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Abstract. This study aimed to apply Support Vector Regression (SVR), Ridge 

Regression (RR) and Lasso Regression (LR) algorithms to the Fama-French five-

factor model, which includes market (Mkt), size (SML), value (HML), profitability 

(RMW) and investment (CMA), in order to explain fluctuations in expected returns 

of diversified portfolios. The study examined the stock market in the US from July 

1963 to September 2021. The stocks are grouped into ten portfolios by industry and 

separated into two phases. In phase 1, this study selected the optimal parameters 

for the algorithms SVR, RR and LR. In phase 2, the researchers used the optimal 

parameters obtained in phase 1 to set up four forecasting models using four 

different algorithms: SVR, RR, LR and OLS (Ordinary Least Squares). The rolling 

window approach is used to generate forecasts. Consequently, the Lasso 

Regression algorithm produces the smallest average Root Mean Squared Error 

(RMSE); however, this difference is not statistically significant through the F-test. 
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1. Introduction 

The Capital Asset Pricing Model (CAPM) was introduced in the early 1960s by  

CAPM quantifies the correlation between an asset's systematic risk and the asset's 

expected rate of return in a holding period. The capital asset pricing model is based 

on the portfolio investment theory of Markowitz (1952). The regression formula is as 

follows:  

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = ai + (𝑅𝑚𝑡 − 𝑅𝑓𝑡) + 𝑒𝑖𝑡 (1), where: 𝑅𝑖𝑡 is the expected return of asset i in 

period t, 𝑅𝑚𝑡 is the expected return of the market in period t, and 𝑅𝑓𝑡 is the risk-free 

rate 

Since then, CAPM has become a widely used instrument in portfolio risk 

management. When investing in a risky asset, investors utilise the CAPM to 

determine the minimum rate of return. CAPM's simplicity and ease of use for 

estimation are two of its notable features. However, CAPM uses too many 

assumptions, and these assumptions are difficult to meet in practice. As a result, some 

criticisms about the empirical validity of the CAPM have arisen. Roll (1977) was one 

of the first to criticise CAPM. He argues that since it is challenging to construct a 

portfolio that includes all assets traded in the capital markets, the CAPM has no 

practical value. A few years later, Banz (1981) discovered the size effect, which 

indicates that some small firms, in terms of market capitalisation, seem to earn a 

higher average return than other large-scale ones. 

In the following years, E. Fama and French (1992) studied several factors affecting 

return rate, including beta coefficient, size, financial leverage, P/E ratio, B/M ratio, 

and concluded that the size and B/M ratio have the most significant influence on the 

return rate of listed companies in the US. Eugene F. Fama and French (1993) 

proposed a three-factor model as follows: 

𝑅𝑖𝑡 − 𝑅ft = 𝑎𝑖 + 𝑏𝑖 (𝑅mt − 𝑅ft) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖H𝑀L𝑡 + 𝑒𝑖𝑡 (2), where: 𝑆𝑀𝐵𝑡 is the 

return on the diversified small-cap portfolio minus the large-cap one, 𝑆𝑀𝐵𝑡 is the 

return on a high B/M portfolio minus the low B/M one. 

A test of the three-factor model carried out in the US market from 1963 to 1990 shows 

that the three-factor model explains better than the previously proposed CAPM (R2 

coefficient of the three-factor model is approximately 90% while CAPM is only 70%). 

In 2015, Fama and French continued to propose a five-factor model based on the 

previous three-factor model and added two factors, including profitability (RMW) 

and investment (CMA) (Eugene F Fama & French, 2015). The model's formula is as 

follows: 

𝑅𝑖𝑡 − 𝑅ft = 𝑎𝑖 + 𝑏𝑖 (𝑅mt − 𝑅ft) + 𝑠𝑖𝑆𝑀𝐵𝑡 + ℎ𝑖H𝑀L𝑡 + 𝑟𝑖𝑅𝑀𝑊𝑡 + 𝑐𝑖𝐶𝑀𝐴𝑡 + 𝑒𝑖𝑡 

(3), where RMW𝑡 is the return of the robust operating profitability portfolio minus 

the weak operating profitability portfolio, CMA𝑡 is the difference of return between 

the conservative investment portfolios and the aggressive investment portfolios. 

Fama and French then examined model (3) in the United States from July 1963 to 

December 2013 and found that it was more effective than the three-factor model, with 
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the R2 coefficient ranging between 71% and 94% for different portfolios. Non-linear 

expansion in asset pricing models has been the focus of research in recent years. For 

example, Dittmar (2002) applied the non-linear pricing kernel technique to estimate 

CAPM. Gogas et al. (2018) have applied support vector regression (SVR) under the 

framework of CAPM, Fama-French three and five-factors and concluded that SVR is 

more effective than the Ordinary Least Square method (OLS). Chen et al. (2019) used 

deep learning to estimate the individual securities' returns and proved that it is more 

effective than the linear factor model. 

