
29

Minimizing Makespan Time in Cloud Computing

using Heuristic Elasticity based Dynamic Task

Scheduling Algorithms

Geeta Singh1, Shiva Prakash2, Santosh Kumar3

1 Department of Computer Science and Engineering, Dr. APJ Abdul Kalam

Technical University, Lucknow, India
2 Department of Computer Science and Engineering, Madan Mohan Malaviya

University of Technology, Gorakhpur, India
3 Department of Computer Science and Engineering, ABES Engineering College

Ghaziabad, Uttar Pradesh, India

geetasingh02@gmail.com, shiva_pkec@yahoo.com, santoshg25@gmail.com

Abstract. Cloud computing technique is rapidly spreading in all over the

world due to its pay per usage, anywhere any time property. Most of the

IT [23] firms and business are using this technique with the help of web

based application and tools over the internet As a result of growing large

number of users, cloud service providers and applications in the cloud is

growing quite rapidly due to the problem of preserving QoS parameters

such as throughput, reliability, availability, elasticity and makespan time,

etc. Here, with the aid of ERPD (elastic resource provisioning / de-

provisioning) and scalability mechanism, we have proposed, built and

developed an algorithm to balance the load dynamically between virtual

machines for optimizing resource usage and minimizing the make-pan

time in the cloud environment. The experimental results compared to the

SJF, FCFS algorithm, and the Min-Min algorithm and this new proposed

algorithm showed better performance.

Keywords: Makespan time, virtual machine, task scheduling, elasticity.

ISSN 1816-6075 (Print), 1818-0523 (Online)

Journal of System and Management Sciences

Vol. 11 (2021) No. 2, pp. 29-47

DOI:10.33168/JSMS.2021.0203

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

30

1. Introduction

The cloud, Big data, artificial intelligence (AI), Internet of Things (IoT) (Song and

Le, 2020) and mobile devices technologies are the new technologies which changes

the IT structure and provides newly extra values. In computer Science, Cloud

computing (Mell and Grance, 2011) is the world's and ICT’s (Information and

Communication Technology) (Ciurea et al., 2020) most important technology.

Today, due to its features such as pay per use and anywhere any time, cloud

technology is used in large or small companies or businesses .Cloud computing user

can access data or application without download its software and with the help of

internet connection. Cloud computing uses stimulating ICT inventions like internet

and distribution and virtualized computing to provide effectively integrated system.

Microsoft, AMAZON and IBM are some examples of cloud computing service

providers in ICT business. Cloud provides several services to the users like IaaS,

PaaS and SaaS in the cloud environment with Cloud Service Provider (Yoon and

Kim, 2020; Park and Seo, 2020). Users can request to the cloud service provider for

the resource at anywhere, any time and the cloud service broker selects the best

resource to the users with their best budge and deadline. Day by day, the number of

users in cloud environments is growing because of its heterogeneous resources with

the characteristics like higher availability, scalability, on demand self-services,

access broad network and rapid elasticity so the work load and traffic is also

increasing in cloud and the cloud service need an efficient technique to balance the

user requests or load properly in cloud system. The role of Load balancing is very

important issue in cloud environment because of its increasing users and it is

required to manage all the user requests. Load balancing means to balance the user

requests in the manner that improves the response time, scalability and maximum

resource utilization. Proper load balancing is very important because it increase the

resource utilization, decrease makespan time (Kurniawan et al., 2014), and

improves the overall performance of cloud system. Load balancing is a method of

spreading the load (a collection of tasks) over a set of cloud resources (software /

hardware) in such a way that the full (maximum) use of their resources (Kumar and

Sharma, 2017) should be made and the cloud system performance should be

improved. In cloud computing, there are two steps to balance the cloud load-

Monitoring VM (Virtual Machine) (Zhang et al., 2018) and Task (job) scheduling.

Task scheduling is a full N-P complete problem because cloud computing is the

collection of heterogeneous resources (or different types of configuration of host

and virtual machines (VM)) and very easily changes user requests on demand. It is

very difficult to find the all possible mapping between task and resources in the

cloud. An effective task (job) scheduling technique is therefore needed to allocate

the task set in such a way that no virtual machine should be under loaded or over

loaded and all VMs should be balanced. Monitoring the virtual machine

continuously with the help of task (job) migration or VM migration in the cloud

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

31

system so that balanced the load properly. If any VM is overloaded in the CRB

(Cloud Resource Broker), the cloud broker monitors the VM, executes the load

balancing feature on the VM and migrates the job from the overloaded VM to the

under loaded virtual machine. Task or Job scheduling (Sarathambekai and

Umamaheswar, 2017) is an important issue in cloud computing. The primary

objective of the work scheduling approach is to map user requests to the required

cloud resources available to provide the best output in the cloud environment. In the

cloud system, there are three important phases needed for job scheduling techniques

as User phase, Task/Job scheduler phase and Cloud phase.

User phase- In user phase, cloud users send their request T1, request T2, request

T3….. request Tn with the help of web interface or GUI in service requiring in

terms of QoS parameter, software or hardware.

