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Abstract. This paper focuses on the estimation of the base stock level, S, based 

on the service approach when the fill rate criterion is used. The fill rate is 

defined as the fraction of demand that is directly satisfied with the on-hand 

stock. Although this definition is simple, the fill rate has been traditionally 

calculated through the known as traditional approximation, i.e. computing the 

units short instead of computing directly the satisfied demand. As a 

consequence, the application of the traditional approximation to determine the 

optimal S can lead to an unnecessary increase of the stock under some 

circumstances. This paper assesses when approximate methods based on the 

traditional approach provide an accurate calculation of the S when a target fill 

rate is given, the inventory is managed by the periodic review policy and the 

demand follows any discrete distribution. To this aim, we carry out a wide 

experiment whose results are analyzed by using Classification and Regression 

Trees technique. As a result it is possible to identify regions of similar 

performance of the approximate methods and represent them in a novel space 

of representation delimited by the coefficient of variation of demand and the 

average demand over the revision period plus the lead time. Furthermore, risks 

of using any of the approximate methods to compute S in every region are 
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evaluated. This analysis is summarized in a reference framework that can be 

used by managers in the decision-making process of determining the best 

method to compute base stock levels.  

Keywords: base stock; fill rate; discrete demand, optimal inventory policies 

1. Introduction  

One of the traditional problems in inventory management consists of how to 

compute accurately the base stock level in a periodic review inventory system. It 

can be used the cost approach trying to find the optimal policy that minimizes the 

total costs of the system. The difficulty of this approach is the computation of the 

penalty cost. In practice it is hard to quantify the cost incurred by a stockout 

(Larsen and Thorstenson, 2008). In this sense, Liberopoulos (2010) distinguishes 

two types of cost in a stockout situation: the direct cost, which can be easily 

calculated as the demand that is lost or backordered, and the indirect cost, which 

is actually the hard part to evaluate. The indirect cost is related to the loss of 

customers goodwill and image of the company which may lead to a decrease of 

future demand. Furthermore, from a managerial perspective it is necessary to take 

into account that costs may vary over time due to the inflation or process 

improvements (Buzacott and Shanthikumar, 1993; Silver, 2008). Another 

approach to find the optimal parameters of the inventory system focuses on 

setting a target service level and computing the base stock that guarantees its 

achievement. As Bijvank and Vis (2012) point out this service approach is useful 

when a service level restriction is imposed by the supply chain and it is easier to 

define a target service level than all the costs. To implement the service approach 

first of all it is required to select the service measure. In this sense the fill rate has 

been widely used. This metric is commonly defined as the fraction of demand that 

is immediately satisfied from shelf. However, this simple-looking definition hides 

a lot of technical details and nuances that are often overlooked in the literature. 

In fact, the fill rate has been simplified through the traditional approximation 
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which computes the fill rate in terms of units short, i.e. as the complement of the 

quotient between the expected unfulfilled demand and the total expected demand. 

As a consequence, the traditional approximation tends to underestimate the fill 

rate and therefore, when it is used to determine the optimal inventory policy, it 

gives a stock level greater than the exact one representing an increase in holding 

costs (Guijarro et al, 2012). 

The aim of this paper is to assess under which conditions approximate 

expressions based on the traditional approximation can provide an accurate 

enough estimation of the optimal base stock level in a discrete context. To 

accomplish this objective, we carry out a large experiment with the aim of: (i) 

finding the simplest and most accurate method to compute the base stock level; 

(ii) assessing errors that arise from using an approximate method based on the 

traditional approximation instead of the exact one and (iii) developing a reference 

framework which is built by using Classification and Regression Trees (CART), 

a statistical exploratory technique which allows identifying when the approximate 

methods perform well, i.e. compute exactly the base stock level or when the exact 

method is required.  

This reference framework can be used by managers to decide the most efficient 

method to compute the base stock once the target service level is defined. As 

Silver (2008) affirms "an understandable decision rule that improves somewhat 

on current conditions is almost certainly better than the optimal solution that is 

neither understood nor accepted by management". Thus, the main contribution of 

this work is the proposal of an easily understood and applicable reference 

framework to design optimal inventory policies in a discrete demand context. 

