor 

scenes is 

possible. 

[31] Calibration 

Trilateration 

weighted 

Centroid, 

classic LSE, 

improved LSE 

5x5 m2, 

testbed 

0.2 to 

0.35m 
4(4dBm) 

The model 

achieves high 

accuracy for 

static device 

only. Dynamic 

devices and 

tracking 

application need 

further 

investigation. 

[32] 
Kalman 

Filter 

Fuses 

Trilateration 

44x17 m2, 

corridor 
2.75m 10 

Specific human 

model and 

fusion approach 

need further 

investigation. 
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3. Methodology 

3.1. Optimization Technique 

In this work, PSO approach as an optimization problem is implemented for 

positioning BLE beacons, with an aim to ensure that the position of any mobile 

device in the indoor environment can be tracked via radio frequency distance 

measurement and trilateration method. Adoption of PSO algorithm in IPS system 

has attracted considerable attention due to high location accuracy with minimal 

computational complexity. It involves few parameters, thus relatively 

straightforward to be implemented than other methods, such as genetic algorithm 

(Xue et al., 2009). The PSO algorithm locates the BLEs based on intelligent 

particles which lead to an efficient and reliable localization approach.  It is also 

more flexible for a temporary map generation, which requires less memory for the 

same accuracy as fingerprinting method (Zhang et al., 2009).  

PSO was introduced by Kennedy and Eberhart in 1995 as a population-based 

metaheuristic for a single objective optimizer. Numerous works had been carried on 

PSO from robotics (Eberhart and Hu 1999), power distribution planning (Mohamad 

et al., 2013), biomedical optimization (Ibrahim 2012; Singh et al., 2012; Sun et al., 

2006), wireless sensor networks (Rappaport 2001), and financial planning (Zhou 

2017). PSO searches for an optimal solution within a search space by updating the 

particles’ velocities and positions. Particle ith’s velocity and position at dth 

dimension in the tth iteration, )(tv
d
i  and )(tx

d
i  are updated using the following 

equations. 

 

(1) 
 

( 

 

(2) 
 

The velocity update can be categorized into three parts, momentum, particle’s 

nostalgia, and social influence. In the equation (1),  is inertia weight. The inertia 

weight controls the particle’s search momentum. Linearly decreasing inertia is often 

adopted to encourage exploration in the earlier phase of the search and facilitates 

fine tuning towards the end. Two learning factors, and are used in the equation. 

Usually, both learning factors are set to be equivalent to balance the influence of 

particle’s own experience and swarm’s experience. The particle ith’s best experience 

up to tth iteration is represented by . Whereas, the best solution found by 

the swarm is; . PSO is a stochastic algorithm,  and  are two 

random number ranging from [0,1]. They are independent of each other. Particle’s 

position is updated using Equation (2).  
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Random initialization of particles 

While not stopping condition { 

Particles fitness evaluation 

Update  

Update velocity & position 

} 

Report the best found solution 

Fig. 1: PSO pseudocode 

The flow of the PSO algorithm is shown in the pseudocode of Figure 1. Every 

iteration starts with particles’ fitness evaluation prior to the  and  update. 

The velocity and position are updated after these steps. In the optimization of 

beacons’ installation problem, which is considered here, each of the particles’ 

positions represents the locations to install the beacons. In this project, the beacons 

are to be installed at the wall of each corridor. Meanwhile, the evaluation of 

particles’ fitness depends on the problem to be solved, where we wanted to ensure 

that the position of any mobile device in the corridor can be tracked via trilateration 

method. Therefore, the device must be within sensing range;  of three BLE 

beacons. Hence, to ensure full coverage a BLE beacon must be within distance of  

 from at least two other BLE beacons. The value of can be determined by 

taking into consideration the height of the beacon with respect to the floor and also 

the beacon’s transmission/reception range. Hence, in this work the fitness function 

is formulated as below: 

 

(3) 

 

 

(4) 

 

 

(5) 

 

In Equation (3) the partial coverage of beacon  by beacon ,  is set to 

0.5 if the distance between the two beacons is lesser than . The beacon  is fully 

covered if its total  is equal to or more than 1 as shown in Equation (4). The 

fitness of the beacons position proposed by particle ith,  is finally 

calculated using Equation (5). 

3.2. RSSI Method 

RSSI measurements are conducted to examine reduction of power received as the 

receiver moves away from transmitter. The distance between BLE nodes and 
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mobile phone can be computed and estimated by applying log-distance path loss 

model. Using path loss models, the PSO localization method generates fingerprints 

for all particles in the swarm which correspond to campus navigation map (Zhang et 

al., 2009). 

3.3. Propagation Model 

RSSI measured the energy power level can be received by a user’s device from 

access point. Log-distance path loss model (Faragher and Harle 2014) is applied to 

estimate the distance between known BLE position and the smartphone Bluetooth 

device. The theoretical model is shown in Equation 6. 