One of the limitations of the previous studies is the method of dividing the data set. 

Due to the characteristics of the time series, the model's parameters also change from 

time to time. Therefore, the rolling window method should be employed to predict 

time series. Additionally, the duration of the historical data should also be considered 

in light of the sample's representativeness. This study uses the rolling window 

approach with a historical data length of five years. 

2. Literature review 

2.1. The Fama-French Five-Factor Model 

The Fama-French three-factor model describes the relationship between expected 

return rate, size (market capitalisation), and B/M ratio. In 1933, the three-factor model 

surpassed the CAPM model as it explained some components that the CAPM could 

not. The three-factor model is tested by time-series regression of formula (2); the 

estimated coefficients bi, si and hi should be statistically significant; the intercept 

coefficient ai expected to be statistically insignificant for portfolios i. 

Novy-Marx (2013); Titman et al. (2004) proved that the model is imperfect for 

explaining the volatility of expected return rate due to the lack of elements coming 

from the profitability and investment. This evidence is the driving force for Fama-

French's research. Eugene F Fama and French (2015) have upgraded the three-factor 

model by adding two factors related to profit and investment. The Fama-French five-

factor model is described in Formula (3). The bi, si, hi, ri, and ci coefficients measure 

the sensitivity of volatility in expected return rate toward volatility in respective 

factors. The intercept ai is expected to be 0 for portfolios i. 

The experimental results of Fama-French in the US market show that the GRS test 

does not support the five-factor model, but the obtained R2 is relatively high, ranging 

from 71% to 94% (Gibbons et al., 1989). Cakici (2015) used historical data from June 

1992 to December 2014 to examine a Fama-French five-factor model in 23 developed 

stock markets. The author compares its performance to that of three-factor and four-

factor models in explaining the returns of portfolios. Research findings indicate that 

the five-factor model in the North American, European, and Global markets is similar 

to that in the US; however, the two new factors (profit and investment) are not 

statistically significant in the Japan and Asia Pacific markets. Martinsa and Eid Jr 

(2015) assessed the Fama-French five-factor model in the Brazilian market from 
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January 2000 to December 2012 and found it is more useful than the three-factor 

model. Foye (2018) evaluated whether the Fama-French five-factor model can better 

describe the emerging markets equity returns than the three-factor model. The author 

examined a sample of 18 countries from three different regions between December 

1996 and June 2016. Furthermore, this research examines the performance of the five-

factor model across a variety of emerging markets. As a result, the five-factor model 

consistently outperforms the three-factor model in Eastern Europe and Latin America. 

2.2. Support Vector Regression 

Support Vector Machine (SVM) is a supervised learning algorithm that solves the 

data classification problem (Cortes & Vapnik, 1995). The idea of SVM is to map the 

original data set to a high dimensional space by the mapping 𝛷, which is convenient 

for data classification. SVM computes an optimal hyperplane (H) from the training 

data set. Assume that X is a matrix of independent variables and Y is a categorical 

variable vector (𝑦𝑖 ∈ {−1,1}) . Therefore, the hyperplane is represented by the 

following equation: 𝑎𝑇𝛷(𝑥𝑘) + 𝑏 = 0 . Please assume that the input data can be 

perfectly separable; then, by adjusting the suitable parameters, this study can 

transform the problem so that the shortest distance to (H) is always equal to 1 on both 

sides. Thus, the SVM problem is to determine the model's parameters a and b. 

Considering particular observation i, if 𝑎𝑇𝛷(𝑥𝑖) + 𝑏 ≥ 1, 𝑦𝑖 = 1, on the other hand, 

if 𝑎𝑇𝛷(𝑥𝑖) + 𝑏 ≤ −1 ,𝑦𝑖 = −1 . An equivalent way is as follows:  𝑦𝑖[𝑎𝑇𝛷(𝑥𝑖) + 𝑏] ≥

1(4) . Minimising ‖𝑎‖  and b under constraint (4), this study obtain the optimal 

parameters of the classification model. Cortes and Vapnik (1995) proposed the 

classification condition as 𝑐𝑙𝑎𝑠𝑠(𝑥𝑖) = 𝑠𝑔𝑛(𝑎𝑇𝛷(𝑥𝑖) + 𝑏). Because the assumption on 

the existence of a perfectly separated hyperplane (H) is unrealistic, Cortes and Vapnik 

(1995) proposed to add a soft margin that allows some misclassified observations. 

