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Abstract. Processing customer queries on time will able to engage customer 

satisfaction, and thus improve the customer retention of a company. Increasing 

the labour to process these queries is certainly not an ideal solution. Advancing 

technology such as artificial intelligence and machine learning has led to the goal 

of automating this process, by predicting the time needed to resolve certain issues 

based on past similar cases. In this paper, we present the architecture for the 

Customer Support Ticket System to improve the accuracy of the predicted 

resolution time. In this research, we first perform the one hot encoding on the 

categorical variables, followed by feature selection. Next, a combination of 

classification and regression models is being utilised in our prediction pipeline. 

Experimental evaluations demonstrated that the Random Forest (RF) regression 

model has the best performance as compared to Neural Network and ADA boost. 

In addition, by adding the extremity feature as the attention, a significant 

performance boost for RF is observed. 

Keywords: prediction, predictive analytics, resolution time, customer support, 

ticket system 
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1. Introduction 

Predictive analytics refers to the use of historical data and statistical models to 

predict unknown future events. Predictive analytics has become a very popular 

concept, with its interest steadily rising over the past several years, thanks to the 

growth of data and technology such as artificial intelligence, machine learning and 

business intelligence. With predictive analytics, many organizations are now able to 

utilize past and current data to reliably forecast trends and behaviour, seconds, days 

or even years into the future (Roy et al., 2022; Zhang et al., 2021). In a business 

environment, organizations can employ predictive analytics to discover and exploit 

interesting patterns within data to detect potential market risks and opportunities. 

Predictive analytics is based on the algorithm, pattern discovery, trend analysis and 

artificial intelligence to enhance future predictions. Typically, predictive analytics 

combines powerful analysis technologies with automated discovery algorithms to 

forecast future events based on the analysis of historical data. 

This paper aims to propose predictive analytics to estimate the resolution time 

needed to solve a particular issue to enable the customer to know tentatively how 

long duration is needed for their problem to be resolved. 

2. Literature Review 

The volume of support tickets has grown significantly due to the digitalization 

efforts across all industries (Amin et al., 2020). Many companies face increasing 

pressure in automating their STSs to increase customer satisfaction (Stein et al., 

2018’ Gupta et al., 2018) and to reduce costs (Al-Hawari et al., 2019). 

With the emergence of Machine Learning, opens the possibility for automated 

ticket classification and thus, enables the prediction of the resolution time needed to 

solve the cases (Chagnon et al., 2017; Han and Sun, 2020).   Many ML algorithms 

existed in the STS system. Among them were Support Vector Machine (SVM), 

Random Forrest (RF), Decision Tree (DT), K-Nearest Neighbor (KNN), Neural 

Network (NN), Rule-based, Deep Learning (DL) and so on. 

From the review, SVM and its variations yield the best accuracy, which is 

between 63% (Revina et al., 2020) to 98% (Parmar et al., 2018). It is observed that 

the accuracy depends heavily on the dataset employed (Parmar et al., 2018; Iscen 

and Gurbuz, 2019; Yang, 2021).On the other hand, RF outperforms next with its 

accuracy ranging from 78% to 92% as surveyed by Fuchs et al. (2021). They have 

summarized the review based on 41 papers from well-established databases such as 

IEEE, Scopus, Ebsco and Web of Science. Towards recently, DL shows promising 

results especially to support of large training data (Bejarano et al., 2020). 

Several other models existed. Among them are Multiple Linear Regression, 

Adaboost Regression, Elastic Net Regression and Gradient Boosting Regression 

(Bajariya et al., 2022; Malikireddy et al., 2021).  By summarizing the related 

literature, it seems that most of the boosting techniques outperformed the others. 
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Bayesian Network and Logistic Regression had good prediction effects while SVM 

and LLM were relatively worse to handle large datasets (Jain et al., 2020). For this 

research, we have chosen the evaluate the non-linear regression models, which are 

NN, Adaboost and RF. 

3. Methodology 

Predictive analytics is used to make predictions about unknown future events. One 

of the most common predictive analytics models is the regression model. For this 

product, a regression model is used for resolution time prediction (RTP). 