Task/Job scheduler phase- in this second phase all functions (load balancing and

scheduling) are performed with the help of task scheduler. Here user request

handler forward all legitimate requests to task/job scheduler for process the user

requests where matching list match or find all the user requests to corresponding

VM and here scheduler assigned all the requests to available VM. The task

scheduler has all the details about the VMs, either idle or active (busy).

Cloud phase- In this phase, there are several host in a datacenter and each host

has a heterogeneous VM, where the number of VMs can be increased or decreased

at runtime based on the host capacity and the number of user requests. Here Cloud

monitoring and discovering service (CMDS) plays an important role to find the

status (idle or active) of VM and cloud resource information. Task/Job scheduling

methods (Dubey et al., 2018; Zhou et al., 2018) categorized into two types in cloud

system shown in Fig.1. Distributed and centralized task or job scheduling in cloud.

The tasks are not allocated to the same resources or the same location in distributed

scheduling and all the resources are at the same location in the centralized task

scheduling. Centralized task scheduling having low complexity level in comparison

to distributed task scheduling. Distributed task scheduling methods are further

categorized in three types as metaheuristic (Talbi, 2019), heuristic and hybrids.

Metaheuristic task scheduling are swarm intelligence and nature inspired. Heuristic

task scheduling again categorized into two types static task scheduling and dynamic

task scheduling. Static task scheduling requires the advance information about the

task/job (length of jobs, deadline of jobs and number of jobs) and resources (node

processing power, memory, processing capacity etc.). The static scheduling

approach is not best choice for the cloud since static task scheduling works properly

when there is very little change in workload and system behavior that also does not

change. Static task scheduling doesn’t optimize the QoS in cloud and in real

environments; it does not have good results. Some examples of Static task

scheduling are FCFS, SJF, Round Robin, Min-Min algorithms etc. dynamic task

scheduling is very efficient and accurate scheduling method to the cloud

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

32

environment. In dynamic task scheduling advance information is not required but it

require to handle the nodes continuously. Examples of dynamic task scheduling are

Heterogeneous Early Finish Time, Dynamic Round Robin (DRR), Ant Colony

Optimization, Particle Swarm Optimization etc. dynamic task scheduling is

suggested for the researchers because of its dynamic workload balancing and

dynamic system behavior in the cloud computing. Hybrid task scheduling are

energy based cost based and efficiency based.

Fig.1: Task Scheduling in Cloud

We have introduced or designed a heuristic task/task scheduling dynamic load

balancing approach in the cloud. Balancing the load is a major challenge of cloud

because of increasing the huge number of users on demand. We have used elastic

resource provisioning or deprovisioning (Somasundaram et al., 2013; Jung and Seo,

2020) and scalability approach to minimize the makespan time. Scalability (Li,

2009) enables to manage huge workloads in cloud environment without disruption

of its existing infrastructure. Here three kinds of scalability are available in cloud

system: first is vertical, second one is horizontal and third is diagonal scalability.

Vertical scalability is also known as scale up, which means vertical scaling can add

more power like number of central Processing Unit, hard disk, memory etc. in cloud

environment without change its infrastructure. Horizontal scaling is also known as

scale out, which means horizontal scaling can add number of VM’s in resource pool

of cloud environment and diagonal scaling combines the vertical and horizontal

scaling. Here, we are using horizontal (scale out) scaling.

We have proposed, developed and implemented a dynamically task scheduling

algorithm which is based on scheduling interval that balance the tasks among the

VM with cloud elasticity which reduce the makespan time and improve the

utilization of cloud resource in cloud system. In this algorithm tasks are distributing

among the overloaded (OL) machine to under loaded (UL) virtual machine with the

help of task migration. Cloud resources are adding with the help of horizontal

Scaling method whenever the task rejection is greater than the Service Level

Agreement (SLA) threshold value.

The rest of this paper is summarized here: We describe the related work of

current QoS-based load balancing techniques related to our research work in the

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

33

cloud setting in Section 2, in Section 3 we explain the problem formulation, in

Section 4 we describe our proposed and built load balancing technique or algorithm,

in Section 5 we explain the different simulation tools and also experimental results.

In section 6 we describe conclusion of our developed approach and its future work.

2. Related Work

The researchers have suggested and developed many task scheduling algorithms in

the literature in cloud environment. Here we have discussed some QoS based task

scheduling techniques with their Strength, weakness and tools in Table-1. In

(Kumar and Sharma, 2017), Kumar M. has proposed and implemented an algorithm

to improve the makespan time in cloud system using task meet to deadline approach.

The Author did not consider othe QoS parameters. In (Ren et al., 2013), Author has

proposed and implemented an algorithm to minimize the total execution time and

get good schedule length in cloud environment but author has suffered from the

load balancing in cloud system. In (Wang and Yu, 2017), author has proposed and

implemented task scheduling algorithms to improve Min-Min algorithm in cloud

with minimizing the total completion time. The Author has considered only one

parameter to enhance the performance. In (Javanmardi et al., 2014), Author has

shown that execution cost in Hybrid Job scheduling algorithm in cloud is decreased.

