
1

Improving the Prediction Resolution Time for

Customer Support Ticket System

Su-Cheng Haw 1, Kyle Ong 1, Lit-Jie Chew 1, Kok-Why Ng 1, Palanichamy

Naveen 1 and Elham Abdulwahab Anaam 2

1 Faculty of Computing and Informatics, Multimedia University,63100 Cyberjaya,

Malaysia
2 Faculty of Information Science and Technology, University Kebangsaan Malaysia,

43600 Bangi, Malaysia

sucheng@mmu.edu.my

Abstract. Processing customer queries on time will able to engage customer

satisfaction, and thus improve the customer retention of a company. Increasing

the labour to process these queries is certainly not an ideal solution. Advancing

technology such as artificial intelligence and machine learning has led to the goal

of automating this process, by predicting the time needed to resolve certain issues

based on past similar cases. In this paper, we present the architecture for the

Customer Support Ticket System to improve the accuracy of the predicted

resolution time. In this research, we first perform the one hot encoding on the

categorical variables, followed by feature selection. Next, a combination of

classification and regression models is being utilised in our prediction pipeline.

Experimental evaluations demonstrated that the Random Forest (RF) regression

model has the best performance as compared to Neural Network and ADA boost.

In addition, by adding the extremity feature as the attention, a significant

performance boost for RF is observed.

Keywords: prediction, predictive analytics, resolution time, customer support,

ticket system

ISSN 1816-6075 (Print), 1818-0523 (Online)

Journal of System and Management Sciences

Vol. 12 (2022) No. 6, pp. 1-16

DOI:10.33168/JSMS.2022.0601

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

2

1. Introduction

Predictive analytics refers to the use of historical data and statistical models to

predict unknown future events. Predictive analytics has become a very popular

concept, with its interest steadily rising over the past several years, thanks to the

growth of data and technology such as artificial intelligence, machine learning and

business intelligence. With predictive analytics, many organizations are now able to

utilize past and current data to reliably forecast trends and behaviour, seconds, days

or even years into the future (Roy et al., 2022; Zhang et al., 2021). In a business

environment, organizations can employ predictive analytics to discover and exploit

interesting patterns within data to detect potential market risks and opportunities.

Predictive analytics is based on the algorithm, pattern discovery, trend analysis and

artificial intelligence to enhance future predictions. Typically, predictive analytics

combines powerful analysis technologies with automated discovery algorithms to

forecast future events based on the analysis of historical data.

This paper aims to propose predictive analytics to estimate the resolution time

needed to solve a particular issue to enable the customer to know tentatively how

long duration is needed for their problem to be resolved.

2. Literature Review

The volume of support tickets has grown significantly due to the digitalization

efforts across all industries (Amin et al., 2020). Many companies face increasing

pressure in automating their STSs to increase customer satisfaction (Stein et al.,

2018’ Gupta et al., 2018) and to reduce costs (Al-Hawari et al., 2019).

With the emergence of Machine Learning, opens the possibility for automated

ticket classification and thus, enables the prediction of the resolution time needed to

solve the cases (Chagnon et al., 2017; Han and Sun, 2020). Many ML algorithms

existed in the STS system. Among them were Support Vector Machine (SVM),

Random Forrest (RF), Decision Tree (DT), K-Nearest Neighbor (KNN), Neural

Network (NN), Rule-based, Deep Learning (DL) and so on.

From the review, SVM and its variations yield the best accuracy, which is

between 63% (Revina et al., 2020) to 98% (Parmar et al., 2018). It is observed that

the accuracy depends heavily on the dataset employed (Parmar et al., 2018; Iscen

and Gurbuz, 2019; Yang, 2021).On the other hand, RF outperforms next with its

accuracy ranging from 78% to 92% as surveyed by Fuchs et al. (2021). They have

summarized the review based on 41 papers from well-established databases such as

IEEE, Scopus, Ebsco and Web of Science. Towards recently, DL shows promising

results especially to support of large training data (Bejarano et al., 2020).

Several other models existed. Among them are Multiple Linear Regression,

Adaboost Regression, Elastic Net Regression and Gradient Boosting Regression

(Bajariya et al., 2022; Malikireddy et al., 2021). By summarizing the related

literature, it seems that most of the boosting techniques outperformed the others.