The constraint becomes:  𝑦𝑖[𝑎𝑇𝛷(𝑥𝑖) + 𝑏] ≥ 1 − 𝜉𝑖(5) . Then, the SVM problem 

becomes  𝑚𝑖𝑛
𝑤,𝑏

(
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑘

𝑁
𝑘=1 ) , 𝜉 ≥ 0(6) with the constraint (5), where C is a 

hyperparameter in the classification model. Continuing to transform (5) under Wolfe 

(1961): 𝑚𝑖𝑛
𝛼

(
1

2
𝛼𝑇𝑀𝛼 − 𝑒𝑇𝛼), where, the function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝛷(𝑥𝑖)𝑇𝛷(𝑥𝑗) is called 

the kernel function and 𝑦𝑇𝛼 = 0,0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑒𝑇 = [1 2 . . . 𝑁] , M is the square 

matrix with components  𝑚𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗). The classification result will be based 

on the following equation (1):  

𝑐𝑙𝑎𝑠𝑠(𝑥𝑖) = 𝑠𝑔𝑛(𝑎𝑇𝛷(𝑥𝑖) + 𝑏) = 𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑛
𝑖=1 )                        

           (1)
 

With the same idea as the SVM algorithm, the SVR algorithm is also implemented 

similarly, except that the dependent variable is a continuous variable that takes on a 

real value. However, according to Patel et al. (2015); Qu and Zhang (2016), instead 

of finding the hyperplane as in (5), the SVR algorithm develops a regression function 

𝑓(𝑥, 𝑎) = 𝑎𝑇𝑥 + 𝑏. A boundary 𝜀  is introduced as (2): 
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|𝑦 − 𝑓(𝑥, 𝑤)|𝜀 = {
0, |𝑦 − 𝑓(𝑥, 𝑤)| ≤ 𝜀

|𝑦 − 𝑓(𝑥, 𝑤)| − 𝜀, |𝑦 − 𝑓(𝑥, 𝑤)| > 𝜀
                        

        (2)
 

SVR method is to minimise the R by 𝜀 and  ‖𝑤‖2 in the following equation (3): 

𝑅 =
1

2
‖𝑤‖2 + 𝐶(∑ |𝑦 − 𝑓(𝑥𝑖 , 𝑤)|𝜀

𝑁
𝑖=1 )                                                   

    (3)
 

2.3. Ridge Regression 

A method called Ridge regression may be used to estimate multiple-regression model 

coefficients in situations when the independent variables are closely linked (Hilt & 

Seegrist, 1977). It has a variety of applications in various areas, including 

econometrics, engineering and chemistry (Gruber, 2017), which was proposed the 

idea for the first time in 1970 (Hoerl & Kennard, 1970a, 1970b). This method was 

the culmination of decade-long research into the topic of Ridge analysis. In the case 

of linear regression models with multi-collinear independent variables, Ridge 

regression was developed to overcome the imprecision of least square estimators. It 

is possible to get a more accurate estimation of ridge parameters by creating an RR 

that has lower variance and mean square error than the prior least square estimators 

(Jolliffe, 2011).  

In conventional linear regression, 𝑛 × 1  column vector y is projected onto the 

column space of the 𝑛 × 𝑝 design matrix X, whose columns are highly correlated. The 

ordinary least squares estimator of the coefficients 𝛽 ∈ 𝑅𝑝×1 by which the columns 

are multiplied to get the orthogonal projection 𝑋𝛽 is: 𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 , where XT is 

the transpose of X. 

By comparison, the ridge regression estimator is 𝛽𝑟𝑖𝑑𝑔𝑒̂ = (𝑋𝑇𝑋 + 𝑘𝐼𝑝)
−1

𝑋𝑇𝑦, in 

which Ip denotes the 𝑝 × 𝑝 identity matrix, and k is small. 

2.4. Lasso Regression 

Lasso was independently created in 1986 in geophysics literature, building on past 

work that employed the penalty for fitting and penalising the coefficients. Based on 

Breiman's nonnegative garrote, statistician Tibshirani independently revisited and 

popularised (Tibshirani, 1996). Before Lasso regression, Stepwise selection was the 

most popular approach for selecting covariates. Only in some situations, such as when 

a few variables have a major impact on the result, can this method improve prediction 

accuracy. Other times, it may worsen the accuracy of the prediction. 

To improve prediction accuracy, ridge regression was considered the most popular 

method at the time. Reducing the sum of the squares of regression coefficients to be 

smaller than a predetermined value reduces overfitting and hence decreases 

prediction error using a ridge regression. There is no covariate selection, hence the 

model's interpretability is not improved by it. Both of these objectives may be 

achieved using Lasso, which constrains the sum total of the absolute values of the 

regression coefficients to less than the fixed value, thereby eliminating certain 
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coefficients and avoiding their impact on prediction outcomes. Ridge regression, 

which similarly minimises the coefficients' size, is similar to this principle; however, 

Ridge Regression tends to zero out a smaller number of coefficients. 