He is also considered only one parameter to enhance the performance in cloud. In

[6], Author has proposed and implemented credit based scheduling algorithm in

cloud to increase resource utilization and decrease makespan time. The Author did

not compare performance with other algorithms. In (Babu and Samuel, 2016),

Author has proposed and implemented an algorithm to enhance the performance of

bee colony algorithm with the help of decreased the makespan time. The Author

compared only one algorithm to enhance the performance. In (Azad and

Navimipour, 2017), Author has proposed and implemented an algorithm to reduce

the execution cost and improve the throughput. No other QoS parameters have

considered. In (Patra, 2018), author has proposed and implemented an efficient

energy consumption algorithm to maximize the resource utilization. Other QoS

parameters like execution time, throughput etc. has not considered. Adhikari M. has

proposed and implemented meta heuristic-based algorithm and multi objective

accelerated PSO algorithms in et el. (Adhikari, 2019; Adhikari, 2019). The

Researcher improve the makespan time, availability, cost, computational time,

resource utilization, energy consumption and throughput but there is novel

compromise solution between cost conflicting objective has not discussed.

Table 1: Existing task scheduling algorithms

S.N

o.

Author/

year

Paper title QoS

Matrices

Tools strength weakness

1. Kumar

M.

Based on deadline

constrained and

Makespan

time

cloud

sim

Decreasing

makespantime

not improve

other QoS

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

34

2017 dynamic load

balancing

approach in cloud

with elasticity

& increase

ARUR

2. Ren H.

2012

Performance

effective and low

complicity task

scheduling for

heterogeneous

computing ”

speed up,

execution

time

execution

time

Scheduling

length ratio

(SLR),

Rand

om

graph

gener

ator

better

scheduling

length,

Minimizing

execution time

Suffer from

the load

balancing

3. Wang

G.

2014

“Task scheduling

algorithm

improved Min—

Min algorithm in

cloud

Load

balancing

and

makespan

time

GridS

im ,

Cloud

Sim

Enhance

Performance

and compare

with Min

algorithm

Compared

only

completion

time

compared

4. Javanm

ardi S.

2014

Hybrid Job

Scheduling

Algorithm in

Cloud Computing

makespan

time and

degree of

Imbalance

cloud

sim

decreased

Execution cost

also increased

overall profit

Consider

only one

parameter

5. Antony

T.

2015

Credit Based task

Scheduling in

Cloud Computing

Priority

task and

makespan

time

cloud

sim

decreased

makspan time

and increase

Resource

utilization

 No

comparison

of the

algorithm

6. Babu

2016

Enhanced Bee

Colony Algorithm

for Efficient

 Imbalance

degree

Physi

cal

cloud

envir

onme

nt

Reduce

makespan

time

Compared

with one

algorithm

7. Azad

P. 2017

Cultural & ACO

algorithm to

optimize QoS

parameters

Makespan

time,

energy

consumpti

on

Cloud

azure

improve

throughput,

decrease

execution cost,

task rejection

ratio and

Not

considered

Other QoS

parameters

8. Patra

2018

Efficient energy

consumption

based algorithm

resource

utilization

and Energy

consumpti

on

Cloud

sim

Maximize

resource

utilization

not

considered

execution

time,

execution

cost,

throughput

etc.

9. Adhika

ri M.

2019

Meta heuristic

task deployment

approach for load

balancing

Load-

balancing

resource

clustering

- Improve the

throughput,ma

kespan time,

cost

Novel

compromise

solution

between time

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

35

(LBRC)

with BAT

technique

And

availability

and cost

conflicting

objectives

has not

discussed

10. Adhika

ri M.

2019

Multi-objective

accelerated PSO

with a container-

based scheduling

technique for IoT

in cloud

PSO

algorithm

to process

IoT based

and non-

IoT-based

tasks

- Improve

energy

consumption,

computational

time, and

resource

utilization etc.

conflicting

objectives

has not

discussed

We have seen in above mentioned table that these all scheduling algorithms have

different concept, QoS Matrices, tools with their advantage and weakness.

3. 3. Problem Formulation

In cloud Environment, we scheduled all the user tasks to the VM in a manner that

the user tasks can be executed in a minimum amount of time and maximum

resource utilization as cloud user is anticipated to minimum cost and makespan time

while CSP anticipation is to maximize the cloud resources. In cloud system, cloud

request scheduler receives n number of user request T1, request T2, request T3,

request T4…..request Tn are independent. Each tasks length is TLTi in MI. Each

task requires number of CPU q, processing speed p, main memory r and the

bandwidth B in Megabits per second. Cloud user task scheduler has all information

of M heterogeneous (different processor speed, memory, bandwidth, Number of

Central Processing Unit etc.) Virtual Machine 𝑉𝑀1, 𝑉𝑀2, 𝑉𝑀3, VM4………. 𝑉𝑀.

Cloud user task broker allocate all tasks to the VM, each VM has a task queue to

collect the tasks and overall queue length on VM represents total load on that virtual

machine.

Capacity of VM: We have calculated the individual VM capacity and the

capacity of all VM’s with

 𝐶VM =pc*qc (1)

Where pc is the processing speed of CPU and qc is the no. of busy CPU to

execute job or task

 Datacenter Capacity C= VM (2)

Load of a virtual machine

The Task or job scheduler assigned the task or job to VMs after finding the

matchlist from matching node.