Resolution time is the time taken for an issue to be logged into until it is fully 

resolved. Many problems of current Customer Relationship Management (CRM) 

systems can be solved with RTP. First and foremost, RTP can improve the support 

ticketing module, which allows companies to prioritize tickets — customers’ 

support interactions, assign them to reps and track their progress. Next, customers 

are informed of the predicted resolution time, which allows them to wait for a 

certain period of time until further updates. Finally, agents are able to utilize RTP to 

effectively resolve a case, which improves agent performance and time management. 

In this research, users can log or register service request cases into the system, 

and the system will predict its resolution time. Besides, users will be also presented 

with other information as well include estimated severity level, estimated time of 

resolution and top 10 similar cases. Furthermore, users are also able to resolve the 

case and evaluate whether the case has been resolved on time (estimated time of 

resolution is ahead of the actual time of resolution) or overdue (actual time of 

resolution is ahead of the estimated time of resolution).  The architecture of the 

product is shown in Fig. 1. 

3.1. Offline Modeling 

The predictive analytics’ offline phase also known as the offline modelling process, 

consists of 5 different parts — data acquisition, data preprocessing, feature selection, 

model training and model deployment. Python is the chosen programming language 

for modelling and Jupyter notebook as its analytics environment. A variety of 

libraries have been used, mainly pandas and scikit-learn (sklearn). Pandas is used 

for data analysis and manipulation, while sklearn is used for predictive data analysis. 

The architecture of the modelling process is shown in Fig. 2 below. The modelling 

process will be explained along with the code snippets obtained from Jupyter 

Notebook. 
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Fig. 1: Predictive analytics architecture  

 

 

Fig. 2: Offline Predictive analytics architecture 

3.1.1. Data Acquisition and Preprocessing 

The real dataset is a CRM dataset obtained from a proprietary telecommunication 

company in Malaysia.  The dataset is in Comma-Separated-Value (CSV) format. 

The dataset consists of 47 attributes and approximately 80,000 entries collected 

from January 2018 to May 2019 (18 months). The data undergo a series of 

preprocessing such as raw data transformation, data stripping, spelling correction, 

upper-lowercase conversion, and data derivation. 
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3.1.2. Feature Selection  

Feature selection or feature extraction is the process of selecting a subset of 

features manually or automatically in modelling. The goals of feature selection are 

usually to improve the model’s ability to generalize by removing irrelevant features 

and reducing training time. Here, we performed feature selection automatically 

through several statistical methods which include entropy, point biserial correlation 

coefficient and chi square correlation coefficient. 

Entropy is a measure of uncertainty or randomness of data. Entropy can be 

calculated by using the formula below, where k is the number of categories. and 0 ≤ 

≤ . 

 

The closer the value to , the higher the complexity of the data, and the 

harder it is to draw any conclusion. Hence, we can utilize the idea of entropy to 

determine the “diversity” of categorical data. By using the code snippets in Fig. 3, 

we can identify the entropy for each categorical variable and eliminate variables 

that have less than a normalized entropy threshold (0.3). Normalized entropy can be 

calculated by dividing the entropy  from the maximum entropy . 

Besides, point biserial and chi squared correlation coefficient are another two 

statistical methods in the feature selection process. Both methods result in a 

coefficient value which varies between -1 (strong negative relationship) and +1 

(strong positive relationship), with 0 implying no correlation.  

 

describe = df.select_dtypes(["object", "category"]).describe().T 
describe["entropy"] =  describe.index.to_series().apply( 
 lambda x:stats.entropy(df[x].value_counts(), base = 2) 
) 
describe["max_entropy"] =  describe.index.to_series().apply( 
 lambda x:math.log(df[x].nunique(),2) 
) 
describe["normalize_entropy"] =  describe.index.to_series().apply( 
 lambda x:stats.entropy(df[x].value_counts(), base = df[x].nunique()) 
) 
 
display(describe.sort_values("normalize_entropy", ascending = False)) 

Fig. 3: Code snippets for entropy 
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Both point biserial and chi squared are univariate feature selection methods. 

Point biserial is a correlation coefficient used when one variable is dichotomous (0 

or 1) and another variable is continuous, while chi squared is a correlation 

coefficient used when both variables are dichotomous. Since most of our categorical 

values are not dichotomous or 2-dimensional, we first encoded all categorical 

features as a one-hot numeric array. Also, it is encouraged to transform categorical 

columns into numeric representation, as most machine learning algorithms are not 

able to work with categorical data in string format directly. One hot encoding 

separates categorical columns into many columns depending on the number of 

categories present in that column. For example, if column A has 3 unique categories 

while column B has 4 unique categories, then one-hot-encoding separated column A 

into 3 unique columns and column B into 4 unique columns, where each separated 

column only contains dichotomous values - No (0) or Yes (1).  