 

X
d

d
ndRSSIdRSSI ++= )log(10)()(

0
0

   

(6) 

 

where RSSI (d) is the RSSI when the distance between beacons and smartphone 

is d, d0 is the reference distance, n is the path loss coefficient related to the 

environment and X is Gaussian distributed random variables. For actual 

localization measurement, d0 is 1m and X is omitted. Therefore, a simplified 

propagation model is given as follows:  

 

)log(10)()(
0

0
d

d
ndRSSIdRSSI −=

   

(7) 

 

The distance can be estimated according to Equation 8 and the coordinate is 

determined by trilateration approach, in which three or more beacons are considered 

to figure out the position of a blind node. 

 

(8) 

 

Trilateration technique is adopted to calculate an unknown position by referring 

to three known points. Considering three BLEs are used, namely A, B and C, the 

distance is measured from communication device to the three known BLE A, B and 

C position, based on measured RSSI value. To calculate the exact position of the 

communication device, Equation 9 need to be solved. 

 
222

)()( aaa yyxxd −+−=
     

222
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222

)()( ccc yyxxd −+−=
    

 

3.4. Experiment 

This section describes the RSSI measurement to examine the localization accuracy 

based on optimum BLE position using the PSO algorithm, as described in Section 

3.1. In this case, the beacons broadcast at -12dBm transmitting power. Minimum 
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reception signal of -110dBm is required to establish communication between 

mobile phone and BLE. This corresponds to the maximum coverage area. 

The system is implemented in such a way that, location tracking involves RSSI 

measurement using trilateration. It can operate using users’ terminals, such as 

Bluetooth without interaction with middle server. In addition, it is important to 

consider the system is able to function well in concurrent multi-users accessing 

signals from BLE, while ensuring no privacy issue occurred due to users’ self-

positioning.  

The model is applied to the in-building foyer, as described in Table 2. The foyer 

is surrounded by concrete and glass wall, with a pathway about 10m wide between 

the walls. Due to large area, it is expected that achieving perfect results would be 

challenging. Note that penetration between floors is not modelled here, as the 

simulation and measurement is conducted in one floor only. 

Table 2: Description of RSSI measurement zone 

Zone A B C D 

Environment In building foyer 

Blockage Glass wall Concrete wall Glass wall Concrete wall 

Number of beacons 16 14 14 20 

Number of smartphones 1 

TX powers (dBm) 12dBm 

Height of the area 6m 

 

A unique ID is assigned to each the fix BLE beacon for tagging purposes. BLE 

is mounted on the wall at 1.7m height. The BLE-enabled devices sense the signal 

from the beacon and notify the adjacent devices on their existence. The routing 

mechanism in an indoor location is determined by measuring the position of BLE.  

To execute this project, the position of BLEs is first predicted using PSO.   

After the installation, the RSSI from radio beacon devices are recorded from a 

smartphone Bluetooth device as the pedestrian walked in the pathways. In the end, 

based on the current geo-coordinates of the smartphone, BLE distance can be 

estimated. 
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4. Result 

4.1. BLE Beacons Placement using PSO 

The solution proposed here was tested for the installation of 30 BLE beacons for an 

indoor navigation system at the ground floor of the Faculty of Engineering and 

Technology, Multimedia University. The indoor environments are divided into four 

corridors to represent LOS and NLOS scenarios namely Zone A, Zone B, Zone C 

and Zone D. The floor plan is shown as in Figure 2. 

Fig. 2: Floor plan 

The PSO was run with 20 particles for 100 iterations and managed to optimize 

the placement with an estimated coverage of 86.67%. This is shown in Figure 3. 

The locations of the beacons and navigation system are shown in Figure 4 and 

Figure 5, respectively. The red circles show the position of the beacons. Using the 

positions determined by PSO the beacons were placed on the balcony of the ground 

floor of the Faculty of Engineering and Technology, Multimedia University. The 

suitability of this solution is then validated using RSSI as discussed in the following 

section. 
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Fig. 3: Fitness of PSO solution 

 

Fig. 4: BLE beacons position proposed by PSO 
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Fig. 5: Campus navigation system 

The optimal positioning of BLE is determined with the aid PSO algorithm as 

described in Section 3.1. In this section, the analysis is focused on the use of the 

RSSI and the log-distance path loss model of the entire IPS simulation. The result 

described here, is basically obtained from BLE RSSI measurements collected from 

BLE points. Path loss dependence on the antenna heights is insignificant as the 

height is similar and closed to the environment. 

In order to validate the accuracy of the developed positioning algorithm based 

on PSO, path loss and trilateration, RSSI data were recorded for each of the 

consecutive zones with a smart phone device. The distance between BLE is 5 

meters and 15 meters for adjacent and opposite sides of the foyer, respectively.  