This reference framework integrates the characteristics of the inventory system 

and the demand pattern of the item. Furthermore, risks which arise from using an 

approximate method in any context are also assessed.  

The remainder of the paper is organized as follows. Section II presents the 

notation and assumptions followed in this paper. Section III dedicates to a 
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literature review about different interpretations of the fill rate definition and 

presents the available methods to compute the fill rate in a periodic review system. 

The numerical experiment and the analysis carried out are explained in Section 

IV. Finally, Section V sums up the main conclusions of this work and highlights 

its practical applications. 

2. Basic Notation and Assumptions 

This paper is concerned with the traditional periodic review, order up to level (R, 

S) system that launches a replenishment order every R units of time of sufficient 

magnitude to raise the inventory position to the base stock, S. The replenishment 

order is received L time periods after being launched. Figure 1 shows an example 

of the inventory evolution in a (R, S) inventory system.  

We focus on a single item and consider that the constant review interval has 

been previously determined. In the rest we assume that: (i) time is discrete and 

organized in a numerable and infinite succession of equally spaced instants; (ii) 

the lead time is constant and known; (iii) unfilled demand is complete backlogged 

to the next period and served as soon as the next replenishment order arrives; (iv) 

the replenishment order is added to the inventory at the end of the period in which 

it is received, hence these products are available for the next period; (v) demand 

during a period is fulfilled with the on-hand stock at the beginning of the period; 

and (vi) the demand process is considered stationary, i.i.d., and defined by any 

discrete function.  

Figure 1. On-hand stock, inventory position and net stock evolution in a (R, S) periodic 

review 
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The notation used in Figure 1 and in the rest of the paper is as follows: 

S = base stock (units), 

L = lead time for the replenishment order (time units), 

R = review period and replenishment cycle corresponding to the time between 

two consecutive deliveries (time units), 

OHt = on-hand stock in time t from the first reception (units), 

NSt = net stock in time t from the first reception (units), 

IPt = inventory position in time t from the first reception (units), 

Dt = accumulated demand during t consecutive periods (units), 

ft(·) = probability density function of demand in t, 

Ft(·) = cumulative distribution function of demand during t periods, 

E(X) = expected value of a random variable X. 

3. The Fill Rate in Periodic Review Systems 

The fill rate definition 

The fill rate is one of the service measures most used in practice since it considers 

not only the possibility that the system is out of stock, but also the size of the 

unfulfilled demand when it occurs (Tempelmeier, 2007). This metric is 

timeR-L R

OHR-L
OHR

units

S

OH0

L

2R-L

OH2R-L

R

On-hand stock (OH)

Inventory position (IP)

NSR

Net stock (NS)

IPR-L IP2R-L



Guijarro /Journal of System and Management Sciences Vol.6 (2016) No 3, 23-46 

28 

 

commonly defined as the fraction of demand that is immediately satisfied from 

shelf and can be expressed as (Guijarro et al, 2012): 

 
|    

 

fulfilled demand
FR E positive demand during cycle

total demand
   
 

 (1) 

Although its definition is simple, we find different interpretations of it in the 

literature and consequently different expression to compute the fill rate. In fact 

only few works suggest computing the fill rate following expression (1), i.e. 

estimating directly the expected fulfilled demand per replenishment cycle. 

However, we find several works that propose the estimation of the fill rate 

through the known as traditional approximation which computes the numbers of 

units not satisfied, instead of computing directly the fulfilled demand, as: 

 
 

 
1

 Approx

E unfulfilled demand
FR

E total demand
   (2) 

or using its complement: 

 
 

 

 Approx

E fulfilled demand
FR

E total demand
                (3) 

Nevertheless, the traditional approximation tends to underestimate the fill rate  

(Guijarro et al, 2012; Babiloni et al, 2012). An important consequence of the 

underestimation behaviour is found when the traditional approximation is used to 

determine the base stock since underestimating the fill rate supposes 

overestimating the base stock and therefore increasing holding costs of the system. 

Thus, from a practical point of view it seems useful to know under which 

conditions approximate methods based on (2) and (3) can provide an accurate 

enough approximation to the optimal stock level for periodic review systems. 

This paper answers this question. 