After performing one hot encoding on the categorical variables, feature 

selection is performed. We utilized one of the univariate feature selection 

transformers provided by sklearn — SelectFdr() where features with low false 

discovery rates are kept. Point biserial and chi squared will also perform null 

hypothesis tests on each feature to the label (target variable) and return a coefficient 

value and a p-value. SelectFdr() will select features based on criteria — p-value 

larger than the alpha-value (0.05) or coefficient-value smaller than + or - 0.1 will 

not be selected. 

3.1.3. Model Training  

A combination of classification and regression models have been used in our 

prediction pipeline. Classification model is used to predict (classify) extremity, 

which will be later concatenated as an additional feature for resolution time 

regression. The classified extremity is based on the table guideline shown in Table 1. 
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Table 1: Calculated entropy for each categorical variable 

Attributes entropy max_entropy normalize_entropy 
less than 0.3 and 

eliminated? 

insert_by_name 4.436938 5.087463 0.872132 False 

group 4.757756 6.108524 0.778871 False 

sub_group 6.133096 7.965784 0.769930 False 

category 1.827737 2.584963 0.707065 False 

problem_location 5.298039 7.658211 0.691812 False 

sub_category_3 4.975126 7.475733 0.665503 False 

sub_category_2 3.971061 6.539159 0.607274 False 

division 2.520255 4.459432 0.565152 False 

sub_category_1 3.323913 6.044394 0.549917 False 

source 1.168561 2.321928 0.503272 False 

status 1.958831 4.321928 0.453231 False 

type_call 0.873446 2.000000 0.436723 False 

root_cause 2.582387 7.417853 0.348131 False 

store_type 1.122447 3.906891 0.287299 True 

priority 0.001453 2.000000 0.000727 True 

product 0.000305 1.000000 0.000305 True 

 

The experiment was performed with 70 percent training set and 30 percent 

testing set. At the same time, we utilized sklearn’s GridSearchCV for 

hyperparameter tuning. GridSearchCV performs an exhaustive search over specified 

parameter values for an estimator. 

3.1.3.1. Classification 

We first performed classification modelling. The chosen classification model is a 

decision tree classifier with one-vs-rest multiclass classification strategy. One-vs-

rest multiclass classification strategy consists in fitting one classifier per class, 

where the class is fitted against all the classes. For example, by applying one-vs-rest 

multiclass strategy on 3 colour classes — red, green and blue, will generate 3 binary 

classifiers — red or non-red classifier, green or non-green classifier and blue or 

non-blue classifier. In addition to its computational efficiency, one advantage of this 

approach is interpretability, since each class is represented by one and only one 

classifier. Fig. 4 shows one of the classifiers in the one-vs-rest multiclass strategy, 
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while Fig. 5 shows the classification confusion matrix for both the training and 

testing set. 

 

Fig. 4: One of the decision tree in one-vs-rest multiclass strategy 

 

Fig. 5: Classification confusion matrix 

3.1.3.2. Regression 

After completing the classification modelling, we proceeded to regression 

modelling. The classified extremity will be concatenated as an additional feature for 

resolution time regression. The classified extremity also acts as an “attention” for 

the regression model. The “attention” effect allows the regression model to learn 

easier, as it enhances the important parts of the input data — extremity, and fades 

out the rest. The predicted extremity also has a strong positive relationship with the 

resolution time. In addition, we also removed any incorrect classified extremity data.  

The chosen regression model is a RF regressor. RF regressor has been shown to 

outperform any other experimented regressor due to its structures and nonlinear 

nature. RFs are able to aggregate many decision trees to limit overfitting as well as 

error due to bias and therefore yield better results. Fig. 5 shows the regression 

experimental plot which includes the true versus prediction plot and residual plot 

for both the training and testing set. 
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3.1.4. Model Development  

After completing the model training, the trained model pipeline is then deployed 

into the product (system), which is ready to be used in the online phase. The online 

phase utilizes the model pipeline trained in the offline phase for resolution time 

prediction (RTP) (see Figure 7). The system is mainly for admin-use. The backend 

of the system is coded using Flask, a light-weight microframework built on top of 

Python programming language. The front-end website is built with bootstrap 4. At 

the same time, we utilized jquery for API access. The webpage consists of 2 main 

parts; (1) prediction and (2) evaluation. 