Figure 6 represents RSSI measurements after 30s of walking. The plot of RSSI 

quantifies the placement of BLE using PSO and trilateration as relate to the actual 

coverage with respect to the distance between smartphone and beacon as an access 

point. In this case, minimum reception signal of -110dBm must be detected which 

imply communication between mobile phone and BLE is successfully established. 

As the signal spread, it is noticeable the signal strength decay in a random behavior. 
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The finding reinforces the result obtained (Obeidat et al., 2021), whereby RSSI-

distance relationship is not necessarily linear. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 6: RSSI measurement at (a) Zone A, (b) Zone B, (c) Zone C and (d) Zone D 

It can be observed that relatively good and stable signals are received at Zone B 

as depicted in Figure 6. The minimum average RSSI is more notable in Zone C and 

Zone D. This difference is expected as the zone is slightly blocked by the concrete 

walls. Hence, the observed decay with distance fits that of a signal reflected through 

a rough medium. As pointed in (Parsons 2000), wall roughness introduces 

additional attenuation to the RF signal and smoothness to the power distribution 

curve, which greatly interferes with the stability of BLE signal.  Therefore, it is 

important to place the BLE at a certain distance from the corner.  

Also, obstructions such as doors, tables and chairs, might cause reflection and 

scattering. Hence, the presence of various objects typically causes several copies of 

the transmitted signal to reach the receiver via multiple paths. The signal might 

reach the receiver in or out of phase. The receiver will be having stronger signal if 

the components of waves are received in phase. However, if out-of-phase signals 

are received, they tend to cancel each other, subsequently producing a weak or 

fading signal. This indicates reflecting surface has a substantial effect on the BLE 

signal propagation. Moreover, the propagation characteristics change as the terminal 

moves from BLE to other BLE and from time to time. 

The measurement demonstrates indoor signals suffer from strong and static and 

dynamic multipath distortion due to reflection from walls, granite rock floor and 

other blockages exist such as table and chairs. The maximum loss occurs at a 

distance of 25m due to the beacon transmit power that is insufficient to deliver the 
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signal to the receiver. Particularly, at 2.4GHz, strong human body absorption, may 

deteriorate the signal up to 10dBm. 

4.2. Model Validation 

Two different approaches were used to evaluate the performance of the proposed 

positioning. Firstly, the model results were assessed based on the path loss data. 

Secondly, the accuracy of the proposed positioning is statically evaluated and 

compared using standard deviation and Root Mean Square Error (RMSE) as 

performance metrics. The approach, which is quite common in positioning 

applications is given by the following mathematical equations. 

 

 

(10) 

 

(11) 

 

 

Table 3: Performance 

Zone A B C D 

RSSI(max) (dBm) -53 -50 -72 -67 

RSSI(min) (dBm) -101 -103 -102 -100 

RSSI(average) (dBm) -80.21 -77.02 -89.91 -89.58 

Standard Deviation 12.73 12.647 6.009 8.684 

RMSE 14.684 15.460 20.876 19.998 

Path loss exponent 3.15 2.68 3.08 3.76 

 

 

The resulting RMSE shown in Table 3, indicates a reasonable performance of 

the proposed positioning. The calculated RMSE is most likely due to a large signal 

deviation as a proportion of movement through a wide pathway. In addition, the 

signals from three BLEs do not always intersect at one point in trilateration 

approach and thus, ranging based on RSSI will produce errors in a distance. 

Accordingly, the positioning measurement on the ground floor proves to be 

complex and nonlinear, thus the obtained result is logical. 

In view of the path loss exponent, it is observed that the path loss exponent n 

ranges from 2.68 to 3.76. The larger value of n in this case, is due to the presence of 

significant blockages that potentially block the signal. 

5. Conclusion 

This paper presents the implementation of PSO and trilateration method for a 

reliable and robust indoor positioning system.  PSO which is simple and direct, is 

significantly useful at the initial stage to automatically extract the number and 
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optimal position of BLE. By exploiting the information of RSSI with trilateration 

method, relevant prediction can be obtained. The accuracy of the model is validated 

using an experiment conducted on in-building foyer environment. It is found that, a 

larger RMSE in range of 14.68 to 20.88 is recorded, with path loss ranging between 

2.68 to 3.76. It can be seen, the indirect signal path between BLEs and mobile 

devices can impact localization accuracy. 

Future works will be extended to focus on the reduction of error due to 

multipath and interference caused by moving objects using larger dataset of 

measurements. As the algorithm demonstrates valid results, therefore, consideration 

of filters to be applied in processing the data will be a subject of future work. The 

applicability of the test model will be tested to different datasets and environments 

and comparison compared with the other optimization algorithms. 
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