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

3

Bayesian Network and Logistic Regression had good prediction effects while SVM

and LLM were relatively worse to handle large datasets (Jain et al., 2020). For this

research, we have chosen the evaluate the non-linear regression models, which are

NN, Adaboost and RF.

3. Methodology

Predictive analytics is used to make predictions about unknown future events. One

of the most common predictive analytics models is the regression model. For this

product, a regression model is used for resolution time prediction (RTP).

Resolution time is the time taken for an issue to be logged into until it is fully

resolved. Many problems of current Customer Relationship Management (CRM)

systems can be solved with RTP. First and foremost, RTP can improve the support

ticketing module, which allows companies to prioritize tickets — customers’

support interactions, assign them to reps and track their progress. Next, customers

are informed of the predicted resolution time, which allows them to wait for a

certain period of time until further updates. Finally, agents are able to utilize RTP to

effectively resolve a case, which improves agent performance and time management.

In this research, users can log or register service request cases into the system,

and the system will predict its resolution time. Besides, users will be also presented

with other information as well include estimated severity level, estimated time of

resolution and top 10 similar cases. Furthermore, users are also able to resolve the

case and evaluate whether the case has been resolved on time (estimated time of

resolution is ahead of the actual time of resolution) or overdue (actual time of

resolution is ahead of the estimated time of resolution). The architecture of the

product is shown in Fig. 1.

3.1. Offline Modeling

The predictive analytics’ offline phase also known as the offline modelling process,

consists of 5 different parts — data acquisition, data preprocessing, feature selection,

model training and model deployment. Python is the chosen programming language

for modelling and Jupyter notebook as its analytics environment. A variety of

libraries have been used, mainly pandas and scikit-learn (sklearn). Pandas is used

for data analysis and manipulation, while sklearn is used for predictive data analysis.

The architecture of the modelling process is shown in Fig. 2 below. The modelling

process will be explained along with the code snippets obtained from Jupyter

Notebook.

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

4

Fig. 1: Predictive analytics architecture

Fig. 2: Offline Predictive analytics architecture

3.1.1. Data Acquisition and Preprocessing

The real dataset is a CRM dataset obtained from a proprietary telecommunication

company in Malaysia. The dataset is in Comma-Separated-Value (CSV) format.

The dataset consists of 47 attributes and approximately 80,000 entries collected

from January 2018 to May 2019 (18 months). The data undergo a series of

preprocessing such as raw data transformation, data stripping, spelling correction,

upper-lowercase conversion, and data derivation.

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

5

3.1.2. Feature Selection

Feature selection or feature extraction is the process of selecting a subset of

features manually or automatically in modelling. The goals of feature selection are

usually to improve the model’s ability to generalize by removing irrelevant features

and reducing training time. Here, we performed feature selection automatically

through several statistical methods which include entropy, point biserial correlation

coefficient and chi square correlation coefficient.

Entropy is a measure of uncertainty or randomness of data. Entropy can be

calculated by using the formula below, where k is the number of categories. and 0 ≤

≤ .

The closer the value to , the higher the complexity of the data, and the

harder it is to draw any conclusion. Hence, we can utilize the idea of entropy to

determine the “diversity” of categorical data. By using the code snippets in Fig. 3,

we can identify the entropy for each categorical variable and eliminate variables

that have less than a normalized entropy threshold (0.3). Normalized entropy can be

calculated by dividing the entropy from the maximum entropy .

Besides, point biserial and chi squared correlation coefficient are another two

statistical methods in the feature selection process. Both methods result in a

coefficient value which varies between -1 (strong negative relationship) and +1

(strong positive relationship), with 0 implying no correlation.

describe = df.select_dtypes(["object", "category"]).describe().T
describe["entropy"] = describe.index.to_series().apply(
 lambda x:stats.entropy(df[x].value_counts(), base = 2)
)
describe["max_entropy"] = describe.index.to_series().apply(
 lambda x:math.log(df[x].nunique(),2)
)
describe["normalize_entropy"] = describe.index.to_series().apply(
 lambda x:stats.entropy(df[x].value_counts(), base = df[x].nunique())
)

display(describe.sort_values("normalize_entropy", ascending = False))

Fig. 3: Code snippets for entropy

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

6

Both point biserial and chi squared are univariate feature selection methods.