Expressions of the fill rate in a periodic review (R, S) inventory system 

As previous section pointed out, only a handful of papers proposes exact 

expressions to compute the fill rate following (1). To the best of our knowledge, 
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in a periodic review (R, S) system, only Babiloni et al (2012) derive and exact 

calculation of the fill rate based explicitly on its definition, i.e., directly estimating 

the fraction of the fulfilled demand per replenishment cycle instead of the 

expected shortage: 

     
 

 
 

0 0

0 0
0

1 1

0

1 0 1 0
R

S
R R R R

Exact L
NS D NSR R R

F NS F f DNS
FR f S NS

F D F



  

       
   

   (4) 

Note that this expression (named Exact henceforth) can be applied for any 

discrete demand distribution in a backordering case.  

However, we find quite a number of works suggesting methods to estimate the 

fill rate following expressions (2) or (3) in different contexts. In both cases, the 

expected total demand can be straightforwardly computed so the difference 

resides in how to compute the expected unfulfilled demand (in expression (1)) or 

the expected fulfilled demand (in expression (2)). Restricting for the periodic 

review (R, S) system, we find the following approximations:  

 the traditional approach (Trad in the rest of the paper) that is presented in 

classical Operation Management texts (as Silver (1998) among others) and 

widely used in practical environments due to its simplicity. 

 the fill rate expression based on the expected shortage per replenishment cycle 

suggested by (Hadley and Whitin, 1963) (henceforth, H&W) which is used as 

the numerator of (2) by several authors such as (DE Kok, 1990; Heijden and 

DE Kok, 1998; Silver and Bischak, 2011). 

 the method presented in (Silver, 1970) and reformulated by (Johnson, 1995) 

for periodic review policy (R, S) when demand is normally distributed (Silver 

in the rest). 

 the approximation derived by (Johnson, 1995) to compute the fill rate when 

the review cycle is one period and demand follows a normal pattern 

(henceforth, Johnson). Note that µ represents the mean demand during a cycle 

in the expression of Table 1.  



Guijarro /Journal of System and Management Sciences Vol.6 (2016) No 3, 23-46 

30 

 

 the approach proposed in Teunter(2009) (Teunter from now on) to calculate 

the fill rate for any continuous demand process in a single-stage general 

periodic review inventory system. 

 the fill rate method derived by (Babiloni et al, 2012) to compute expression 

(1) in a periodic review system when demand follows any discrete demand 

distribution (Babiloni in the rest). 

The majority of these approximations assumes continuous demand pattern, 

most often with the normal distribution. Discrete demands are only considered by 

Hadley and Whitin (1963), who restrict their analysis to Poisson distribution, and 

by (Babiloni et al, 2012) who assume any discrete demand function. Since this 

paper focuses on discrete demand context, we consider the discretization of the 

above expressions following Guijarro et al (2012). Table 1 summarizes the 

discrete formulation of the approximations considered in this work. 

Table 1. Approximate fill rate expressions in a (R, S) inventory system and discrete 

demand context 

Author/s Expression 

Traditional  

   

 
1

1 R L

R

R L R L R L
D S
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D

D S f D

FR
D f D





  






 
 






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&

1
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D
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

 

  
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
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    
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

 



  

Silver (1970)
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Johnson et al. 

(1985) 
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Teunter 
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     
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4. Numerical Experiment 

Design of the experiment 

The aim of this paper is to assess how approximate fill rate expressions perform 

when they are used to determine the optimal S that guarantees the achievement 

of a target fill rate (FR*). In a continuous demand context the determination of 

base stock levels based on a target service level constrain consists of solving 

 *FR S  . However, in a discrete demand context : �  �  and therefore the 

problem turns on finding the minimum stock level that guarantees the 

achievement of the target fill rate: 

   * * 0,1

Min S

subject to

FR S S FR    �

 

To accomplish this purpose, we design a large experiment which consists of 

calculating the minimum base stock level that guarantees the attainment of the 

target fill rate using the approximate expressions from Table 1 and the Exact 
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method. 

Table 2 presents the set of parameters selected as entry data in this experiment. 