Linear regression mentions the linear relationship between the independent and 

dependent variables. Assuming there are k independent variables x1, x2, …, xk and 

one dependent variable y, the overall regression function has the form: 𝑦 = 𝛽0 +

𝛽1𝑥1+. . . +𝛽𝑘𝑥𝑘 + 𝜀(1). With data consisting of N observations, the Lasso regression 

method is to find the estimated coefficients 𝛽𝑖̂ by solving the optimisation problem:  

𝑚𝑖𝑛
𝛽0,𝛽

(∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥ij𝛽𝑖
𝑘
𝑗=1 )

2𝑁
𝑖=1 )  subject to ∑ |𝛽𝑗|𝑘

𝑗=1 ≤ 𝐶 , where C is a hyper 

parameter and 𝛽 = (𝛽1, . . . , 𝛽𝑘) is the vector of regression coefficients. 

Alternatively, the matrix form is  𝑚𝑖𝑛
𝛽0,𝛽

(‖𝑦 − 𝛽0 + 𝑋𝛽‖2
2)  subject to ‖𝛽‖1 ≤ 𝐶 , 

where 𝑋 = [1𝑥1𝑥2. . . 𝑥𝑘];  𝑦 = [𝑦]   are matrices written in columns and ‖𝑎‖𝑝 =

(∑ |𝑎|𝑝𝑛
𝑖=1 ) is the standard 

p
 norm in Euclidean space. Normalising the variables, it 

can rewrite as 𝑚𝑖𝑛
𝛽

(
1

𝑁
‖𝑦 − 𝑋𝛽‖2

2)  subject to ‖𝛽‖1 ≤ 𝐶  or the Lagrangian form 

𝑚𝑖𝑛
𝛽

(
1

𝑁
‖𝑦 − 𝑋𝛽‖2

2 + 𝜆‖𝛽‖1) 

3. Methods 

Monthly data collected from French library in the US market from July 1963 to 

January 2021 includes return series of Mkt, HML, RMW, SMB, CMA and ten 

weighted portfolios grouped by industry, including NoDur, Durbl, Manuf, Enrgy, 

HiTec, Telcm, Shops, Hlth, Utils, Other. In addition, the risk-free rate used is the 1-

month T-bill. The following table summarises the variables used in the study (Eugene 

F Fama & French, 2015). 

The study split data into two sets: the first covers the period from 7/1963 to 12/1898, 

and the second covers from 1/1990 to 9/2021. The first set is the optimal parameters 

for the SVR, RR, and LR algorithms. This study includes some potential parameters, 

as shown in Table 2. 

This research chose the default degree 3 for the polynomial kernel and the epsilon 

of 0.2 for the radial kernel. This study has a total of 25 potential models predicting 

for ten portfolios. These models are filtered, leaving three models corresponding to 3 

algorithms. Because financial data change over time, this study uses the rolling 

window method with a fixed length of five years for datasets (1) and (2), as shown in 

Figure 1. RMSE criterion is employed to compare forecast performance  where 

𝑌𝑡 , 𝑌𝑡  ̂is the real value and predicted value, respectively.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑡−𝑌̂𝑡)2𝑛

𝑡=1

𝑛
, 

The chosen model with the smallest RMSE is applied in forecasting the dataset (2). 

The forecast results compared to the regression model. Finally, this research uses F-

distribution for testing the models' performances.  

Table 1. Variable description 



Khoa et al. / Journal of System and Management Sciences Vol. 11 (2021) No. 4, pp. 47-64 

53 
 

Variable Description 

Mkt A portfolio's excess return above the market's 

HML Differential performance of high and low B/M diversified stock portfolios 

RMW Returns on a diverse portfolio of high and low profitability equities. 

SMB 
Return on small-cap stock holdings less return on large-cap company 

holdings from diverse portfolios 

CMA 
Low- and high-investment company stock returns may be prudent and 

aggressive, depending on the investor's preference. 