Load of a virtual machine can be find as

𝐿𝑉𝑀i,t = K*𝑇𝐿i(t) /S(𝑉𝑀i,t) (3)

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

36

Where the value of K is 1,2,3,4………….………N are tasks and S(𝑉𝑀I,t) is

the virtual machine’s service rate at time t, it is expressed with computing power p

and the number of CPU q

Virtual machine Service rate at a specific time, t

S(𝑉𝑀I,t) = pc*x(t) where the value of x=1,2,3……..q (4)

We can calculate the Load on a particular virtual machine at a time t as

Lvm= (number of request on the virtual machine*length of the request) /service

rate of virtual machine. Total load at all virtual machine (datacenter)

TLvm= (5)

1. Execution Time: when the task allocated to the required resources then we can

calculate the expected processing time of the task on resources. When the number

of cloud user requests is greater than the capacity of all virtual machines, with the

aid of the principle of elasticity, the number of virtual machines increases. If cloud

user request numbers are less than the capacity of all virtual machines, then all

overloaded and under loaded virtual machines are verified in the cloud environment

and user requests are moved from overloaded virtual machines to under loaded

virtual machines, and all user requests can be executed in minimum time. We can

find the user request migration time on one virtual machine to another virtual

machine as

Task migration time (TT) =length of user request/bandwidth = (TL)/(B) (6)

and we can find execution time (ET) of user request Ti on virtual machine (VMj)

Execution time (ET) = /(pc*qc) (7)

Here the value of 𝐸𝑖𝑗=1 if user request 𝑇L𝑖 is assigned to virtual machine 𝑉𝑀𝑗

otherwise 𝐸𝑖𝑗=0

now we can find the user task/job completion time as summation of task/job

execution time (ET) and task/job migration time (TT) at any virtual machine VM

Completion Time of the task (CT) = ET + TT (8)

2. Makespan time: The objective of our research is to minimize the makespan

time which contains user request execution time and user request migration time (if

any user request is migrate from overloaded OL VM to under loaded UL virtual

machine).

(Makespan time of VM) MT=max { } (9)

Subject to- CTTi>ATi+ETTiRj

Where CTTi is the user task completion time at VMj and ATi is the arrival time of

user task.

ETTiRj is the execution time of task Ti at VMj. if arrival time of task ATi is

previously known it means the problem will be static otherwise problem will be

dynamic.

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

37

Equation (9) shows that a user task start to execute at a particular VM when

previous user task/job has been executed completely at a particular VM.

 CTi,Rj ≥ CTi-1,Rj + ETTiRj (10)

Above equation (10) shows that new user task/job start its execution on the

virtual machine if its previous task has completed the execution.

Resource utilization: one more objective of our work is to maximize the

utilization of resources in cloud environment and the main objective of balancing

the load in cloud environment is to maximum uses of cloud resources. So we can

calculate the Average of maximum resource utilization ratio as

AMRU = (meantime/makespan time)*100 (11)

Here meantime is the total completion time of the cloud resources (VMj) to

complete the job. The maximum average resource utilization ratio is 1, it means

100% resource utilization and the worst value of AMRU is 0, it means resources are

in ideal state.

4. Proposed Dynamic Task Scheduling Architecture

We have designed and developed a cloud resource broker architecture for a

dynamic task scheduling load balancing algorithm with elasticity of cloud resources

(virtual machine) in figure (2) which is the modification of the proposed

architecture in (Somasundaram, 2013). Objective of this architecture is to reducing

the makespan time and increasing the resource utilization in cloud. Brief description

of this proposed framework is as follows:

Application or User/Consumer Request handler: It handles all the consumer/ user

requirements in cloud environment. The user sends request for cloud service with

the help of web Interface or GUI with required service. The required service is

mainly in the form of QoS (response time, throughput, efficiency, deadline etc.),

Hardware (processor speed, hard disk speed, RAM speed etc.) and software

(required library, operating system etc.). When request handler receives user request

first it verified at the verification node weather user request is legitimate or not if

the user request is legitimate then send it for further processing otherwise discard it

and then require user request match with the cloud resources which are available

and capable to run it in cloud environment. It is an important and challenging issue

to allocate the cloud resources to the user request because user change request at run

time with its requirement

Controller: Controller is an important component of the proposed architecture

and handles or controls all the incoming user from the user request handler and

forward the user request to other components such as Cloud Resource Provisioner

(CRP), dynamic Load Balancer (ALB), Cloud Load and Resource Information

(CLRI) Aggregator and Cloud Scheduler (CS).

Matching Node: This node contains all information about Virtual Machine and

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

38

cloud user request. When the matching node receives the cloud user request then

first it check the user request status as it is based on priority or non-priority and also

check the receiving user request having any deadline or not. Matching node

matched the cloud user request to particular available require virtual machine and

forward the matching list to load balancer and dynamic job scheduler for further

processing.