With regard to the inventory system, an extensive range of values for R, L, FR* 

are selected in order to consider as many contexts as possible. Regarding demand 

distributions, we select the most commonly used discrete demand distributions: 

(1) Bernoulli (); (2) binomial (n, ); (3) Poisson (); (4) geometric (); and (5) 

negative binomial (r, ). Given that the Bernoulli distribution is equivalent to the 

Binomial distribution with n=1 and the Geometric distribution is equivalent to the 

Binomial distribution with r=1. Finally our experiment considers Poisson, 

binomial (Bin) and negative binomial (NegBin) distributions with the appropriate 

set of parameters. To select parameters of each distribution we focus on 

considering the four demand categories suggested by Syntetos (2005), i.e. smooth, 

lumpy, intermittent and erratic. The experiment considers every feasible 

combination of these values per factor leading to 235,620 different cases. 

Table 2. Experimental Factors and Values 

Demand distribution 

Poisson()  =
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 0.9, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 

4, 5, 7, 10, 15, 20 

Bin(n, θ) 
n = 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20 

θ = 0.01, 0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 

NegBin(r, θ) 
r =

0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 0.9, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 

3.5, 4, 5 

θ = 0.1, 0.15, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99 

Inventory system 

Target fill rate, FR* = 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99 

Review Period, R = 2, 3, 4, 5, 7, 10, 15, 20 

Lead time, L = 1, 3, 5, 7, 10, 15, 20 
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The experiment is designed as follows: (1) we combine a set of input 

parameters of inventory policy (R and L), demand (distribution and parameters) 

and target fill rate (FR*); (2) we calculate the minimum S that guarantees the 

attaining of the FR* with the Exact method; and (3) we calculate the minimum S 

with approximate methods presented in Section III. The experiment has been 

programming using JAVA language and will be available upon request. 

Analysis of the Results 

Given the high number of cases included in the experiment, we carry out an 

exploratory analysis through the Classification and Regression Trees (CART). 

This non-parametric analysis is one of the main techniques used in Data Mining 

to predict membership of cases in the classes of a categorical dependent variable 

from their measurements on one or more segmentation variables. Therefore its 

main goal is to predict or explain responses of the categorical dependent variable 

Breiman (1984). The aim of using CART to analyze our experimental results has 

the purpose of identifying clusters of cases where a fill rate method shows an 

homogeneous performance. As a result, the application of CART allows us to 

identify under which conditions any of the approximate methods is accurate 

enough to estimate optimal base stock levels. 

For every of the 235,620 cases we need to define a categorical dependent 

variable and a set of independent variables. On one hand, we define a categorical 

dependent variable (“Best Method”) which indicates the simplest and fastest 

method that leads to the exact base stock level. We use the cyclomatic complexity 

to compute the simplicity. Note that the Exact method is selected as the best 

method if none of the approximate methods fulfils the condition. As independent 

variables of the analysis we select those relating to the simplifications assumed 

in the derivation of the approximate methods and those relating to the inventory 

policy, the distribution function or the target fill rate. More concretely we include: 

the random variable, the squared coefficient of variation of demand sizes (CV2), 

the average inter-demand interval (p), the target fill rate (FR*), the probability of 
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zero demand (P(0)) and the average demand during R+L (µRL). 

The analysis is carried out by using the software STATISTICA (version 8.0). 

The resulting CART (see Figure 2) has 8 intermediate nodes and 9 final nodes 

which are explained by four segmentation variables: µRL and CV2, P(0) and FR*. 

The intermediate nodes help us to understand the structure of the classification 

scheme, but the final nodes establish the scheme itself. Each node shows: an 

identity number (ID), the number of cases the node has, the predicted Best method, 

and the histogram of the cases where, from left to right, Trad, Teunter, Silver, 

HW, Johnson and Babiloni approximations are observed as Best method. As can 

be seen, the right branch (when CV2>0.327) of the tree includes a high number 

of cases (70,686) where the best method is the Exact one. For that reason, we 

carry out a new CART of this node in order to understand the performance of the 

approximate expression in those cases. Figure 3 shows the resultant CART. 

Figure 2. CART for the best method to compute optimal base stock levels 
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Figure 3. CART for the best method to compute optimal base stock levels in Node 3 
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For a better understanding and applicability of the results, Figures 4-8 show a 

graphical representation of the final nodes of CART depending on the FR* and 

P(0) level. The space of representation is defined by two of the resulted 

segmentation variables: CV2 and µRL. Note that nodes 6, 8, 9, 3.3 and 3.5 are 

independent of the FR* and P(0) and therefore they appear in all figures. As can 

be seen, the Trad method, which is the most commonly used in practical 

environments, is the best method only when the µRL is very low (µRL<0.21). 