NoDur   
The weighted return rate on portfolios of non-durable goods - Food, 

Tobacco, Textiles, Leather, Toys 

Durbl   
The weighted return rate on portfolios of durable goods - Automobile, TV, 

Furniture, Home appliances  

Manuf   

The weighted return rate on portfolios of manufacturing industries - 

Machinery, Trucks, Aircraft, Chemicals, Oil, gas and coal extraction and 

byproducts   

Enrgy  
The weighted return rate on portfolios of energy industries – Gas, oil, 

gasoline  

HiTec 
The weighted return rate on portfolios of high-tech industries – Computers, 

software and electronics  

Telcm 
The weighted return rate on portfolios of telecommunication industries – 

Television, phones and data transmission services   

Shops 
The weighted return rate on portfolios of commercial industries – 

Wholesales, retails and some services (laundry, repair shops)  

Hlth 
The weighted return rate on portfolios of medical industries – Healthcare, 

medical devices and pharmaceuticals  

Utils The weighted return rate on portfolios of social utility industries  

Other 
The weighted return rate on portfolios of other industries – Mining, 

transportation, hospitality, entertainment, finance  

Table 2. Potential parameters of the models. 

RR LR SVR 

k = 0.01, 0.05, 0.1, 0.15, 

0.2, 0.25, 0.3, 0.35, 0.4 

and 0.5   

λ = 0.01, 0.05, 0.1, 0.15, 

0.2, 0.25, 0.3, 0.35, 0.4 

and 0.5   

kernel function: linear, radial, 

poly (polynomial) 

cost: 0.1, 0.5, 1, 5, 10 

4. Results 

4.1. Descriptive statistics 

The results in Table 3 showed that most portfolios have a higher average excess return 
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than the market portfolio (Mkt), except for the Utils portfolio, because the Mkt 

subtracted the risk-free rate, and the other portfolios did not. On the other hand, these 

sub-portfolios overall risk is mostly higher than that of the market portfolio, which is 

consistent with the risk-reward trade-off principle. As for the T-bill rate, during the 

Covid-19 pandemic, FED has loosened its monetary policy to stimulate the economy. 

Accordingly, the basic interest rate decreased significantly, sometimes to zero, during 

this period. 

     

                             

 

 

 

Fig. 1: The rolling window diagram. 

Table 3. Descriptive statistics.  

  Mean St. Dev. Min Pctl(25) Pctl(75) Max 

Mkt 0.580 4.450 -23.240 -1.950 3.415 16.100 

SMB 0.236 3.035 -15.390 -1.505 2.075 18.380 

HML 0.271 2.904 -14.020 -1.405 1.700 12.480 

RMW 0.257 2.196 -18.760 -0.815 1.270 13.380 

CMA 0.263 1.978 -6.780 -1.000 1.470 9.060 

RF 0.368 0.267 0.000 0.150 0.510 1.350 

NoDur 0.776 4.236 -21.290 -1.530 3.440 18.580 

Durbl 0.733 6.720 -33.200 -3.080 4.185 45.000 

Manuf 0.716 4.918 -27.620 -2.010 3.740 17.060 

Enrgy 0.703 5.926 -34.760 -2.590 4.080 32.110 

HiTec  0.825 6.340 -26.190 -2.870 4.640 20.490 

Telcm  0.600 4.607 -16.490 -1.990 3.315 21.070 

Shops  0.809 5.120 -28.330 -2.220 3.960 25.720 

Hlth  0.819 4.802 -20.720 -2.065 3.675 29.250 

Utils  0.560 4.004 -13.280 -1.690 2.980 18.570 

Other 0.691 5.286 -23.870 -2.235 3.850 19.970 

The location characteristics of the factors and portfolios are shown in Figure 2. 

Time series – dataset (1) 

1-60 61 

2-61 62 

3-62 63 



Khoa et al. / Journal of System and Management Sciences Vol. 11 (2021) No. 4, pp. 47-64 

55 
 

Most of the portfolios and factors distributions are symmetrical, where the Durbl and 

Enrgy portfolios have a wider range of values than the rest, which demonstrates an 

overall risk relatively higher than that of the rest. In terms of stability, the Utils 

portfolio is less volatile than the rest. 

 

Fig. 2: Distribution of return rate of portfolios. 

4.2. The correlation between the variables 

Based on the correlation graph in Figure 3, the portfolios mostly correlate strongly to 

the explanative factors, especially the market factor (Mkt). In which, the Enrgy and 

Utils portfolios correlate relatively weaker than the other portfolios, in particular, 

Utils' correlation is statistically insignificant to the factors SMB, RMW, CMA; 

however, the Enrgy portfolio's correlation is statistically significant to 5 factors at 

10%; the relative correlation is weak.  

According to the correlation graph in Figure 3, most portfolios strongly correlate 

with explanatory factors, especially the market factor (Mkt). The two portfolios 

Enrgy and Utils, have a relatively weaker correlation than the rest. Specifically, Utils 

has no statistical significance with SMB, RMW, CMA; although the Enrgy portfolio 

has a statistically significant correlation with all five factors at 10%, the correlation 

is relatively weak. 