Point biserial is a correlation coefficient used when one variable is dichotomous (0

or 1) and another variable is continuous, while chi squared is a correlation

coefficient used when both variables are dichotomous. Since most of our categorical

values are not dichotomous or 2-dimensional, we first encoded all categorical

features as a one-hot numeric array. Also, it is encouraged to transform categorical

columns into numeric representation, as most machine learning algorithms are not

able to work with categorical data in string format directly. One hot encoding

separates categorical columns into many columns depending on the number of

categories present in that column. For example, if column A has 3 unique categories

while column B has 4 unique categories, then one-hot-encoding separated column A

into 3 unique columns and column B into 4 unique columns, where each separated

column only contains dichotomous values - No (0) or Yes (1).

After performing one hot encoding on the categorical variables, feature

selection is performed. We utilized one of the univariate feature selection

transformers provided by sklearn — SelectFdr() where features with low false

discovery rates are kept. Point biserial and chi squared will also perform null

hypothesis tests on each feature to the label (target variable) and return a coefficient

value and a p-value. SelectFdr() will select features based on criteria — p-value

larger than the alpha-value (0.05) or coefficient-value smaller than + or - 0.1 will

not be selected.

3.1.3. Model Training

A combination of classification and regression models have been used in our

prediction pipeline. Classification model is used to predict (classify) extremity,

which will be later concatenated as an additional feature for resolution time

regression. The classified extremity is based on the table guideline shown in Table 1.

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

7

Table 1: Calculated entropy for each categorical variable

Attributes entropy max_entropy normalize_entropy
less than 0.3 and

eliminated?

insert_by_name 4.436938 5.087463 0.872132 False

group 4.757756 6.108524 0.778871 False

sub_group 6.133096 7.965784 0.769930 False

category 1.827737 2.584963 0.707065 False

problem_location 5.298039 7.658211 0.691812 False

sub_category_3 4.975126 7.475733 0.665503 False

sub_category_2 3.971061 6.539159 0.607274 False

division 2.520255 4.459432 0.565152 False

sub_category_1 3.323913 6.044394 0.549917 False

source 1.168561 2.321928 0.503272 False

status 1.958831 4.321928 0.453231 False

type_call 0.873446 2.000000 0.436723 False

root_cause 2.582387 7.417853 0.348131 False

store_type 1.122447 3.906891 0.287299 True

priority 0.001453 2.000000 0.000727 True

product 0.000305 1.000000 0.000305 True

The experiment was performed with 70 percent training set and 30 percent

testing set. At the same time, we utilized sklearn’s GridSearchCV for

hyperparameter tuning. GridSearchCV performs an exhaustive search over specified

parameter values for an estimator.

3.1.3.1. Classification

We first performed classification modelling. The chosen classification model is a

decision tree classifier with one-vs-rest multiclass classification strategy. One-vs-

rest multiclass classification strategy consists in fitting one classifier per class,

where the class is fitted against all the classes. For example, by applying one-vs-rest

multiclass strategy on 3 colour classes — red, green and blue, will generate 3 binary

classifiers — red or non-red classifier, green or non-green classifier and blue or

non-blue classifier. In addition to its computational efficiency, one advantage of this

approach is interpretability, since each class is represented by one and only one

classifier. Fig. 4 shows one of the classifiers in the one-vs-rest multiclass strategy,

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

8

while Fig. 5 shows the classification confusion matrix for both the training and

testing set.

Fig. 4: One of the decision tree in one-vs-rest multiclass strategy

Fig. 5: Classification confusion matrix

3.1.3.2. Regression

After completing the classification modelling, we proceeded to regression

modelling. The classified extremity will be concatenated as an additional feature for

resolution time regression. The classified extremity also acts as an “attention” for

the regression model. The “attention” effect allows the regression model to learn

easier, as it enhances the important parts of the input data — extremity, and fades

out the rest. The predicted extremity also has a strong positive relationship with the

resolution time. In addition, we also removed any incorrect classified extremity data.