Conversely, only the Exact expression is the best method when the CV2>0.59 

and/or µRL>22.45. In the intermediate situations, the different approximations 

can provide a good performance depending on the FR* and P(0). 

Figure 4. Graphical representation of CART final nodes for P(0)>0.97 and FR*>0.725 
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Figure 5. Graphical representation of CART final nodes for P(0)>0.97 and FR*≤0.725 

 

Figure 6. Graphical representation of CART final nodes for P(0)≤0.97 and FR*≤0.575 
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Figure 7. Graphical representation of CART final nodes for P(0)≤0.97 and 

0.575<FR*≤0.725 

 

Figure 8. Graphical representation of CART final nodes for P(0)≤0.97 and FR*>0.725 
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5. Practical Application and Conclusions 

A practical tool: a reference framework to select the best method to compute 

S 

The resulted CART reveals the underlying model behind the performance of 

the approximate methods and identifies zones showing a homogeneous 

performance of them. However, as a predictive model, it is important to know the 

classification errors arising from using an approximate method to compute the S 

in every single node. Furthermore, it is not only important to know the percentage 

of misclassified cases per node, but also the type of errors that the misclassified 

cases fall into. In this paper, errors are measured by using the relative error (RE) 

expressed in terms of per cent:   Exact Approx ExactRE S S S 
, where SExact is 

replaced by the base stock level obtained using the Exact method and SApprox 

by the base stock level obtained using any of the approximate fill rate expressions. 

This way to compute errors allows us to know not only the magnitude of the error 

but also the type of error by analyzing its sign. When the relative error is negative, 

the approximate method gives a base stock level which is greater than the exact 

one (SApprox>SExact) and therefore the system reaches the target fill rate, i.e. 

CV 2

µ R+L

NODE 3.7: Exact

NODE 3.5: Exact

N
O

D
O

 3
.3

: E
xa

ct

N
O

D
E

 6
: T

ra
d

NODE 9: Teunter
NODE 13: Exact

NODE 17: Exact

NODE 8: Teunter
NODE 16: Trad

0.2105 3.065 22.45

0.0485

0.1195

0.327

0.588

0.176



Guijarro /Journal of System and Management Sciences Vol.6 (2016) No 3, 23-46 

40 

 

there is not impact in the service level of the system, although may cause an 

increase of the average stock level over the time. This type of classification error 

is named as CE1 further on. However, if the relative error is positive, the 

approximate base stock level is lower than the exact one (SApprox < SExact) 

which means that the system is not reaching the target fill rate which it is designed 

for. This type of classification error is called CE2 from this point onwards. The 

impact of having either CE1 or CE2 makes it necessary to clearly identify the 

type of misclassified cases arising from the use of an approximate method instead 

of the Exact one in every single node. Table 3 summarizes the misclassified cases 

per node and categorizes them according to their mean (µ) and standard deviation 

(σ) which has to be placed in the context of the size of the stock level, S. Note 

that in Table 3 we include in the last column the results of H&W, Babiloni and 

Teunter since they compute accurately expressions (2) and (3), and therefore, 

their results are the same.  

The four first columns of Table 3 identify the node, the rest of them present the 

percentage of cases where each method computes the exact S (%SExact), the 

percentage of cases in this node that fall into CE1 (%CE1) or into CE2 (%CE2) 

and the mean (µCE1 and µCE2) and the standard deviation (σCE1 and σCE2) for 

each approximate method. For example, if an item presents a CV2 = 0.25 and 

µRL = 0.20 (first row of Table 3) H&W, Babiloni and Teunter are the methods 

that compute the exact S the greatest number of cases (95.12%), followed by 

Johnson (91.59% of cases), Silver (85.35% of cases) and Trad (77.13%). If we 

use H&W, Babiloni and Teunter the expected error is always type EC1 with µE1 

= 86.26 and σCE1 = 23.95, whereas if we use, for example, the Johnson 

expression we can fall into errors or type EC1 (0.90% of the cases) or type EC2 

(7.51% cases). It is important to take into account that in this node, the optimal S 

is very low, for this reason the mean error and the standard deviation is high.  