In general, the correlation between factors is relatively weaker than the correlation 

between portfolios. Among the correlation pairs between factors, the correlation 

between the factor HML and CMA is the strongest (0.67) and is statistically 

significant at less than 1%. The remaining pairs have low correlation (with absolute 

values being less than 0.4). 
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Fig. 3: Correlations between portfolios. 

4.3. Forecast results of the dataset (1) 

After running 25 forecasting models for ten portfolios in stage 1. Table 4 shows that 

the SVR algorithm with linear kernel outperforms the radial and polynomial functions. 

Among the input parameters, the SVR algorithm with a linear kernel and a cost of 0.5 

produced the best results, with an average RMSE of 2.57 for ten portfolios. Moreover, 

the model has accurately predicted two portfolios, Manuf and Other, with an RMSE 

of less than 1.5, while the Enrgy portfolio had the highest RMSE (3.97).  
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Table 4. The RMSEs corresponding to the parameters of SVR models 

SVR Model 

Kernel Cost 
NoD

ur 

Durb

l 

Man

uf 

Enrg

y 

HiTe

c 

Telc

m 

Shop

s 
Hlth  Utils 

Othe

r 

avera

ge 

linear 0.1 2.04 2.85 1.56 4.01 2.61 2.95 2.8 3.11 2.65 1.39 2.6 

radial 0.1 4.22 5.03 4.42 5.53 5.15 3.88 5.19 4.88 3.92 4.58 4.68 

poly 0.1 5.62 7.58 6.79 5.91 8.4 5.4 7.1 6.27 3.76 6.99 6.38 

linear 0.5 2 2.77 1.49 3.97 2.6 2.94 2.78 3.13 2.64 1.39 2.57 

radial 0.5 3.57 4.3 3.69 5.16 4.46 3.56 4.45 4.23 3.51 3.66 4.06 

poly 0.5 8.37 11.52 10.95 7.84 13.68 8.41 13.96 9.72 5.24 12.86 10.25 

linear 1 2.01 2.78 1.49 3.96 2.61 2.98 2.79 3.13 2.67 1.39 2.58 

radial 1 3.45 4.16 3.51 5.09 4.3 3.49 4.29 4.1 3.48 3.5 3.94 

poly 1 10.05 13.81 14.2 7.81 15.52 10.63 17.17 11.7 5.97 15.5 12.24 

linear 5 2.01 2.79 1.5 3.95 2.63 3.01 2.79 3.14 2.67 1.4 2.59 

radial 5 3.3 4.18 3.38 5.3 4.4 3.52 4.29 4.12 3.49 3.41 3.94 

poly 5 15.88 19.96 24.42 14.34 20.83 14.26 25.98 17.6 9.59 25.13 18.8 

linear 10 2.01 2.78 1.5 3.95 2.63 3.01 2.8 3.14 2.67 1.4 2.59 

radial 10 3.37 4.37 3.41 5.48 4.61 3.66 4.45 4.26 3.61 3.48 4.07 

poly 10 20.8 24.1 29.89 15.6 23.84 15.92 31.43 22 12.89 30.56 22.71 

 

For the RR algorithm in Table 5, the parameter k = 0.1 is most efficient with an 

average RMSE of only 2.21 and even lower than the SVR algorithm. RR model with 

k = 0.1 also predicts pretty well in two portfolios, Manuf and Other, but predicts 

poorly in Enrgy portfolio just like SVR model. 

Table 5. The RMSEs corresponding to the parameters of RR models 

RR Model 

k 
No

Dur 

Dur

bl 

Man

uf 

Enr

gy 

HiTe

c 

Telc

m 

Sho

ps 
Hlth  

Util

s 

Oth

er 

avera

ge 

0.01 2.01 2.41 2.22 3.13 2.77 2.73 2.38 2.87 2.83 2.43 2.58 

0.05 3.05 2.79 2.81 3.93 3.26 3.53 2.96 3.75 3.42 3.05 3.25 

0.1 1.9 2 1.47 2.86 2.05 3.02 1.71 2.43 2.83 1.79 2.21 

0.15 4.21 4.5 4.2 4 4.72 4.61 4.59 4.19 4.39 4.42 4.38 

0.2 3.21 3.27 2.76 3.97 2.62 4.22 2.84 3.21 4.1 2.99 3.32 

0.25 3.37 3.6 3.56 3.32 4.26 2.93 4.11 3.89 2.99 3.87 3.59 

0.3 3 2.93 2.82 3.86 2.92 3.92 2.72 3.56 3.9 2.75 3.24 

0.35 3.28 3.81 3.26 3.53 3.4 4.08 3.52 2.91 3.96 3.54 3.53 

0.4 3.35 3.57 3.48 3.29 4.21 2.89 4.06 3.9 2.61 3.64 3.5 

0.5 2.24 2.29 1.89 2.82 2.41 3.36 2.1 2.96 3.06 1.41 2.46 
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With the parameter λ = 0.1, the LR algorithm performed very well and was more 

efficient than SVR and RR, with the average RMSE in ten portfolios of 2.11 in Table 

6. The LR model has low RMSE and predicts a low stability error for all ten portfolios. 

All categories have RMSE of less than three, and six out of ten portfolios have RMSE 

of less than 2. 