Dynamic job/task Scheduler and cloud load balancer: here the best resource is

selected from the matching list which is capable to satisfying cloud user request and

allocating the job(task) to the resource as per the task scheduler method. There are

many task / job scheduling techniques and cloud load balancing techniques or

algorithms that operate on several parameters such as throughput, response time,

cost, resource usage, makespn time etc. Dynamic user job/task scheduler schedules

the jobs in such a way that all jobs are completed in minimum time.

 The Load Balancer collects all the work load information of running virtual

machine in cloud and monitors and computes the entire vritual machine and if the

virtual instances are overloaded then user jobs of that VM is migrated to other

virtual Instances (under loaded). If under loaded VM is not available then jobs is

migrated (or transferred) to the balanced virtual instance which can run the job in

minimum time. It also maintains threshold value for all virtual instances for each

user request. If the load of the running virtual instance is above the threshold

(Service Level Agreement) value then load balancer invokes the CRP for creating

new virtual machine. If the load of running virtual instances is below the threshold

then load balancer invokes the CRP for removing the virtual instances.

4.1. Cloud Load, Resource Information Aggregator (CLRI)

This CLRI is an important component for aggregating basic resource information as

load, network, processor, memory etc. from the previously registered CSP’s. CLRI

periodically monitors all the resources and collects all information about these

resources. It also communicates with Cloud Monitoring and Discovery Service

(CMDS) to find the all information of cloud resource. CMDS is a technique to

monitor the state (busy or idle) of virtual machine and collect all the available

resource information and reply to Cloud Load resource information Aggregator in

cloud.

4.2. Resource and Load Monitor (RLM)

It is basically important for monitoring the private cloud (as eucalyptus, Nebula etc.)

resource. It uses external data providers such as Ganglia to get the speed of the

processor, ram memory, hard disc space, etc., and NWS to get bandwidth, latency,

etc.

Cloud Resource Provisioner: it is mainly used to create and delete the virtual

machine in the cloud according to user request requirement. For example cloud

middleware interacts with Eucalyptus with the help of provision/deprovision for the

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

39

virtual instances if users require it.

Cloud Resource

Broker

datacenter

Fig. 2 Proposed cloud task scheduling Architecture

Cloud users request
(GUI/ Web application)

cloud user request handler

controller

Cloud Resource
Provisioner (VM creation

or deletion)

Cloud middleware

Cloud Load & Resource
Information Aggregator
(user task Id, task length

etc.)

Resource & Load
Monitor

Virtual Instance
Monitor

Matching node
task scheduler &

load balancer

Vm1
memory,

bandwidth,
CPU,

processing
speed

Vm2
memory,

bandwidth,
CPU,

processing
speed

Vm1 Vm2

Vm3 Vm4

Host 1
Host 2

Fig. 2: Proposed cloud task scheduling Architecture

Virtual Machine Monitor: Virtual Machine Monitor: a main component of the

cloud world, too. It resides at the cloud middleware level and finds the ID of the

virtual machine at the cloud middleware level. It monitors load and traffic of virtual

machines which is deployed with the web application. Here two methods are

available of monitoring the cloud resources. The first is event-based: in case-based

monitoring, if a job is assigned to a VM or removed from a VM, the event-based

approach monitors the virtual machine status. And second is Time based: in this

monitoring method resources are monitoring continuously with a specific time

interval. Event based monitoring is used in this paper.

5. Proposed dynamic Task/ job scheduling Algorithm

We have designed and developed a heuristic task scheduling load balancing

(dynamic) approach. An objective of this approach is to minimizing the makespan

time and maximizing the utilization of resources in cloud computing environment

with scalability mechanism. Model of task scheduling is given in fig. 2, which is the

modification of the proposed architecture in (Somasundaram, 2013). Here we have

taken N number of user task with random task length lies from 20K (MI) to 40K

(MI) and M number of VM with dissimilar processing speed (MIPS, RAM etc). We

sorts the N task in non-increasing order according to their length and sorts M VM in

non-increasing order according to their computing speed with the help of bubble

sort. After sorting task and virtual machine, we start to assign all tasks to VM in

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

40

FCFS. Now we generate an array which contains all assigned task registered ID of

all virtual machine and start the operation of our proposed heuristic task scheduling

load balancing algorithm on it. Now we check the status of all running VM’s and

finding load of each virtual machine to calculate the total load of the datacenter at a

specific time t with the help of equation 1&2 and also calculate the capacity of

virtual instance and datacenter with the help of equation 3 &4. At this stage we

check all load conditions at the virtual machine. If load of the running VM’s is less

than the capacity of the datacenter then start to compute all virtual machine or not

then cloud broker have to create virtual machine (scalability) to balance the load

and we find the number of under loaded, balanced and overloaded virtual machine

and we check it with threshold value. We have assigned the threshold value based

on latest literature to check the virtual machine condition. If the use of the virtual

machine is greater than 80% of its capacity, then it is defined as overloaded VM as

variable ULM and if the use of the virtual machine is <25% to 30% of its capacity,

the virtual machine is defined as under loaded VM as variable OLM. Now we find

the list of under loaded virtual machine, balanced and overloaded virtual machine.