The result of this analysis reveals that when µRL and CV2 are low, all 

approximate methods present a good performance. However, when both variables 
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are high, the percentage of error is higher. Then, the Exact method should be 

selected to determine the optimal base stock level in those cases. For example, if 

the CV2 of an item is 0.5 and µRL is 25 the percentage of cases where 

approximate methods compute the exact stock level is very low: less than 1.5% 

for Trad, Johnson, H&W, Babiloni and Teunter and only 18.26% for Silver 

expression. In this case, the risk of applying approximate methods is very high, 

so that the Exact expression would be selected as the most efficient method. 

Table 3 can be used as a reference framework for determining optimal base 

stocks in a periodic review policy. This reference framework has important 

practical implications since it can be used both as a decision and as correcting 

tool. On one hand, managers can use it to decide the most efficient method to 

establish the optimal base stock level knowing the characteristics of the item. On 

the other hand, if a company is already using one of the approximations, the 

results of this work provide information about the risk derived from using it and 

managers can calculate the expected relative error and correct it. In practical 

environments, managers demand easily understood procedures such as 

spreadsheets or tables Bijvank et al (2012) that would be more used than exact 

expressions which are hardly implementable in practical information systems. 

With the reference framework proposed in this paper we fulfil this purpose. 
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Table 3. Reference Framework to Determine the Optimal Base Stock in a Periodic Review System 

CV2 µRL P(0) FR* % SExact % EC1 µEC1 σEC1 % SExact% EC1 µEC1 σEC1 % EC2 µEC2 σEC2 % SExact% EC1 µEC1 σEC1 % EC2 µEC2 σEC2 % SExact% EC1 µEC1 σEC1

≤ 0.327 ≤ 0.2105  --  -- 77.13 22.87 -93.55 22.43 85.35  --  --  -- 14.65 48.60 5.09 91.59 0.90 -78.56 27.96 7.51 48.55 4.74 95.11 4.89 -86.26 23.95

≤ 0.120 0.2105-3.065  --  -- 51.44 48.56 -57.74 31.61 59.29 2.84 -31.02 11.68 37.87 40.74 11.12 43.50 1.35 -40.85 25.57 55.15 49.50 14.28 81.09 18.91 -53.29 29.52

0.120-0.327 0.2105-3.065  --  -- 24.26 75.74 -54.95 37.11 52.75 3.84 -27.04 10.88 43.41 37.96 12.43 35.29 3.41 -46.41 28.98 61.29 49.45 16.13 63.26 36.74 -47.75 28.43

≤ 0.327 > 3.065 > 0.97  -- 2.97 97.03 -9.46 8.85 32.36 63.72 -4.59 4.58 3.92 11.08 6.33 5.66 9.16 -6.16 6.01 85.18 66.90 38.61 12.09 87.91 -6.32 6.10

0.176-0.327 > 3.065 ≤ 0.97  -- 17.14 82.86 -11.54 11.17 53.06 40.53 -6.53 6.40 6.41 14.38 6.03 10.81 4.00 -6.94 5.86 85.34 66.59 35.63 37.45 62.55 -8.88 8.09

≤ 0.176 > 3.065 ≤ 0.97 ≤ 0.575 58.47 41.53 -11.83 12.22 82.12 14.35 -5.08 7.56 3.53 17.29 6.85 9.70 1.38 -7.15 7.99 88.92 89.10 18.31 72.35 27.65 -8.88 10.44

≤ 0.049 > 3.065 ≤ 0.97 > 0.575 66.31 33.69 -6.82 7.18 75.78 22.87 -4.86 5.70 1.35 12.99 5.17 32.47 2.68 -4.97 5.04 64.84 75.17 37.02 72.82 27.18 -5.89 6.45

0.049-0.176 > 3.065 ≤ 0.97 > 0.575 41.99 58.01 -9.59 8.94 60.99 34.41 -6.62 7.53 4.60 14.01 4.59 17.98 3.39 -4.70 5.52 78.63 64.92 37.68 55.83 44.17 -8.14 8.14