Table 6. The RMSEs corresponding to the parameters of LR models 

LR Model 

λ  
NoD

ur 

Dur

bl 

Man

uf 

Enr

gy 

HiT

ec 

Telc

m 

Sho

ps 
Hlth  Utils 

Oth

er 

aver

age 

0.01 2 2.4 2.21 3.12 2.76 2.72 2.37 2.86 2.82 2.41 2.57 

0.05 3.01 2.78 2.84 3.82 3.27 3.49 2.93 3.68 3.39 2.99 3.22 

0.1 1.79 1.84 1.45 2.72 1.93 2.95 1.63 2.34 2.77 1.69 2.11 

0.15 4.19 4.33 4.12 3.94 4.56 4.59 4.51 4.17 4.37 4.42 4.32 

0.2 3.13 3.14 2.82 3.8 2.58 4.14 2.83 3.15 4.02 2.92 3.25 

0.25 3.28 3.49 3.5 3.21 4.08 2.93 3.87 3.73 2.93 3.79 3.48 

0.3 2.98 2.87 2.81 3.64 2.93 3.91 2.7 3.42 3.83 2.6 3.17 

0.35 3.24 3.51 3.19 3.43 3.15 3.99 3.38 2.91 3.91 3.41 3.41 

0.4 3.2 3.41 3.35 3.15 3.93 3.01 3.7 3.67 2.75 3.57 3.37 

0.5 2.2 1.89 1.81 2.61 2.17 3.49 1.94 2.74 3.2 1.48 2.35 

4.4. Forecast results of the dataset (2) 

According to the forecast results in stage 1, three models are chosen for the forecast 

at stage 2 including: SVR with linear function, cost = 0.5, RR with k = 0.1 and LR 

with λ = 0.1. Stage 2 forecasting begins on 1/1990 and ends on 9/2021. At this stage, 

this study compare all three models with the forecasting model using the OLS method. 

Forecast results for ten portfolios are described in Table 7 and Figure 4. 

Table 7. The RMSEs of SVR, RR, LR và OLS models 

Portfolio SVR RR LR OLS 

NoDur 2.241 2.199 2.184 2.216 

Durbl 4.824 4.810 4.775 4.808 

Manuf 1.804 1.816 1.829 1.820 

Enrgy 4.808 4.908 4.861 4.936 

HiTec 2.596 2.549 2.524 2.555 

Telcm  3.376 3.189 3.156 3.207 

Shops 2.380 2.336 2.338 2.334 

Hlth  3.073 3.021 3.004 3.049 

Utils 3.755 3.575 3.538 3.602 

Other 1.582 1.601 1.578 1.614 

average 3.044 3.000 2.979 3.014 
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The results in Table 7 indicated that the LR is the most effective model with an 

average RMSE of 2.979, while the SVR is the least effective one with an RMSE of 

3.044, but the difference between these two models is relatively small. The Manuf 

and Other portfolios give very good RMSE results in all models; in contrast, the 

Enrgy and Durbl portfolios have a relatively high RMSE compared to the other 

portfolios. Among all the portfolios and models, the LR model most accurately 

predicts the Other portfolio with RMSE = 1.578, while the OLS model predicts the 

least accurately the Enrgy portfolio with the highest error of 4.936. 

The accuracy of the models strongly correlates with each other and fluctuates 

across portfolios. In each portfolio, the RMSE was not significantly different. As 

Figure 4, all four forecasting models are pretty similar, especially the outliers. 

 

Fig. 4: Predict value v. real value. 

4.5. F-Test results:  

To evaluate the difference in the performance of the models, this study calculates the 

deviation of predictions from the real each method's value. Each model will have 321 

forecasts for each portfolio, which means each model has 3210 forecasts, and in total, 

this study has 12840 forecasts for all four models. This study uses the null hypothesis 

that no difference exists between the four methods. The result of the ANOVA 

(Analysis of Variance) is presented in Table 8. 