We define total Overloaded virtual machine as TOVM, total under loaded virtual

machine as TUVM and sort the total under loaded in increasing order and total

overloaded virtual machine in decreasing order. Now, we start to migrate task from

overloaded VM to under loaded VM and if there is no overloaded VM then transfer

task to balance all virtual machine and calculate the task migration time of

overloaded VM to under loaded VM with the help of Equation (6) and add this task

migration time with task execution time. Now finally we find the results of the

proposed heuristic algorithm with the help of cloudsim simulation in cloud

environment.

5.1. Pseudo code for Proposed Heuristic based Task Scheduling Load
balancing Algorithm

For Scheduling Task:

1. Take Number of n task T1,T2,T3…..…Tn (random length)

2. Sort all task in decreasing order with the help of tasks length

3. Take m heterogeneous virtualmachine VM1, VM2,M3 ….Mm

4. sort all VM according to their processing speed in decreasing order

5. start For loop for tasks (for all Ɐ Ti Є 0 to n-1) &&

6. start for loop for VM (for all Ɐ VMj Є 0 to m-1)

7. If (Ti ≠ Ø && VM j ≠Ø) then allocate task Ti → VMj in FCFS order

8. End virtual machine for loop

9. End task for loop

For the Load Balancing:

1. For loop (for Ɐ VMj Є 0 to m-1 &&Ti Є 0 to n-1)

2. Find load at virtual machine & datacenter with the help of equation (1 to 6)

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

41

3. If (TLVM>C) go to step 19, else

4. find the list of overloaded, under loaded virtual machine

a. ULM=.25*VMj & OLM=.8VMj

5. Sort the under loaded virtual machine (ULM) in increasing order &&

overloaded virtual machine(OLM) in decreasing order

6. If (OLM!=Ø && ULM!= Ø)

7. For loop (for k=0 to OLM)

8. Migrate all the task or user jobs from overloaded (OVM) to under

loaded(ULV) VM (Ti →VMj) until the load of VM (VMj<OLM &&

VMj>ULM) and calculate the task migration time by equation (6)

9. Now check the status of all VM, if any running virtual machine is still

Overloaded then repeat load balancing again.

10. find the total number of overloaded virtual machine TOVM(), & check if

(n/10<TOVM<n/3) then boot 20% new VM or boot 30% new VM and

distribute the load to all VM fairly.

11. verify the load condition (TLVM>C) if yes, repeat the step 19 or go to next

step.

12. find the total number of under loaded VM TUVM if (n/5 <TUVM <n/2) then

remove 20% virtual machine or remove 30% VM and repeat it until the

load of all VM is balanced.

13. Find the execution time and calculate the makespan time with the help of

equation (8 to 9)

6. Simulations and Analysis

Simulation is the best method to check the performance of proposed algorithm. It is

not easy or not possible to implementation or experiment the new method/technique

in real cloud system because it is very high cost and time consuming process.

Cloudsim simulator is used to implement the proposed heuristic task scheduling

algorithm. There are several cloud simulators to implement the research work such

as cloudAnalyst, iCanCloud, GroudSim, Cloudsim, DCSim (Data Centre

Simulation), GreenCloud etc. cloudsim is a new, extensible, highly generalised and

Java based simulator kit. We have used cloudsim toolkit because it is easy to

analyze the various parameters as response time, processing time, energy

consumption , cost etc. and it is also repeatable, controllable dependable and

scalable which make sense to do some valuable modification and correction in the

existing resources before applying in the real cloud. We have run our algorithm in

cloudsim simulator which contains datacenter and there are number of host in the

data center and each host has number of VMs with various parameters as shown in

Table 2.

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

42

Fig 3. Comparison of makespan time for Proposed Algorithm with SJF, FCFS and

Min-Min Algorithms

6.1. Minimum makespan time

Here we have taken n task with random task length from 20K to 40K in MI and m

heterogeneous VM with different processing speed in terms of RAM, MIPS etc.

Here we have 5 virtual machines and assigned all the tasks given in table- 3 on

these VMs with the help of scheduler as per our proposed scheduling algorithms in

fig. first we have optimized makespan time in cloud environment with the help of

our proposed load balancing algorithm. We have run the simulation process in

cloudsim approximately 200 times to find the makespan time with the help of our

proposed task scheduling load balancing method in space shared manner. First we

have taken 5 virtual machine (heterogeneous VM) and secondly we have allocated

the tasks (10 independent task random length) to all virtual machine according to

our proposed method using matching node & scheduler and monitor them

continuously. Here we have not considered any task cost, priority, deadline etc.

Now we got the list of under loaded virtual machine and overloaded virtual machine.

Now we have increased number of task 10 to 50 and processed it the entire random

length task allocated on the 5 virtual machine. After that, we found the list of VMs

overloaded and underloaded and measured the VM 's capacity and load at a

particular time t. If a VM load is > 80 percent, we have made the array list of

overloaded, under loaded and balanced virtual machine, then add it to the

overloaded array list and if a VM load is < 25 percent, then add it to the under

loaded array list and the rest of the virtual machine added to the balanced array list.