The chosen regression model is a RF regressor. RF regressor has been shown to

outperform any other experimented regressor due to its structures and nonlinear

nature. RFs are able to aggregate many decision trees to limit overfitting as well as

error due to bias and therefore yield better results. Fig. 5 shows the regression

experimental plot which includes the true versus prediction plot and residual plot

for both the training and testing set.

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

9

3.1.4. Model Development

After completing the model training, the trained model pipeline is then deployed

into the product (system), which is ready to be used in the online phase. The online

phase utilizes the model pipeline trained in the offline phase for resolution time

prediction (RTP) (see Figure 7). The system is mainly for admin-use. The backend

of the system is coded using Flask, a light-weight microframework built on top of

Python programming language. The front-end website is built with bootstrap 4. At

the same time, we utilized jquery for API access. The webpage consists of 2 main

parts; (1) prediction and (2) evaluation.

Fig. 6: Regression experimental plots

Fig. 7: Offline predictive analytics architecture

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

10

In (1), users can register a new service request into the system via a service

request form as shown in Fig. 8. Through service request registration, the system

can obtain the predicted resolution time from the trained model pipeline. The

service request will be saved into the database along with the predicted resolution

time. Then, the newly registered service request will be presented along with other

unresolved cases in table format as shown in Fig. 9. By selecting one of the service

request IDs, users will be presented with service request features as well as other

information including estimated severity level, estimated time of resolution and top

10 similar cases shown in Fig. 10. Both predicted resolution time and top 10 similar

cases can be obtained through API access.

Fig. 8: Service request form

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

11

Fig. 9: Unresolved cases

Fig. 10: Service request features, predicted resolution time and top 10 similar cases for

unresolve case

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

12

In Fig. 10, a “Complete and update” button is shown at the top left corner of the

interface. Users are able to resolve the case by clicking on the button. After a case

has been resolved, the case will not exist in the unresolved table, whereas it will

appear in the resolved table. The resolve table consists of a list of resolved cases as

shown in Fig. 11. By selecting one of the service request IDs, users will also be

presented with a similar interface as unresolved cases — estimated severity level,

estimated time of resolution and top 10 similar cases. However, an additional text

has been added in the prediction area where users are able to evaluate whether the

case has been resolved on-time (estimated time of resolution is ahead of the actual

time of resolution) or overdue (actual time of resolution is ahead of the estimated

time of resolution) as shown in Fig. 12.

Fig. 11: Service request features

Fig. 12: Service request features, predicted resolution time and top 10 similar cases for

resolve case

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

13

4. Evaluation and Discussion

We have implemented the three non-linear regression models and evaluated the

performance in terms of Root Mean Square Error (RMSE). The train-test split ratio

is 80:20 as this is the standard split ratio and through experimental evaluation, we

observed that this splitting yields the optimised result.

Fig. 13 shows the actual versus the predicted plot for the train (left) and test

(right) dataset across three non-linear regression algorithms: NN, ADA boost

(middle) and RF (bottom). The closer the scatter plot touches the red line, the better

the result is.

Fig. 13: Actual versus the predicted plot of NN, Ada Boost and RF

Fig. 14 depicts the residual plot for the train (left) and test (right) datasets across

NN, ADA boost (middle) and RF (bottom). Similarly, the closer the red line touches

the middle horizontal line (y=0), the better the result is.

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

14

Fig. 14: Residual plot for train (left) and test (right) dataset across NN, Ada Boost and RF

Table 2 shows the RMSE evaluation result. From the result, we observed that

the NN has the worst performance with 715957.265856 train RMSE in seconds and

717630.768069 test RMSE in seconds. On the other hand, the RF has the best

performance with 199414.986081 train RMSE in seconds and 341463.237641 test

RMSE in seconds. One possible explanation is that the data is not large enough, due

to the “diversity” of the data.

At the same time, we can also see a significant performance boost for RF by

adding the extremity feature as the attention. RF regressor with attention has a train

RMSE in seconds of 61304.501257 and test RMSE in second of 130344.08803,

improving 69.3% in train RMSE and 61.8% in test RMSE over regular RF regressor

without attention.