Table 8. One-Way ANOVA 

Analysis of Variance Table 

Response: test 

  Df  Sum Sq  Mean Sq  F value  Pr(>F) 

method    3 3 1.0237 0.1981 0.8977 

Residuals  12836 66323 5.1669     
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As shown in Table 9, the P-value = 0.8977 > 5%, so this study fail to reject the null 

hypothesis, which means that there is no difference in forecast efficiency of the 

models (with 5% significance). Thus, although the LR model has the lowest average 

RMSE, this difference is not statistically significant. 

5. Discussion and conclusion 

5.1. Discussion 

Overfitting is a constant issue in machine learning forecast models. This study can 

point out this issue by comparing the forecast results from datasets (1) and (2) in 

Tables 5, 6, 7. 8. While the best mean errors of SVR, RR, and LR models are 2.57, 

2.21, and 2.11 for dataset (1), they rise to nearly 3 for all three models when predicting 

for dataset (2). Again, this demonstrates that parameters change with time and that 

the rolling window technique is more suitable than the k-fold cross-validation method. 

The explanatory factors in the Fama-French five-factor model have been effective 

in explaining fluctuations in the expected return of the portfolios. Except for the 

market factor, the correlation between factors is relatively low (Figure 3), especially 

the relatively strong correlation between factors and portfolio returns. All portfolios 

with a greater correlation to the factors forecast more accurately than those with low 

correlations. For example, the Manuf and Other portfolios have relatively high 

correlation coefficients with market factors (0.93 and 0.92, respectively), resulting in 

both portfolios performing very well in all four forecasting models. 

One element directly affecting the RMSE of the models that this study needs to 

consider the outliers. The outliers appear in both the explanatory factor and the 

portfolio's return (Figure 2). The portfolios with a high degree of volatility, such as 

Enrgy and Durbl, have a significantly high RMSE compared to the rest. Moreover, 

some portfolios with relatively lower volatility, such as Manuf and Other, provide 

better RMSE results from all forecasting models. The SVR algorithm produces very 

different forecast results with the choice of the kernel function. The Fama-French 

five-factor model generates empirical values of the coefficient R2 ranging from 71% 

to 94%, demonstrating that the linear function is the most suitable choice (Eugene F 

Fama & French, 2015); therefore, the SVR model performs better with the linear 

kernel as a consequence. 

Because the RR and LR models are dependent on the coefficients k and , the 

optimal parameter values are mostly determined by testing different values on the 

training data. When comparing the forecast performance of RR and LR models, this 

study discovers that LR is more accurate than RR in both dataset (1) and dataset (2); 

this result is consistent with previous research of Roy et al. (2015). The prediction 

results in the dataset (1) and (2) further show that when the suitable parameters are 

applied, the difference in efficiency between the two models RR and LR, is not 

considerable (Madhuri et al., 2019; Manasa et al., 2020; Yu & Wu, 2016; Zhang et 

al., 2019). The final results in Table 6-7 affirmed that, although LR has the lowest 
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average RMSE, this difference is not statistically significant. Thus, there is no 

difference in the models' effectiveness when compared to the research results of 

Venkatasubbu and Ganesh (2019) 

5.2. Conclusion 

This study has performed forecasting return rates of diversified portfolios under the 

Fama-French five-factor framework. The SVR, RR, LR and OLS algorithms are used. 

The LR model was effective for dataset (1) with the lowest mean errors for ten 

portfolios. The prediction error of the SVR algorithm varies significantly depending 

on the kernel function used, with the linear kernel being the most efficient one. 

The correlations between explanatory factors, portfolios and outliers have a 

significant effect on the model's error. More precisely, the portfolios with a strong 

correlation to the factors will have low RMSE and vice versa. As a result, the RMSE 

fluctuates differently for different portfolios. Finally, whereas the LR model produces 

the slightest error, this difference is not statistically significant. This finding implies 

no difference in the efficiency of all four algorithms used in the research data. 

The Fama-French five-factor model is an excellent predictor of changes in 

expected returns of diversified portfolios. The model quantifies the linear relationship 

between risk and expected return. From a Machine Learning perspective, this study 

can forecast the portfolio returns with controlled errors by estimating the optimal 

input parameters. Therefore, Machine Learning should be considered as an alternative 

to the traditional econometric methods. The rolling window method should be 

considered for time series with changing characteristic parameters instead of other 

methods such as k-fold cross-validation to increase model reliability and avoid 

overfitting. Lasso regression should be considered as an alternative to the OLS. 

However, caution should be taken when making statistical inferences about the 

estimated coefficients. 

The study has not considered the factors affecting the errors of the forecasting 

models, such as outliers, normality of the distribution. Moreover, the study is limited 

to only four algorithms. Further research should analyse the prediction error factors 

and apply various Machine Learning algorithms to choose the ideal forecasting model 
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