Now we have sort the overloaded array list of VM in decreasing order and under

loaded array list of VM in increasing order and start to migrate load from

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

10 15 20 30 40 50

Makespan

Time

Number of user Task/ Jobs

Makespan Time vs Number of Tasks

SJF

FCFS

MIN - MIN

Proposed Algo

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

43

overloaded VM to under loaded VM and calculated the task migration time and

divided it by the bandwidth. After completion task migration, the proposed

algorithm checked that all the VMs are balanced or not. If all the VM are in

balanced condition then terminate the algorithm or if all the VM are not in balanced

then repeat the load balancing process again. We have calculated the makespan time

of our proposed algorithm and compared the calculated result with other load

balancing algorithms like FCFS, Min-Min and SJF. We have shown results in fig. 3

to validate our proposed algorithm. Results shows that proposed heuristic algorithm

gave better performance in comparison to existing algorithms. Further we have

increased virtual Machines with their speed shown in figure and allocated 12 tasks

on theses virtual machines with random length as given in table. Now find the

underload, over loaded virtual machine as per our proposed algorithm but we did

not find any under loaded and over loaded virtual machine so we have calculated

the makespan time and compared it with other SJF, Min-Min and FCFS algorithms

as shown in figure 5. Further we increased number of tasks upto 45 to 50 and we

have required to increase VMs. Now we calculate the makespan time and compare

it again with other Min-Min, FCFS and SJF algorithm.

Table 2: Properties of virtual machine

VIM

ID

VM image

size

VM MIPS No. of

CPU

Memory Hypervisor

(VMM)

0 1000 1000 1 512 Xen

1 1000 680 1 256 Xen

2 1000 580 1 256 Xen

3 1000 600 1 512 Xen

4 1000 640 1 512 Xen

5 1000 400 1 256 Xen

Table 3: Properties of user tasks

Cloudlet ID Task length File size Output size CPU

0 110228 300 300 1

1 309350 300 300 1

2 643098 300 300 1

3 870987 300 300 11

4 250712 300 300 1

5 955696 300 300 1

6 182678 300 300 1

7 345678 300 300 1

8 445968 300 300 1

6.2. Maximum Resource Utilization

We have calculated the average resource utilization ratio using equation (11) and

compare it with existing FCFS and SJF and Min-Min algorithm. We have taken the

parameters from the Tables 1 & 2 to find the resource utilization in cloud

environment. As per our proposed algorithm, all tasks is allocated to the cloud

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

44

resource (VM) but some VM will be in under loaded or over loaded state and find

the list of under loadeVM and overloaded VM. Now sort the under loaded VM in

increasing order and sort the overloaded VM in descending order and start to

migrate load from overloaded VM to under loaded VM after that most of the VM’s

will be balanced and all the resources will be utilize efficiently. Calculated ARUR

of the proposed dynamic concept shows that proposed concept utilizes the cloud

resources better than 10% min-min and 30% better of SJF and FCFS algorithm.

0

10

20

30

40

50

60

70

80

90

100

10 15 20 30 40 50

A
ve

ra
ge

 r
es

o
u

rc
e

U
ti

liz
at

io
n

 R
at

io
 in

 %

Number of tasks/jobs

Comparison of Average Resource Utilization Ratio

SJF

FCFS

MIN-MIN

Proposed Algo

Fig. 4: Average Resource Utilization of proposed algorithm with SJF, FCFS and

Min-Min Algorithms

7. Conclusion

We have design and implement a heuristic task scheduling load balancing concept

to minimize the task’s makespan time and maximize the resource utilization in

cloud environment. We have provided the scalability service (horizontal scalability)

if user task load is greater than the capacity of datacenter in cloud. The main

objective of our designed algorithm is to maximum uses of the cloud resource so

that increasing the execution speed of the cloud user applications. There are several

existing algorithms available in research based on different parameters as execution

time, resource utilization, makespan time, throughput, response time, etc., in cloud

computing environment. We have proposed and implement a heuristic based task

scheduling load balancing algorithm in cloud environment. In this algorithm we

have used the task/job migration method and horizontal scalability approach to

minimize the makespan time and maximize the resource utilization. We have

implemented proposed algorithm in cloudsim simulator and the evaluated

experimental comparison result shows that performance of the proposed concept is

better than the other existing FCFS, Min-Min and SJF algorithm in all possible

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

45

circumstances. This proposed algorithm minimize the makespan time as well as

maximize the average resource utilization ratio (ARUR) as comparison to FCFS,

Min-Min and SJF in Fig. 4. In future we will work on other QoS parameters like

deadline based task and priority based task in cloud environment.

References

Adhikari M., (2019). Meta heuristic-based task deployment mechanism for load

balancing in IaaS, cloud. Journal of Network Computer Application, 128, 64–77.

Adhikari M, and Srirama S., (2019). Multi-objective accelerated particle swarm

optimization with a container-based scheduling for Internet-of-Things in cloud

environment, Journal of Network Computer Application, 137, 35–61.