> 0.327 > 22.45  --  -- 0.12 99.88 -9.13 9.51 18.26 79.35 -3.73 2.90 2.40 2.70 1.25 1.17 8.94 -4.34 3.61 89.89 70.55 39.88 0.67 99.33 -5.46 4.67

> 0.588 ≤ 22.45  --  -- 0.00 100.00 -56.92 52.23 32.94 34.46 -11.41 6.01 32.60 22.38 17.02 4.62 18.22 -23.64 23.12 77.15 62.35 31.00 0.71 99.29 -28.70 23.12

0.327-0.588 ≤ 22.45 > 0.725 0.56 99.44 -23.23 20.97 39.61 41.25 -10.34 5.84 19.15 23.40 15.41 14.85 11.67 -14.51 12.50 73.48 48.87 33.34 11.72 88.28 -15.56 11.97

0.327-0.588 ≤ 22.45  -- ≤ 0.725 2.61 97.39 -41.19 39.93 59.33 14.88 -12.90 7.17 25.80 29.86 16.16 11.17 6.85 -27.62 27.29 81.98 73.47 20.66 27.30 72.70 -24.01 22.65

NODE Trad Silver Johnson HW-Teunter-Babiloni
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Summary and Conclusions 

This paper focuses on how to compute the optimal base stock level of an item 

or item category given a target fill rate when demand follows any discrete 

distribution function and the inventory is periodically reviewed. The fill rate is 

one of the service metric most commonly studied in inventory research. It is 

defined as the fraction of demand that is immediately fulfilled from the on-hand 

stock. Despite its definitions is simple, we find different interpretations of it in 

the literature, and consequently, different expressions to compute it. In a (R, S) 

inventory system, only [8] propose an exact method of the fill rate in a discrete 

demand context based explicitly on its definition. However, there are several 

approximations that simplify its computation through the expected shortage and 

calculate the fill rate as expression (2) or (3). However [6] point out that 

approximate fill rate may lead to underestimate the fill rate which has important 

consequences when the fill rate is used to determine the optimal policy. The 

underestimation of the fill rate leads the company to an unnecessary increase in 

the average stock level and thus to an increase in the holding costs of the system. 

This inefficiency is especially relevant in industries in which the unit cost of the 

item is high and/or storage space is limited. This paper evaluates under which 

conditions these approximate expressions present a good performance when they 

are used to determine the optimal parameters of the inventory policy.  

To accomplish the objective of this paper, we carry out a wide experiment 

(235,620 cases) and we use the classification and regression trees (CART) as 

exploratory technique to find homogenous regions (nodes) in which 

approximations have the same performance in the determination of S (see Figure 

3 and Figure 2). Those regions are delimitated by segmentation variables 

(independent variables) that influence the performance of the dependent variable 

-the simpler approximate method that provides the same S than the Exact does- 

and determine the underlying model behind the results. For our analysis the 

segmentation variables are: the squared coefficient of variation of demand sizes, 
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CV2; the mean of the random variable during R+L, µRL; and with less 

importance for the model, the target FR* and the probability of zero demand, P(0). 

The segmentations variables CV2and µRL have allowed representing the model 

into two dimension charts (see Figures 4-8). The new space of representation that 

arises from the CART analysis is not the same that that suggested by Syntetos 

(2005) but it is important to remark that both spaces consider the CV2. Note that 

this new space of representation includes the characteristics of demand pattern 

due to CV2 or µ but also characteristics of the inventory system as the review 

period R, or the lead time, L.  

To complete the analysis and in order to have a better understanding of the 

approximations, we compute the percentage of misclassified cases of each zone 

and the average and standard deviation of their relative errors. The results of this 

analysis are summarized in Table 3 that can be used as a reference framework to 

help managers in the decision making process of selecting the best method to 

estimate the base stock level in a (R, S) inventory system. The proposed reference 

framework contains all the relevant information for selecting one method to 

compute base stock levels given a target FR* when considering discrete demand 

and the inventory system is managed periodically. The practical purpose of this 

reference framework is as decision tool. In this sense it may assist managers to 

select the most simple and accurate method to compute the base stock level of an 

item or item categories. Furthermore Table 3 summaries the risks (type, 

percentage and average and standard deviation of errors) that arise from using the 

fill rate approximations when computing base stock levels and thus managers can, 

in practice, detect and correct them.  
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