Table 2: Calculated entropy for each categorical variable

Regressor
Train RMSE in seconds

(days:hours:minutes:seconds)

Test RMSE in seconds

(days:hours:minutes:seconds)

Neural Network 715957.265856 (8:6:52:32) 717630.768069 (8:7:20:31)

ADA Booster 242322.791599 (2:19:18:42) 358863.141741 (4:3:41:3)

Random Forest 199414.986081 (2:7:23:34) 341463.237641 (3:22:51:3)

Random Forest+

attention
61304.501257 (0:17:1:44) 130344.08803 (1:12:12:24)

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

15

References

Al-Hawari, F. & Barham, H. (2019). A machine learning based help desk system
for IT service management. Journal of King Saud University - Computer and
Information Sciences

Amin, K., Kapetanakis, S., Althoff, K. D., Dengel, A., & Petridis, M. (2018).
Dynamic process workflow routine using deep learning. SGAI International
Conference on Artificial Intelligence. DOI:10.1007/978-3-030-04191-5

Bajariya, A. & Jaiminee, J. P. (2022). A Review on text supervised learning
methods for classification of it ticket and bugs. Second International Conference on
Artificial Intelligence and Smart Energy, 903-907.
DOI:10.1109/ICAIS53314.2022.9742981

Bejarano, G., Kulkarni, A., Luo, X., Seetharam, A., & Ramesh, A. (2020). DeepER:
A deep learning based emergency resolution time prediction system. International
Conferences on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics
(Cybermatics), 490-497. DOI:10.1109/iThings-GreenCom-CPSCom-SmartData-
Cybermatics50389.2020.00090

Chagnon, J. C., Trapp, A. C., Andrew, C., & Soussan, D. (2017). Creating a
decision support system for service classification and assignment through
optimization

Fuchs, S., Drieschner, C., & Wittges, H. (2022). improving support ticket systems
using machine learning: A literature review. Hawaii International Conference on
System Sciences, 1893-1902

Gupta, M., Asadullah, A., Padmanabhuni, S., & Serebrenik, A. (2018). Reducing
user input requests to improve IT support ticket resolution process. Empirical
Software Engineering, 23(3), 1664-1703

Han, J. & Sun, A. (2020). DeepRouting: A deep neural network approach for ticket
routing in expert network. IEEE International Conference on Services Computing

Iscen, E. S. & Gurbuz, M. Z. (2019). A comparison of text classifiers on it incidents
using WEKA. 4th International Conference on Computer Science and Engineering

Jain, H., Khunteta, A., & Srivastava, S. (2020). Churn prediction in
telecommunication using logistic regression and logit boost. Procedia Computer
Science, 167, 101-112. DOI:10.1016/j.procs.2020.03.187

Malikireddy, V. P. & Kasa, M. (2021). Customer churns prediction model based on
machine learning techniques: A systematic review, atlantis highlights in computer,
4, 167-174. DOI:10.2991/ahis.k.210913.021

Haw et al., Journal of System and Management Sciences, Vol. 12 (2022) No. 6, pp. 1-16

16

Parmar, P. S., Biju, P. K., Shankar, M., & Kadiresan, N. (2018). Multiclass text
classification and analytics for improving customer support response through
different classifiers. International Conference on Advances in Computing,
Communications and Informatics

Roy, D., Srivastava, R., Jat, M., & Karaca, M. S. (2022). A complete overview of
analytics techniques: descriptive, predictive, and prescriptive. EAI/Springer
Innovations in Communication and Computing. Springer, Cham. DOI:10.1007/978-
3-030-82763-2_2

Revina, A., Buza, K., & Meister, V.G. (2020), IT ticket classification: The simpler,
the better, IEEE Access, 8, 193380-193395

Stein, N., Flath, C., & Bohm, C. (2018). Predictive analytics for application
management services. European Conference on Information Systems,
https://aisel.aisnet.org/ecis2018_rp/186/

Yang, L. (2021). Fuzzy output support vector machine based incident ticket
classification. IEICE Transactions on Information and Systems, E104.D(1), 146-
151

Zhang, J. Z., Srivastava, P. R., Sharma, D., & Eachempati, P. (2021). Big data
analytics and machine learning: A retrospective overview and bibliometric analysis.
Expert Systems with Applications, 184. DOI:10.1016/j.eswa.2021.115561