 

Fig. 6: Regression experimental plots 

 

Fig. 7: Offline predictive analytics architecture 
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In (1), users can register a new service request into the system via a service 

request form as shown in Fig. 8. Through service request registration, the system 

can obtain the predicted resolution time from the trained model pipeline. The 

service request will be saved into the database along with the predicted resolution 

time. Then, the newly registered service request will be presented along with other 

unresolved cases in table format as shown in Fig. 9. By selecting one of the service 

request IDs, users will be presented with service request features as well as other 

information including estimated severity level, estimated time of resolution and top 

10 similar cases shown in Fig. 10. Both predicted resolution time and top 10 similar 

cases can be obtained through API access. 

 

 

Fig. 8: Service request form 
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Fig. 9: Unresolved cases 

 

Fig. 10: Service request features, predicted resolution time and top 10 similar cases for 

unresolve case 
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In Fig. 10, a “Complete and update” button is shown at the top left corner of the 

interface. Users are able to resolve the case by clicking on the button. After a case 

has been resolved, the case will not exist in the unresolved table, whereas it will 

appear in the resolved table. The resolve table consists of a list of resolved cases as 

shown in Fig. 11. By selecting one of the service request IDs, users will also be 

presented with a similar interface as unresolved cases — estimated severity level, 

estimated time of resolution and top 10 similar cases. However, an additional text 

has been added in the prediction area where users are able to evaluate whether the 

case has been resolved on-time (estimated time of resolution is ahead of the actual 

time of resolution) or overdue (actual time of resolution is ahead of the estimated 

time of resolution) as shown in Fig. 12. 

 

Fig. 11: Service request features 

 

Fig. 12: Service request features, predicted resolution time and top 10 similar cases for 

resolve case 
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4. Evaluation and Discussion 

We have implemented the three non-linear regression models and evaluated the 

performance in terms of Root Mean Square Error (RMSE). The train-test split ratio 

is 80:20 as this is the standard split ratio and through experimental evaluation, we 

observed that this splitting yields the optimised result. 

Fig. 13 shows the actual versus the predicted plot for the train (left) and test 

(right) dataset across three non-linear regression algorithms: NN, ADA boost 

(middle) and RF (bottom). The closer the scatter plot touches the red line, the better 

the result is.  

 

 

Fig. 13: Actual versus the predicted plot of NN, Ada Boost and RF 

Fig. 14 depicts the residual plot for the train (left) and test (right) datasets across 

NN, ADA boost (middle) and RF (bottom). Similarly, the closer the red line touches 

the middle horizontal line (y=0), the better the result is. 
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Fig. 14: Residual plot for train (left) and test (right) dataset across NN, Ada Boost and RF 

Table 2 shows the RMSE evaluation result. From the result, we observed that 

the NN has the worst performance with 715957.265856 train RMSE in seconds and 

717630.768069 test RMSE in seconds. On the other hand, the RF has the best 

performance with 199414.986081 train RMSE in seconds and 341463.237641 test 

RMSE in seconds. One possible explanation is that the data is not large enough, due 

to the “diversity” of the data.  

At the same time, we can also see a significant performance boost for RF by 

adding the extremity feature as the attention. RF regressor with attention has a train 

RMSE in seconds of 61304.501257 and test RMSE in second of 130344.08803, 

improving 69.3% in train RMSE and 61.8% in test RMSE over regular RF regressor 

without attention. 

Table 2: Calculated entropy for each categorical variable 

Regressor 
Train RMSE in seconds 

(days:hours:minutes:seconds) 

Test RMSE in seconds 

(days:hours:minutes:seconds) 

Neural Network 715957.265856 (8:6:52:32) 717630.768069 (8:7:20:31) 

ADA Booster 242322.791599 (2:19:18:42) 358863.141741 (4:3:41:3) 

Random Forest 199414.986081 (2:7:23:34) 341463.237641 (3:22:51:3) 

Random Forest+ 

attention 
61304.501257 (0:17:1:44) 130344.08803 (1:12:12:24) 
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