Azad P. and Navimipour N. J., (2017). An Energy-Aware Task/job Scheduling in

the Cloud Computing Using a Hybrid Cultural and Ant Colony Optimization

Algorithm. International Journal of Cloud Applications and Computing (IJCAC),

7(4), 20-40.

Babu, K.R., and Samuel, P., (2016). Enhanced bee colony algorithm for efficient

load balancing and scheduling in cloud. Innovations in Bio-Inspired Computing and

Applications, 67-78.

Chen H., Wang F., Helian N., and Akanmu G., (2013). User-priority guided min-

min scheduling algorithm for load balancing in cloud computing. National

Conference on Parallel Computing Technologies, (PARCOMPTECH) Bangalore,

1-8.

Ciurea C., Pocatilu L., and Filip Fl. G., (2020). Using Modern Information and

Communication Technologies to Support the Access to Cultural Values. Journal of

System and Management Sciences, 10(2), 1-20.

Dubey, K., Kumar, M., and Sharma S.C.,(2018). Modified HEFT algorithm for task

scheduling in cloud enviromnment. procedia Computer science, 125, 725-732.

Fidel M.B., and Carmen G. C. E.(2015). Human Resources and Information

Technology: Business Strategies for Sustainable Human Development. Journal of

System and Management Sciences, 5(3), 18-31.

Javanmardi, S., Shojafar, M., Amendola, D.,Cordeschi, N., Liu, H., and Abraham,

A., (2014). Hybrid Job Scheduling Algorithm for Cloud Computing Environment.

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

46

Proceedings of the Fifth International Conference on Innovations in Bio-Inspired

Computing and Applications IBICA, 43-52.

Jung H.C., and Seo K.K., (2020). Jobs and Potential Threat Assessment for

Continuous Provision of Cloud Computing Services. Journal of System and

Management Sciences, 10(4), 45-61.

Kumar, M., and Sharma, S.C.(2017). Deadline Constrained based Dynamic load

balancing algorithm with elasticity in cloud environment. Journal of Computers &

Electrical Engineering (CAEE), 69, 395-411.

Kurniawan H., Sofianti T.D., Pratama A.T., and Tanaya P.I.(2014). Optimizing

Production Scheduling Using Genetic Algorithm in Textile Factory. Journal of

System and Management Sciences, 4(4), 27-44.

Li J., Chinneck J., Woodside M., and Litoiu M. (2009). Fast Scalable Optimization

to Configure Service Systems having Cost and QoS Constraints. Proc. IEEE

International Conference on Autonomic Systems, Barcelona, 159-168.

Mell, P., and Grance, T., (2011). The NIST definition of cloud computing.

Technical report published in NIST Special Publication, 800-145.

Park W. and Seo K., (2020). A Study on Cloud-Based Software Marketing

Strategies Using Cloud Marketplace, Journal of Logistics. Informatics and Service

Science, 7(2), 1-13.

Patra, S. S., (2018). Energy-Efficient Task Consolidation for Cloud Data Center.

International Journal of Cloud Applications and Computing (IJCAC), 8(1), 117-142.

Ren. H., Lan, Yihua, and Chao Yin, (2012). The load balancing algorithm in cloud

computing environment. International Conference on Computer Science and

Network Technology, Changchun., China, 925-928.

Sarathambekai, S. and Umamaheswari K. (2017). Task scheduling in distributed

systems using heap intelligent discrete particle swarm optimization. Comput. Intell.,

33, 737-770.

Somasundaram, T.S., Govindarajan K, and Rajagopalan MR, (2013). A broker

based architecture for adaptive load balancing and elastic resource provisioning and

deprovisioning in multi-tenant based cloud environments. Proceedings of

International Conference on Advances in Computing, 561-573.

Geeta at al. / Journal of System and Management Sciences Vol. 11 (2021) No. 2, pp. 29-47

47

Song Y. and Le J.(2020). A Blockchain-based Fog-enabled Energy Cloud in

Internet of Things. Journal of Logistics, Informatics and Service Science, 7(2), 45-

64.

Talbi, E.G., (2009). Metaheuristics: From Design to Implementation. 1st Ed. John

Wiley and Sons Inc, Hoboken, NJ, USA, ISBN-13: 9780470278581, pp: 500.

Thomas A., Krishnalal G., and Jagathy Raj V.P., (2015). Credit Based Scheduling

Algorithm in Cloud Computing Environment. Procedia Computer Science, 46, 913-

920.

Wang G., and Yu H. C., (2014). Task Scheduling Algorithm Based on Improved

Min-Min Algorithm in Cloud Computing Environment. Applied Mechanics and

Materials, 303-306, 2429-2432.

Yoon S., and Kim H., (2020). Design and Implementation of the IoT Cloud Web

Server System for the Control of Insect Farming Facilities. Journal of System and

Management Sciences, 10(3), 73-85.

Zhang, F., G. Liu, X. Fu and R. Yahyapour, (2018). A survey on virtual machine

migration: Challenges, techniques and open issues. IEEE Communication. Surveys

Tutorials, 20, 1206-1243.

Zhou, R., Li, Z., and Wu, C. (2018). Scheduling Frameworks for cloud container

service. IEEE/ACM Transportation Network, 26(1), 436-40.

